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Abstract

We consider the spectrum associated with the linear operator obtained when the
Cahn–Hilliard equation on R is linearized about a stationary periodic solution. Our
analysis is particularly motivated by the study of spinodal decomposition, a phe-
nomenon in which the rapid cooling (quenching) of a homogeneously mixed binary
alloy causes separation to occur, resolving the mixture into regions of different crys-
talline structure, separated by steep transition layers. In this context, a natural prob-
lem regards the evolution of solutions initialized by small, random (in some sense)
perturbations of the pre-quenching homogeneous state. Solutions initialized in this
way appear to evolve transiently toward certain unstable periodic solutions, with the
rate of evolution described by the spectrum associated with these periodic solutions.
In the current paper, we use Evans function methods and a perturbation argument to
locate the spectrum associated with such periodic solutions. We also briefly discuss a
heuristic method due to J. S. Langer for relating our spectral information to coarsening
rates.

1 Introduction

We consider the Cahn–Hilliard equation on R,

ut = (−uxx + F ′(u))xx, (1.1)

where throughout the analysis we will make the following standard assumptions on F :

(H) F ∈ C4(R) has a double-well form: there exist real numbers α1 < α2 < α3 < α4 < α5

so that F is strictly decreasing on (−∞, α1) and (α3, α5) and strictly increasing on (α1, α3)
and (α5,+∞), and additionally F is concave up on (−∞, α2)∪ (α4,+∞) and concave down
on (α2, α4). The interval (α2, α4) is typically referred to as the spinodal region.
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We observe at the outset that for each F satisfying assumptions (H), there exists a unique
pair of values u1 and u2 (the binodal values) so that

F ′(u1) =
F (u2) − F (u1)

u2 − u1
= F ′(u2) (1.2)

and such that the line passing through (u1, F (u1)) and (u2, F (u2)) lies entirely on or below
F . Also, we note that for any linear function G(u) = Au + B we can replace F (u) in (1.1)
with H(u) = F (u) −G(u) without changing our equation in any way. If we choose

G(u) =
F (u2) − F (u1)

u2 − u1
(u− uh) + F (uh),

where uh (the natural homogeneous configuration) is the unique value for which both F ′′(uh) <
0 and

F (uh) =
F (u2) − F (u1)

u2 − u1
,

then H(u) has a local maximum H(uh) = 0 and equivalent local minima at the binodal
values H(u1) = H(u2). Finally, upon replacing u with u + uh we can shift H so that the
local maximum is located at u = 0. Following [10], we will refer to a double-well function
F (u) for which the local maximum is F (0) = 0 and the local minima (though not necessarily
the local minimizers) are equivalent as standard form. In addition we will assume in the
current analysis that once F has been put into standard form it is an even function. Our
primary example will be

F (u) =
1

4
αu4 − 1

2
βu2, (1.3)

which clearly satisfy our general assumptions for all α, β > 0.
For equation (1.1) under assumptions (H), there exist precisely three types of bounded

non-constant stationary solutions ū(x): periodic solutions, pulse-type reversal solutions for
which ū(±∞) = u±, u− = u+, and monotonic transition waves (the kink solutions) for which
ū(±∞) = u±, u− 6= u+; in particular, the asymptotic endstates of the kink solutions are the
binodal values (see [10] Theorems 1.1, 1.3, and 1.4). As discussed in [8, 10] these solutions can
be categorized according to stability as follows: the transition waves are all both spectrally
and nonlinearly stable, while the reversal solutions are linearly unstable with a positive
real eigenvalue (nonlinear instability has not, to my knowledge, been analyzed). Periodic
solutions appear, at least in some cases, to be linearly stable with respect to perturbations
that have the same period as the wave, but it is shown in [10] that a broad class of such
solutions are linearly unstable to general perturbations. The goal of the current paper is
to employ Evans function methods and a perturbation argument to more accurately locate
the spectrum associated with such periodic solutions. We note that our analysis has direct
application to the calculation of coarsening rates for evolution in the spinodal decomposition
process, and we briefly discuss such an applications in Section 4.

2



Our analysis is particularly motivated by the study of spinodal decomposition, a phe-
nomenon in which the rapid cooling of a homogeneously mixed binary alloy causes sepa-
ration to occur, resolving the mixture into regions of different crystalline structure, sep-
arated by steep transition layers, in which one component concentration rises above its
high-temperature concentration, while the other component concentration falls below its
high-temperature concentration. More precisely, this phase separation is typically consid-
ered to take place in two stages: First, a relatively fast process occurs during which the
homogeneous mixture quickly begins to separate (this is the stage typically referred to as
spinodal decomposition), followed by a second coarsening process (sometimes referred to as
ripening) during which the regions continue to broaden on a relatively slower timescale, and
the maximum difference in the concentrations of the two components continues to increase.

In this context u typically denotes the concentration of one component of the binary
alloy (or a convenient affine transformation of this concentration), and the Cahn–Hilliard
equation arises from the phenomenologically derived conservation law

ut + ∇ · {−M(u)∇δE

δu
} = 0, (1.4)

where M(u) (taken constant in our analysis) denotes the molecular mobility associated with
concentration u (somewhat analogous to thermal conductivity), and E denotes the total free
energy functional associated with concentration u. The Cahn–Hilliard equation as considered
here arises from these considerations and a form of E(u) proposed in 1958 by Cahn and
Hilliard, who were considering particularly the interfacial energy between components of a
binary compound [2]. Taking F (u) to denote the bulk free energy density associated with
a homogeneously arranged alloy with concentration u, Cahn and Hilliard posed the energy
functional

E(u) =

∫

Ω

F (u) +
ǫ

2
|∇u|2dx, (1.5)

where in the setting of [2] Ω denotes a bounded open subset of R3, and the term ǫ
2
|∇u|2 is

an interfacial energy correction that arises (as Cahn and Hilliard view it) through Taylor
expansion of a general bulk free energy F = F(u,∇u,Hess(u), ...) and the assumption of
isotropy. (In fact, the functional E(u) was proposed earlier by van der Waals in [17] as an
appropriate energy for a two-phase system, but the work of Cahn and Hilliard seems to be
independent of this.) While ǫ is taken as constant in the current analysis, it may not be
constant in general.

Combining (1.4) with (1.5), we obtain the general Cahn–Hilliard equation

ut = ∇ · {M(u)∇(−ǫ(u)∆u− ǫ′(u)

2
|∇u|2 + F ′(u))}, (1.6)

where in this calculation we have allowed ǫ to depend on u to clarify the form in which
it generally would appear in the Cahn–Hilliard equation. (This equation first appeared in
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Cahn’s paper [1].) In order to obtain the form (1.1), we have taken both M and ǫ to be
constant, and additionally have scaled both time t and F . If we set

ũ(t, x) = u(
t

ǫM
, x), (1.7)

and

F̃ (u) =
1

ǫ
F (u), (1.8)

we find that ũ solves an equation of form (1.1) (in space dimension one) with F replaced by
F̃ .

In the case of relatively high temperatures, F generally has a quadratic form, expressing
the expectation that free energy is minimized by configurations that maximize entropy, and
such configurations correspond with values of u for which the components of the alloy are
homogeneously mixed. On the other hand, as temperature drops, free energy (Helmholtz
free energy F = U−ST , where U denotes internal energy, S denotes entropy, and T denotes
temperature) increases at a rate proportional to entropy, and F can take on the double-well
form of assumption (H). In this way, the original high-temperature configuration, identified
by a constant concentration u = uh, can become unstable at the lower temperature, and
consequently small perturbations from uh do not dissipate, but rather grow at a locally
exponential rate. The natural object of study in this context is as follows: Describe the
time evolution of solutions of (1.1) initialized by a small perturbation from the constant
state u = uh. The important role of stationary solutions in this evolution was suggested by
Langer in [11], where he sets out three hypotheses that we quote here: “1. A decomposing
alloy, at least during the late stages of coarsening, spends most of its time in configurations
which are nearly stationary solutions of the generalized diffusion equation [i.e., our (1.1)]. 2.
The rate of decay of one of these almost stationary configurations is determined primarily by
thermal fluctuations. Random inhomogeneities in the initial configuration may have some
early effect on the location of the emerging zones; but these inhomogeneities should not have
much to do with the late rate of coarsening. These hypotheses suggest that: 3. The rate of
coarsening may be determined by using fluctuation theory to compute the rate of decay of
exactly stationary configurations.”

Regarding the early stages of spinodal decomposition, which Langer did not address, we
note that C. Grant has shown that in the case d = 1 and on a finite domain, a broad class of
initial perturbations from the constant state uh indeed evolve toward an unstable periodic
stationary solution, whose period is selected by uh. The period is given below as Xs and
referred to as the spinodal period. See [3, 4].

In preparation for our discussion of the role of leading eigenvalues in determining coars-
ening rates, we review some elementary observations regarding the existence and structure
of stationary periodic solutions to (1.1). According to Theorem 1.5 of [10] we have that if
F is an even double-well function in standard form and u2 is the upper binodal value for
F , then for every amplitude u∗ ∈ (0, u2) there exists precisely one (up to translation) peri-
odic stationary solution with minimum −u∗ and maximum u∗. More precisely, this solution,
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denoted here ū(x; u∗), satisfies

−ūxx + F ′(ū) = 0 ⇒ ū2
x = 2(F (ū) − F (u∗)).

If we select the shift so that ū(0; u∗) = 0, we find the integral relation

∫ ū(x;u∗)

0

dy
√

2(F (y) − F (u∗))
= x, (1.9)

from which we see immediately (by symmetry) that ū(x; u∗) has period

X(u∗) = 4

∫ u∗

0

dy
√

2(F (y) − F (u∗))
, (1.10)

with also (by direct calculation)

X ′(u∗) =
2
√

2
√

−F (u∗)
−

√
2

∫ u∗

0

F ′(y) − F ′(u∗)

(F (y) − F (u∗))3/2
dy. (1.11)

In the event that F ′′′(y) ≥ 0 for y ∈ [0, u∗], and F ′′′(y) is not identically 0, we have the
expected coarsening X ′(u∗) > 0; that is, the period increases with increasing amplitude. We
record here that it is easily shown that the period does not approach 0 as u∗ → 0, but rather
approaches a minimum value

Xmin =
2π

√

−F ′′(0)
(1.12)

(see the proof of Part (ii) of Lemma 3.2 for details).
In the case that F is given by (1.3), equation (1.9) specifies ū in terms of a Jacobi elliptic

function,

ū(x; u∗) = u∗sn(

√

−2F (u∗)

u∗
x; k), (1.13)

where sn(y; k) denotes the Jacobi elliptic function, defined so that

sn(y; k) = sin φ; where y =

∫ φ

0

dθ
√

1 − k2 sin2 θ
,

where in our case

k2 = − βu4
∗

4F (u∗)
. (1.14)

The period in this case is

X(u∗) =
4u∗

√

−2F (u∗)
K(k), (1.15)
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where K denotes the complete elliptic integral

K(k) =

∫ 1

0

ds
√

(1 − s2)(1 − k2t2)
.

In practice (i.e., for the explicit calculations discussed in this paper), we take values for these
functions from the MATLAB built-in functions ellipj.m and ellipke.m.

If we linearize (1.1) about ū(x) (setting u = ū + v), we obtain the linear perturbation
equation

vt = (−vxx + F ′′(ū)v)xx, (1.16)

with associated eigenvalue problem

Lφ := (−φxx + F ′′(ū)φ)xx = λφ. (1.17)

In this framework the onset of spinodal decomposition is often analyzed as follows. The
high-temperature homogeneous configuration has been standardized to uh = 0, and upon
linearization about this constant solution we obtain from (1.17) the eigenvalue problem

−φ(4) + F ′′(0)φ′′ = λφ. (1.18)

In this constant coefficient case, the spectrum consists entirely of L∞(R)-eigenvalues, and
the eigenfunctions have the form φ(x) = eiξx. Upon substitution of φ into (1.18) we obtain
the dispersion relation

λ(ξ) = −ξ4 − F ′′(0)ξ2, (1.19)

which is maximized by ξs = ±
√

−F ′′(0)/2, with corresponding leading eigenvalue λs =
F ′′(0)2/4. The period selected by ξs is

Xs = 2π

√

− 2

F ′′(0)
, (1.20)

(the spinodal period), which suggests (as discussed above) that when (1.1) is solved with
u(0, x) taken as a small, random, perturbation from uh = 0 the solution will move relatively
quickly (relative to the rate of later dynamics) toward the periodic stationary solution ūs(x)
with period Xs. Indeed, this agrees both with numerical investigations (see, for example,
[12]), and with the analytic work of Grant, discussed above [3, 4].

If we consider the spinodal decomposition process in Langer’s framework, we note that
at each time t we expect u to be near a periodic stationary solution ūt(x). In this way,
we expect the rate of evolution to depend on the leading eigenvalue associated with the
stationary periodic solution ūt(x), and it is precisely these leading eigenvalues that we analyze
in the current analysis. We see, however, that if we want to take advantage of this spectral
information, we need to understand the manner in which u is perturbed away from ūt at time
t, and in principle this perturbation should arise from physical rather than mathematical
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considerations. Langer’s analysis [11] addresses precisely this issue: he derives the Cahn–
Hilliard equation from a more primitive statistical model, and this allows him to reference
back to his statistical model and capture information about the physical perturbations we
expect. We note here particularly that in this way Langer is bringing in something additional
to the Cahn–Hilliard equation, and so the predicted evolution is no longer strictly governed
by the equation itself, but rather by more fundamental considerations. On the other hand the
phenomenological physical constants that appear in Langer’s statistical model are inherited
(in Langer’s derivation) by the Cahn–Hilliard equation, and so we expect the evolution
described by Langer’s statistical model to accurately correspond with the evolution governed
by the Cahn–Hilliard equation.

Langer’s development is discussed in more detail in Section 4, but we can finish the
current physical discussion by referring to the main observation that arises from his work
and from the application on R in Section 4. If we assume that the time evolution proceeds as
Langer suggests, then at each time t we can associate the solution of (1.1) with a particular
stationary periodic solution ūt(x), and so the coarseness can be measured as the period X(t)
of this wave. In this framework, we argue heuristically in Section 4 that X(t) evolves, at
least during the later stages of coarsening, according to the ODE

dX

dt
= λmax(X)X, X(0) = X0, (1.21)

where the values λmax(X) are precisely the leading eigenvalues that we are concerned with
in the current paper; precisely, λmax(X) denotes the leading eigenvalue associated with the
stationary solution given by (1.9) with periodX. This model is derived under the assumption
of late-stage coarsening (i.e., for solutions already assumed close to the asymptotic kink
solution), and so it is natural to take a relatively large period for X0. In Section 4 we
solve (1.21) for a choice of F and show that the resulting coarsening rate is logarithmic as
expected.

Following the development of [10] (and more broadly the references [5, 6, 7, 13, 14, 15, 16]),
we proceed by searching for eigenfunctions with the particular form φ(x) = eiξxp(x), where
ξ ∈ R and p(x) has period X. Upon substitution of this ansatz into (1.17) we arrive at an
eigenvalue problem for p on a bounded domain x ∈ [0, X],

Lξp = λp; p(k)(0) = p(k)(X), k = 0, 1, 2, 3, (1.22)

where
Lξ := e−iξxLeiξx.

We now construct solutions of (1.22) in terms of a basis for solutions of (1.17) {φj}4
j=1,

initialized by φk−1
j (0;λ) = δk

j for k = 1, 3, 4, with (bφj)
′(0;λ) = δ2

j , where b(x) = F ′′(ū(x))

and δk
j denotes a Kronecker delta. In particular, we create a basis of solutions for (1.22)

{pj}4
j=1 through the relations pj(x;λ) = e−iξxφj(x;λ). Looking for solutions of (1.22)

p(x) =
4

∑

j=1

Vj(λ)pj(x;λ),
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we conclude that there exists a solution to (1.22) if and only if there exists ξ ∈ R so that
eiξX is an eigenvalue of the matrix eigenvalue problem

M(λ;X)V = eiξXV ; V = (V1, V2, V3, V4)
tr (1.23)

where M(λ;X) is the monodromy or Floquet matrix

M(λ;X) =









φ1(X;λ) φ2(X;λ) φ3(X;λ) φ4(X;λ)
(bφ1)

′(X;λ) (bφ2)
′(X;λ) (bφ3)

′(X;λ) (bφ4)
′(X;λ)

φ′′
1(X;λ) φ′′

2(X;λ) φ′′
3(X;λ) φ′′

4(X;λ)
φ′′′

1 (X;λ) φ′′′
2 (X;λ) φ′′′

3 (X;λ) φ′′′
4 (X;λ)









. (1.24)

(The form of terms in the second row is taken for computational convenience.) Accordingly,
we define the Evans function for periodic waves as

D(λ, ξ) := det(M(λ,X) − eiξXI). (1.25)

It is clear from the discussion leading up to (1.25) that for periodic waves, L has an eigenvalue
λ whenever there exists ξ ∈ R so that D(λ, ξ) = 0.

In order to state our main result, we make the following definitions. First, let F be
an even double-well function in standard form, and let ū(x) denote the periodic solution
specified by (1.9). Observing that ūx solves the ODE

−φ′′ + b(x)φ = 0, (1.26)

where b(x) := F ′′(ū(x)), we use reduction of order to specify a second, linearly independent
solution

ψ(x) =











ū′(x)
∫ x

0
dy

ū′(y)2
0 ≤ x ≤ X

4

ū′(x)
∫ x

X/2
dy

ū′(y)2
+ X′(u∗)

2F ′(u∗)
ū′(x) X

4
≤ x ≤ 3X

4

−ū′(x)
∫ X

x
dy

ū′(y)2
+ X′(u∗)

F ′(u∗)
ū′(x) 3X

4
≤ x ≤ X

. (1.27)

We now define

Ψ(x) :=

∫ x

0

ψ(y)dy

Φ3(x) :=

∫ x

0

φ3(y; 0)dy

U(x) :=

∫ x

0

ū(y)dy,

and for notational brevity we will take the convention that for any function f(x)

I[f ] :=

∫ X

0

f(x)dx. (1.28)

We are now in a position to state the main result of the analysis.
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Theorem 1.1. Suppose F is an even double-well function in standard form, and let ū(x)
denote a periodic solution of (1.1) with minimum −u∗ and maximum +u∗, where u∗ ∈ (0, u2),
and u2 is the upper binodal value described following (H). Then there exists a value r > 0
such that for |ξ| < r the curve

λ(ξ) = a2ξ
2 + a4ξ

4 + O(|ξ|6), (1.29)

lies entirely in the spectrum of L, σ(L), where L is as in (1.17). The coefficients a2 and a4

are defined as follows: if X = X(u∗) denotes the period of ū(x) then

a2 =
X

Φ3(X)
,

a4 = −a2
2

A

B
,

(1.30)

where

A = −XI[Ψ]2I[ū2] − 2X2I[Ψ]I[ūΦ3] +
X ′(u∗)X

2

F ′(u∗)Φ3(X)
I[ūΦ3]

2

+
B

X

{

− 2I[xΦ3] + 2I[UΨ] +XI[Φ3] +
XI[Φ2

3] − I[Φ3]
2

Φ3(X)
+
X2Φ3(X)

12

}

B = −X3Φ3(X) − X ′(u∗)

F ′(u∗)
X2I[ū2].

Moreover, we have
lim

u∗→0
a2(X(u∗)) = −F ′′(0),

and we can express Φ3(X) either as

Φ3(X) = 4

∫ X
4

0

u2
∗ − ū(x)2

ū′(x)2
dx− X ′(u∗)

F ′(u∗)
u2
∗,

or equivalently

Φ3(X) =
√

2

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx− X ′(u∗)

F ′(u∗)
u2
∗.

We now conclude the introduction with a heuristic discussion of the application of The-
orem 1.1. If we regard the higher order terms as negligible, then we find that the leading
eigenvalue along this curve is approximately

λmax(X) = − a2
2

4a4
=

B

4A
. (1.31)

It is, of course, to be stressed that λmax may easily fall outside the range in which Theorem
1.1 guarantees our expansion (1.29). On the other hand, we recall that in the case ū(x) =
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uh = 0, which can be regarded as the periodic solution with minimum period (and hence
with maximum leading eigenvalue), we have

λ(ξ) = −F ′′(0)ξ2 − ξ4,

and so our observation that a2 → −F ′′(0) as u∗ → 0 suggests that our perturbation approx-
imation for λmax may give reasonable values for large leading eigenvalues as well. Indeed,
we find in practice (see, e.g., Figure 1) that (1.31) gives a reasonable approximation of the
leading eigenvalue for all amplitudes u∗.

As an example case, we consider (1.1) with

F (u) = 250u4 − 500u2 (1.32)

(the large coefficients arise naturally when an equation of the form

ut = (−ǫ2uxx + F ′(u))xx,

for ǫ small, is rescaled into form (1.1)). In Figure 1 we plot the leading eigenvalues associated
with F for all amplitudes u∗ ∈ [0, 1], computed in two different ways: (1) by perturbation
using (1.31); and (2) by computation. In both cases the calculations are carried out using
MATLAB. For the perturbation analysis, we use the MATLAB built-in functions ellipj.m
and ellipke.m for the Jacobi elliptic integrals, and we carry out the integrations with quad.m
and a small choice of tolerance. For the computationally obtained eigenvalues, we evolve
the {φj}4

j=1 up to X and numerically evaluate the zeros of the monodromy matrix. We note
that this latter procedure is not accurate in the case of arbitrarily small eigenvalues, because
errors incurred in the evolution of the {φj}4

j=1 can become larger than the eigenvalues. The
perturbation approach becomes better in this regime, and so we can regard it as most useful
for small eigenvalues. On the other hand, the perturbation approach is much faster in all
regimes.

2 Analysis of the Evans Function

In this section we analyze the Evans function described in (1.25); precisely, we consider

D(λ, ξ) =

det









[φ1] − [eiξx] [φ2] [φ3] [φ4]
[(bφ1)

′] [(bφ2)
′] − [eiξx] [(bφ3)

′] [(bφ4)
′]

[φ′′
1] [φ′′

2] [φ′′
3] − [eiξx] [φ′′

4]
[φ′′′

1 ] [φ′′′
2 ] [φ′′′

3 ] [φ′′′
4 ] − [eiξx]









,

where [φk] := φk(X;λ) − φk(0;λ), and we recall the notation b(x) = F ′′(ū(x)). As an initial
simplification, we note that upon integration of (1.17) we obtain the general relationship

[φ′′′
k ] = b(0)[φ′

k] − λI[φk], (2.1)
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Figure 1: Comparison of leading eigenvalues obtained by perturbation and computation.

where we have observed

b′(0) = F ′′′(ū(0))ū′(0) = F ′′′(0)ū′(0) = 0,

because F ′′′(0) = 0, according to our assumptions on F (in particular, because F ′′′ is odd
and C1(R)).

Upon substitution of (2.1) into D(λ, ξ) and performing one row operation, we find that
D(λ, ξ) is the determinant of the matrix









[φ1] − [eiξx] [φ2] [φ3] [φ4]
b(0)[φ′

1] b(0)[φ′
2] − [eiξx] b(0)[φ′

3] b(0)[φ′
4]

[φ′′
1] [φ′′

2] [φ′′
3] − [eiξx] [φ′′

4]
−λI[φ1] −λI[φ2] + [eiξx] −λI[φ3] −λI[φ4] − [eiξx]









. (2.2)

In developing our expansion, we will find power series expansions of D(0, ξ), Dλ(0, ξ),
Dλλ(0, ξ), and Dλλλ(0, ξ) in ξ. In order to carry this out, we need to understand the φk

evaluated at λ = 0. To streamline notation, we will set

ϕk(x) := φk(x; 0). (2.3)
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Upon setting λ = 0 in (1.17) and integrating twice, we obtain

ϕ′′
1 − b(x)ϕ1 = −b(0); ϕ1(0) = 1, b(0)ϕ′

1(0) = 0

ϕ′′
2 − b(x)ϕ2 = −x; ϕ2(0) = 0, b(0)ϕ′

2(0) = 1

ϕ′′
3 − b(x)ϕ3 = 1; ϕ3(0) = 0, b(0)ϕ′

3(0) = 0

ϕ′′
4 − b(x)ϕ4 = x; ϕ4(0) = 0, b(0)ϕ′

4(0) = 0.

(2.4)

It will also be convenient to observe the combinations

ū′(x)

ū′(0)
= ϕ1(x) + b(0)ϕ3(x)

ū′(0)

b(0)
ψ(x) = ϕ2(x) + ϕ2(x)

(2.5)

It will additionally be convenient to define

zk(x) := (∂λφk)(x; 0)

wk(x) := (∂2
λφk)(x; 0)

h(x) := ū′(0)(z1(x) + b(0)z3(x)

p(x) := ū′(0)(w1(x) + b(0)w2(x))

q(x) :=
b(0)

ū′(0)
(z2(x) + z4(x)).

(2.6)

We also note the associated equations:

z′′k − b(x)zk = −
∫ x

0

Φk(y)dy; zk(0) = 0, z′k(0) = 0

w′′
k − b(x)wk = −2

∫ x

0

∫ y

0

zk(ξ)dξdy; wk(0) = 0, w′
k(0) = 0

h′′ − b(x)h = −U(x); h(0) = 0, h′(0) = 0.

(2.7)

We will solve each of the ODE in (2.4) and (2.5) in terms of two linearly independent
solutions of

ϕ′′ − b(x)ϕ = 0.

As noted in the introduction, one such solution is ū′(x), while a second linearly independent
solution is ψ(x), as given in (1.27). In the following lemma, we collect several identities
obtained by direct calculation.

Lemma 2.1. Suppose F ∈ C4(R) is an even double-well function in standard form, ū(x) is
the periodic solution of (1.1) given by (1.9), and the {ϕk}4

k=1, {zk}4
k=1, h, q, and p are as

defined just above. Then we have the following identities:
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(i) Integral identities

I[ū] = I[ψ] = 0; I[Uψ] = − X ′(u∗)

2F ′(u∗)
I[ū2]; I[h] = I[ūΦ3]

Φ2(X) = −Φ4(X) = −I[xϕ3] =
1

b(0)
I[xϕ1]; I[(X − x)ϕk] = I[Φk]

Φ3(X) = I[ψū] = −X
′(u∗)

F ′(u∗)
u∗

2 +
√

2

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx

I[xϕ4] = X2Φ3(X) + 2I[UΨ] − 2I[xΦ3]; I[z3] = I[Φ2
3] − Φ3(X)I[Φ3]

(ii) Jump identities

ϕ3(x) = ū(x)ψ(x) − ū′(x)Ψ(x) ⇒ [ϕ3] = 0; [ϕ4] = ū′(0)I[Ψ]

[ϕ1] = 0; [q] = −ū′(0)I[Ψ2] + ψ(X)I[ūΨ];

[h] =
X ′(u∗)ū

′(0)

2F ′(u∗)
I[ū2]; [ψ] =

X ′(u∗)

F ′(u∗)
ū′(0),

(iii) Derivative jump identities, k = 1, 2, 3, 4

[ϕ′
1] = [ϕ′

3] = 0

[h′] =
1

ū′(0)
I[ū2]; [q′] =

X ′(u∗)

2ū′(0)F ′(u∗)
I[ū2]; [z′k] =

1

ū′(0)
I[ūΦk]

(iv) Second derivative jump identities, k = 1, 2, 3, 4

[ϕ′′
1] = [ϕ′′

3] = 0;

[ϕ′′
2] = b(0)[ϕ2] −X; [ϕ′′

4] = b(0)[ϕ4] +X

[h′′] = b(0)[h]; [z′′k ] = b(0)[zk] − I[(X − x)ϕk]

Proof. In all cases the proof is by direct calculation, beginning with the observation by
variation of parameters that the general ODE

φ′′ − b(x)φ = f(x); φ(0) = φ0, φ
′(0) = ω0,

is solved by

φ(x) =
φ0

ū′(0)
ū′(x) + ω0ū

′(0)ψ(x) − ū′(x)

∫ x

0

ψ(y)f(y)dy+ ψ(x)

∫ x

0

ū′(y)f(y)dy.

Using this identity, we can solve a second order ODE for each of the {ϕk}4
k=1, {zk}4

k=1, h, q,
and p, and the expressions in Lemma 2.1 correspond with evaluation of these identities. We
omit the details. �

As stated above, we now proceed by expanding each of D(0, ξ), Dλ(0, ξ), Dλλ(0, ξ), and
Dλλλ(0, ξ) in powers of ξ. Expansions are given respectively in Lemmas 2.2, 2.3, 2.4, and
2.5.
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Lemma 2.2. Under the assumptions of Lemma 2.1, we have

D(0, ξ) = (eiξX − 1)4.

Proof. Upon setting λ = 0 in (2.2), we obtain

D(0, ξ) = det









[ϕ1] − [eiξx] [ϕ2] [ϕ3] [ϕ4]
b(0)[ϕ′

1] b(0)[ϕ′
2] − [eiξx] b(0)[ϕ′

3] b(0)[ϕ′
4]

[ϕ′′
1] [ϕ′′

2] [ϕ′′
3] − [eiξx] [ϕ′′

4]
0 [eiξx] 0 −[eiξx]









= [eiξX ] det





[ϕ1] − [eiξx] [ϕ3] [w]
b(0)[ϕ′

1] b(0)[ϕ′
3] b(0)[w′] − [eiξx]

[ϕ′′
1] [ϕ′′

3] − [eiξX ] [w′′]





= [eiξX ] det





−[eiξx] 0 [w]
0 0 −[eiξx]
0 −[eiξX ] b(0)[w]



 ,

where in the final equality we have used several relations in Lemma 2.1. The claim is now
immediate. �

Lemma 2.3. Under the assumptions of Lemma 2.1, we have

(∂λD)(0, ξ) = [eiξx]2
{

XΦ3(X) − X ′(u∗)

F ′(u∗)
I[ū2]

}

+ [eiξx]3
{

I[xϕ3] − [z1] − ū′(0)[q′] − [z′′3 ]
}

.

Proof. We differentiate (2.2) and evaluate the result at λ = 0 to find

(∂λD)(0, ξ) = det









[z1] [ϕ2] 0 [ϕ4]
b(0)[z′1] b(0)[ϕ′

2] − [eiξx] 0 b(0)[ϕ′
4]

[z′′1 ] [ϕ′′
2] −[eiξx] [ϕ′′

4]
−Φ1(X) [eiξx] 0 −[eiξx]









+ det









−[eiξx] [z2] 0 [ϕ4]
0 b(0)[z′2] 0 b(0)[ϕ′

4]
0 [z′′2 ] −[eiξx] [ϕ′′

4]
0 −Φ2(X) 0 −[eiξx]









+ det









−[eiξx] [ϕ2] [z3] [ϕ4]
0 b(0)[ϕ′

2] − [eiξx] b(0)[z′3] b(0)[ϕ′
4]

0 [ϕ′′
2] [z′′3 ] [ϕ′′

4]
0 [eiξx] −Φ3(X) −[eiξx]









+ det









−[eiξx] [ϕ2] 0 [z4]
0 b(0)[ϕ′

2] − [eiξx] 0 b(0)[z′4]
0 [ϕ′′

2] −[eiξx] [z′′4 ]
0 [eiξx] 0 −Φ4(X)









.
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For notational convenience, we temporarily label these four summands respectively A, B, C,
and D.

We have, by direct calculation, the combinations

B +D = [eiξx]3
[

Φ4(X) − ū′(0)[q′]
]

,

and

A+ C = [eiξX ]2
[

XΦ3(X) − X ′(u∗)

F ′(u∗)
I[ū2]

]

− [eiξX ]3
[

z′′3 + z1

]

,

and summing these gives the claim. �

The following two lemmas are proved by differentiating (2.2) two and three times with
respect to λ and evaluating each of the resulting determinants at λ = 0. In both cases the
calculations are tedious but straightforward, and we omit the details.

Lemma 2.4. Under the assumptions of Lemma 2.1, we have

(∂2
λD)(0, ξ) = α0 + α1[e

iξx] + α2[e
iξx]2 + O(|[eiξx]|3),

where

α0 = −2X
X ′(u∗)

F ′(u∗)
I[ū2]Φ3(X);

α1 = 2α0;

α2 = −ū′(0)[ψ][p′] + 2XI[z3] +
2

ū′(0)
([ϕ4]I[h] − 2XΦ3(X)[h])

+ 2([h][q′] − [q][h′]) + 2(Φ3(X)I[xϕ4] − Φ4(X)I[xϕ3])

− 2ū′(0)[z′3]I[xψ]

In particular,

(∂2
λD)(0, 0) = α0; (∂2

λ∂ξD)(0, 0) = iXα1; (∂2
λ∂

2
ξD)(0, 0) = −X2(α1 + 2α2).

Lemma 2.5. Under the assumptions of Lemma 2.1, we have

(∂3
λD)(0, 0) = −3X[ψ]ū′(0)Φ3(X)[p′] − 6[h′]Φ3(X)([ϕ4]I[Ψ] − [ψ]I[(X − x)ϕ4])

+ 6XΦ3(X)([h][q′] − [q][h′]) + 6[ψ][h′]Φ2(X)I[(X − x)ϕ3]

+ 6X[ψ](I[h][z′3] − [h′]I[z3]).

3 Perturbation Analysis

For notational convenience we write

D(λ, ξ) ≈ A1λ
2 + A2λ

3 + A3λ
2ξ + A4λξ

2 + A5λ
2ξ2

+ A6λξ
3 + A7ξ

4 + A8λξ
4 + A9ξ

5 + A10ξ
6,

(3.1)
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where the remaining terms are either zero or of higher order when we search for roots of the
form

λmax(ξ) = a2ξ
2 + a3ξ

3 + a4ξ
4 + O(ξ5). (3.2)

(It has been shown in [10] that there are no zero or first order terms in such an expansion.)
We clearly have the relations:

A1 =
1

2
∂2

λD(0, 0); A2 =
1

6
∂3

λD(0, 0); A3 =
1

2
∂2

λ∂ξD(0, 0); A4 =
1

2
∂λ∂

2
ξD(0, 0);

A5 =
1

4
∂2

λ∂
2
ξD(0, 0); A6 =

1

6
∂λ∂

3
ξD(0, 0); A7 =

1

4!
∂4

ξD(0, 0);

A8 =
1

4!
∂λ∂

4
ξD(0, 0); A9 =

1

5!
∂5

ξD(0, 0); A10 =
1

6!
∂6

ξD(0, 0).

(3.3)

Before proceeding with the perturbation expansion, we record some useful observations
regarding the coefficients {Ak}10

k=1. The following lemma is proved by combining Lemmas
2.1–2.5. We omit the details.

Lemma 3.1. Under the assumptions of Lemma 2.1 we have the following identities:

A1 = −XX ′(u∗)

F ′(u∗)
I[ū2]Φ3(X); A3 = 2iXA1

A2 = −1

2

X ′(u∗)

F ′(u∗)
ū′(0)2Φ3(X)[p′] − 1

ū′(0)
I[ū2]

(

[ϕ4]I[ψ] − [ψ]I[(X − x)ϕ4]
)

+XΦ3(X)
(

[h][q′] − [q][h′]
)

+
X ′(u∗)

F ′(u∗)
I[ū2]Φ2(X)I[(X − x)ϕ3]

+X
X ′(u∗)

F ′(u∗)
ū′(0)

(

I[h][z′3] − [h]I[z3]
)

A4 =
(X ′(u∗)

F ′(u∗)
I[ū2] −XΦ3(X)

)

X2; A6 = 2iXA4; A8 = −25

12
X2A4

A5 = −1

2

X ′(u∗)

F ′(u∗)
ū′(0)2[p′] +XI[z3] +

1

ū′(0)

(

[ϕ4]I[h] − 2XΦ3(X)[h]
)

+
(

[h][q′] − [q][h′]
)

+
(

Φ3(X)I[xϕ4] − Φ4(X)I[xϕ3]
)

− ū′(0)[z′3]I[xψ]

A7 = X4; A9 = 2iXA7; A10 = −13

6
X6.

Upon substitution of (3.2) into the equation D(λ, ξ) = 0, we obtain the requirements

A1a
2
2 + A4a2 + A7 = 0

2A1a2a3 + A3a
2
2 + A4a3 + A6a2 + A9 = 0

A1a
2
3 + 2A1a2a4 + A2a

3
2 + 2A3a2a3 + A4a4 + A5a

2
2 + A6a3 + A10 = 0.

(3.4)
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Clearly, from the first equation in (3.4)

a2 =
−A4 ±

√

A2
4 − 4A1A7

2A1
.

We compute

A2
4 − 4A1A7 =

(

X2X
′(u∗)

F ′(u∗)
I[ū2] −X3Φ3(X)

)2

+ 4X5X
′(u∗)

F ′(u∗)
Φ3(X)I[ū2]

=
(

X2X
′(u∗)

F ′(u∗)
I[ū2] +X3Φ3(X)

)2

,

Using an expression for Φ3(X) from Lemma 2.1 we can write

X2X
′(u∗)

F ′(u∗)
I[ū2] +X3Φ3(X) = X2X

′(u∗)

F ′(u∗)

∫ X

0

ū(x)2 − u2
∗dx+

√
2

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx,

and since X ′(u∗) > 0 and F ′(u∗) < 0 it’s clear that this expression is positive. We have,
then,

A1a2 =
1

2

(

X3Φ3(X) −X2X
′(u∗)

F ′(u∗)
I[ū2] ± (X2X

′(u∗)

F ′(u∗)
I[ū2] +X3Φ3(X))

)

.

In this way we have two possible choices for A1a2,

−X2X
′(u∗)

F ′(u∗)
I[ū2]; and X3Φ3(X),

both positive. The corresponding choices for a2 are

a♯
2 =

X

Φ3(X)
; a♭

2 = − X2F ′(u∗)

X ′(u∗)I[ū2]
.

We next consider the second equation in (3.4). First, using Lemma 3.1 we compute

A3a
2
2 + A6a2 + A9 = 2iX(A1a

2
2 + A4a2 + A7) = 0,

where the second equality is the first relation in (3.4). We are left with

(2A1a2 + A4)a3 = 0,

and by direct calculation we find

2A1a2 + A4 = ±
(

X2X
′(u∗)

F ′(u∗)
I[ū2] +X3Φ3(X)

)

,
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where + is associated with a♭
2 and − with a♯

2. If we use our expression for Φ3(X) from
Lemma 2.1 we find

X2X
′(u∗)

F ′(u∗)
I[ū2] +X3Φ3(X)

= X2X
′(u∗)

F ′(u∗)
I[ū2] +X3

[

− X ′(u∗)

F ′(u∗)
u∗

2 +
√

2

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx

]

= X2X
′(u∗)

F ′(u∗)

∫ X

0

ū(x)2 − u2
∗dx+

√
2X3

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx,

(3.5)

and since ū(x) ≤ u∗ for all x ∈ [0, X] it’s clear that both summands are positive (recall that
X ′(u∗) > 0 and F ′(u∗) < 0). We conclude that

2A1a2 + A4 6= 0 (3.6)

and so a3 = 0.
Before proceeding to the third equation in (3.4) we record two observations regarding the

choice of a2. First, to set a baseline for these observations, notice that if (1.1) is linearized
about the constant solution uh = 0 we obtain the eigenvalue equation

(−φxx + F ′′(0))xx = λφ,

with eigenvalues
λ(ξ) = −F ′′(0)ξ2 − ξ4.

In this way we would like to take our expansion λ(ξ) = a2ξ
2 + a4ξ

4 so that

lim
u∗→0

a2(u∗) = −F ′′(0)

lim
u∗→0

a2(u∗) = −1.

Lemma 3.2. Let the assumptions of Lemma 2.1 hold. Then

lim
u∗→0

a♯
2(u∗) = −F ′′(0).

Remark 3.1. In particular, this lemma asserts that the choice a♯
2 is a convenient choice in

the sense that it is likely to give a good approximation of the leading eigenvalue even in the
case of large λ. (See the discussion following the statement of Theorem 1.1.) We can check
by numerically evaluating the integrals involved with a♭

2 that we seem to have

lim
u∗→0

a♭
2(u∗) = +∞,

so a♭
2 is not a good choice for the case of large λ.
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We also observe that we expect the maximum value obtained by the curve λ♯(ξ)—associated
with the perturbation expansion based on a♯

2—to be the same as the maximum value obtained
by the curve λ♭(ξ). To see why this should be the case, note first that if we denote the
eigenvalues of the monodromy matrix {rj}4

j=1 then

detM(λ;X) = r1r2r3r4 = 1.

Generally speaking, r1 and r2 can be chosen to correspond with the curve λ♯(ξ), while r3 and
r4 can be chosen to correspond with the curve λ♭(ξ). More precisely, r1 = eiξX will be an
eigenvalue of the monodromy matrix precisely when λ♯(ξ) is an eigenvalue of L, and r3 = eiξX

will be an eigenvalue of the monodromy matrix precisely when λ♭(ξ) is an eigenvalue of L. In
the event that r1 has a non-zero imaginary part, we can take r2 to be its complex conjugate,
so that r1r2 = 1. In this way, r3r4 = 1. But if r3 has non-zero imaginary part then r4 is its
complex conjugate, and so |r3| = 1. This argument suggests that for any given λ, either r1
and r3 both have unit modulus, or neither has unit modulus. In this way, λ is either obtained
by both λ♯(ξ) and λ♭(ξ) (typically at different values of ξ) or is not obtained by either.

Though we won’t rigorously verify these observations here, we not that similar and more
sophisticated observations have been verified in [15, 16] in the case of the Euler–Bernoulli
equation.

Proof of Lemma 3.2. We first recall that

X(u∗) = 4

∫ u∗

0

dx
√

2(F (x) − F (u∗))
.

We note that to order F (x) ≈ 1
2
F ′′(0)x2, so

lim
u∗→0

X(u∗) =
4

√

−F ′′(0)
lim

u∗→0

∫ u∗

0

dx
√

u2
∗ − x2

=
4

√

−F ′′(0)
lim

u∗→0

{

sin−1 x

u∗

∣

∣

∣

u∗

0

}

=
2π

√

−F ′′(0)
.

(3.7)

Next, we recall that

X ′(u∗) =
2
√

2
√

−F (u∗)
−
√

2

∫ u∗

0

F ′(x) − F ′(u∗)

(F (x) − F (u∗))3/2
dx,

and compute directly (using Part (i) of Lemma 2.1)

Φ3(X) = −X
′(u∗)

F ′(u∗)
u2
∗ +

√
2

∫ u∗

0

u2
∗ − x2

(F (x) − F (u∗))3/2
dx

= − 2
√

2

F ′(u∗)
√

−F (u∗)
u2
∗ +

√
2

∫ u∗

0

u2
∗

F ′(u∗)
F ′(x) − x2

(F (x) − F (u∗))3/2
dx.
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Using F ′(x) ≈ F ′′(0)x (and again F (x) ≈ 1
2
F ′′(0)x2), we compute

lim
u∗→0

∫ u∗

0

u2
∗

F ′(u∗)
F ′(x) − x2

(F (x) − F (u∗))3/2
dx = (

2

−F ′′(0)
)3/2 lim

u∗→0

∫ u∗

0

xu∗ − x2

(x2 − u2
∗)

3/2
dx

= (
2

−F ′′(0)
)3/2 lim

u∗→0

{

tan−1 x
√

u2
∗ − x2

+
u∗ − x

√

u2
∗ − x2

∣

∣

∣

u∗

0

}

= (
2

−F ′′(0)
)3/2(

π

2
− 1).

We conclude

lim
u∗→0

Φ3(X) =
4

(−F ′′(0))3/2
+

4

(−F ′′(0))3/2
(
π

2
− 1) =

2

(−F ′′(0))3/2
π,

Combining this last calculation with (3.7) gives the claim. �

Finally, we solve the third equation in (3.4) for a4,

a4 = −A2a
3
2 + A5a

2
2 + A8a2 + A10

2A1a2 + A4
,

noting from the previous considerations that we are not dividing by 0. We already have a
relatively convenient form for the denominator, 2A1a2 + A4, so we turn now to deriving an
expression for the numerator, A2a

3
2 + A5a

2
2 + A8a2 + A10.

For notational brevity we set

B := X2 +
X ′(u∗)

F ′(u∗)
I[ū2]a2, (3.8)

where in principle a2 could denote either a♯
2 or a♭

2. We now combine Lemmas 2.3, 2.4, and
2.5 with relations (3.3) to compute (factoring out a2

2)

A2a2 + A5 +
A8

a2
+
A10

a2
2

=
[

− 1

2
X[ψ][p′] +X([h][q′] − [q][h′])

]

(Φ3(X)a2 −X)

+B
[

I[Φ2
3] −XI[Φ2

3] − 2Φ3(X)I[UΨ] + 2Φ3(X)I[xΦ3] −XΦ3(X)I[Φ3]
]

+ a2

[

X
X ′(u∗)

F ′(u∗)
I[ūΦ3]

2 − I[ū2]Φ3(X)I[Ψ]2
]

+ 2X3X
′(u∗)

F ′(u∗)
Φ3(X)I[ū2] − 2X2I[ūΦ3]I[Ψ]

+
(25X5Φ3(X)

12a2
− 13X6

6a2
2

)

− 25

12a2
X4X

′(u∗)

F ′(u∗)
I[ū2].
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The expression stated in Theorem 1.1 results from substituting a♯
2 into this last expression

(note that the first line vanishes with this choice of a2).

Proof of Theorem 1.1. First, it’s clear from our construction ofD(λ, ξ) and the analyticity
of the {φj}4

j=1 in λ that D(λ, ξ) is analytic on C × C. This justifies our general Taylor
expansion

D(λ, ξ) =
∑

α

∂αD(0, 0)

α!
λα1ξα2 , (3.9)

for |(λ, ξ)| sufficiently small. In this way our perturbation argument will be valid, with the
values a2 and a4 we obtained, if we can establish that the roots of D(λ, ξ) can be obtained
as an expansion in ξ.

To this end, we first observe thatDλ(0, 0) = 0 (see Lemma 2.3), so that the Implicit Func-
tion Theorem cannot be directly applied to D(λ, ξ). In order to apply the Implicit Function
Theorem, we clearly must select a particular solution branch, λ♯(ξ) or λ♭(ξ). We proceed
with λ♯(ξ), noting that the exact same calculation is valid with ♯ is replaced everywhere by
♭. Working similarly as in [9], we define the new variable

ρ =
λ− a2ξ

2

ξ2
.

We set

G(ρ, ξ) :=
D(a♯

2ξ
2 + ρξ2, ξ)

ξ4
,

so that, according to (3.1)

G(ρ, ξ) = A1(a
♯
2 + ρ)2 + A4(a

♯
2 + ρ) + A7 + O(ξ),

so that G(0, 0) = A1(a
♯
2)

2 + A4a
♯
2 + A7 = 0 (by the first equation in (3.4)). Likewise,

Gρ(ρ, ξ) =
Dλ(a

♯
2ξ

2 + ρξ2, ξ)

ξ2
= 2A1(a

♯
2 + ρ) + A4 + O(ξ),

so that Gρ(0, 0) = 2A1a
♯
2 + A4 6= 0, as shown in (3.6). According, then, to the Implicit

Function Theorem G(ρ, ξ) has a unique locally C∞ solution

ρ(ξ) = b1ξ + b2ξ
2 + b3ξ

3 + O(ξ4).

Accordingly, D(λ, ξ) is solved by

λ(ξ) = a♯
2ξ

2 + ξ2ρ = a♯
2ξ

2 + b1ξ
3 + b2ξ

4 + b3ξ
5 + O(ξ6).

Last, we observe that the expansion will have no terms involving odd powers of ξ. We
know from our preceding calculations and our perturbation analysis that there are precisely
two eigenvalue curves (i.e., λ♯(ξ) and λ♭(ξ)) with the general form

λ(ξ) = a2ξ
2 + O(ξ4), (3.10)
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where we recall that it has already been shown directlyl that a3 = 0 for such curves. Suppose,
for example, that λ♯(ξ) is not an even function. Nonetheless, σ(ξ) := λ♯(−ξ) is certainly a
curve of eigenvalues of form (3.10) (i.e., if eiξX is an eigenvalue of the monodromy matrix
then so is its complex conjugate e−iξX), and so it must be the case that

λ♭(ξ) = λ♯(−ξ).

But this would require a♯
2 = a♭

2, which cannot be true (as is clear from (3.5)). This contra-
diction establishes that λ♯(ξ) must be even, and clearly we have the same result for λ♭(ξ).
�

4 The Langer Model and Coarsening Rates

In this section we will briefly review the coarsening framework Langer developed in [11], then
apply it in the current setting.

Following Langer, we assume the alloy under investigation is composed of two metals,
A and B, and that it is contained in a bounded d-dimensional set Ω. We specify N lattice
sites in the interior of Ω, each separated from its nearest neighbors by a distance we denote
a, and we assume that at each lattice site there is either one atom of species B, in which
case we record the composition at that site as +1, or one atom of species A, in which case
we record the composition at that site as −1. We will discuss the model in two regimes,
a continuum regime and a discrete regime. Since it will be important in this discussion to
carefully distinguish between scalar and vector variables, we will use a bold font to distinguish
a vector.

Continuum description. For the continuum regime, we let x ∈ Rd denote a position
in d-dimensional space, and we define ζ(x) to be an average composition taken over the ν
lattice sites nearest x. More precisely, for some appropriate positive integer ν we set

ζ(x) :=
Number of B atoms − Number of A atoms

ν
,

where the atoms are always taken from the ν nearest neighbors around x. Strictly speaking,
ζ will not generally be continuous, but we will work with a smooth approximation of ζ that
we will again denote ζ .

Discrete description. For the discrete regime, we subdivide our set Ω into N/ν mi-
croregions, each consisting of ν atoms. We now define a vector η, with components ηα,
α = 1, 2, . . . , N/ν, calculated as the average composition over microregion α. In particular,

if we let {xα}N/ν
α=1 denote the N/ν microregion centers, we can relate the continuum and

discrete descriptions by
ηα = ζ(xα). (4.1)

Here C is a constant depending on relevant physical parameters such as Boltzmann’s constant
and system temperature, physicality that we have chosen to suppress for this discussion.
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Working in the discrete setting, we denote by ρ = ρ(t,η) the probability distribution
function over the states η ∈ RN/ν , normalized so that

∫

R(N/ν)

ρ(t,η)dη = 1.

Suppose now ηs denotes a stationary solution in the discrete framework. Langer develops
an asymptotic approximation for ρ(t,ηs),

ρ(t,ηs) ≈ Ce−t/τ , (4.2)

where
1

τ
:=

∑

{n:ωn<0}

|ωn|, (4.3)

and the ωn are eigenvalues of the finite difference discrete approximation to the eigenvalue
problem (1.17).

Working in the context of a particular—but in some sense canonical—example Langer
argues that τ−1 can reasonably be viewed as the rate at which transition layers are being
eliminated by the coalescence of neighboring pockets of A-rich or B-rich regions. From this
point of view, if we let M denote the number of such regions, Langer’s model is

dM

dt
∼= − 1

τ(M)
. (4.4)

If we let l denote the distance between transitions, then (4.4) becomes (using that the physical
length of the system is L = lM)

dl

dt
=

l2

Lτ(l)
. (4.5)

In this way, we see that if we can compute τ(l) we will have an ODE that describes the
coarsening of the alloy under consideration.

In what follows, we suggest a slight modification to (4.4). In this development we regard
M = M(t) as the state of the system at time t in the following sense: M(t) denotes the
number of regions that are either A-rich or B-rich at time t. We note thatM(t) is a stochastic
variable, and we assume that at time t = 0 the system is certainly in state M(0) = M0, and
that the probability that the system is still in state M0 at time t is proportional to e−

t
τ .

That is, we assume
Pr{M(t) = M0} = e−

t
τ .

Next, we observe that, except at the endstates, when an A-rich or B-rich region dissolves,
the system goes from state M0 to state M0 − 2; i.e., by our counting scheme two regions are
lost in each annihilation. Let T denote the first time the system arrives in state M0 − 2.
Then

Pr{T ≤ t} = 1 − e−
t
τ ,
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and so T is exponentially distributed with E[T ] = τ . In this way, we expect that in an
averaging sense

M(τ) −M(0) ≈ −2,

and so upon dividing by τ and regarding τ as suitably small,

dM

dt
≈ −2

τ
. (4.6)

In developing our coarsening ODE below we will work with (4.6) rather than (4.4).
While Langer’s analysis was carried out entirely in the context of a bounded domain,

it extends quite naturally to the case of unbounded domains, under consideration here. To
this end, consider the bounded interval [−L,L], and a periodic solution on this interval with
period X. If L is large and M , as in the previous section, denotes the number of enriched
regions, then we have the approximate relation

X =
4L

M
. (4.7)

(I.e., a full period is typically the width of two enriched regions.) We have, then,

dX

dt
= − 4L

M2

dM

dt
= − 4L

M2

(

− 2

τ

)

=
2

τM
X,

where in the last equality we’ve used (4.7).
Now,

1

τ
=

∑

{n:ωn<0}

−ωn,

and as L→ ∞ the positive eigenvalues −ωn become more numerous, approaching a contin-
uum band associated with the case R. More precisely, we expect to have a positive eigenvalue
associated with each of the M regions (one for each transition), and the average value of
these eigenvalues approaches λmax(X)/2 as they fill in the continuum band [0, λmax(X)]. In
this way we have

1

τ
≈M

λmax(X)

2
.

We see that
dX

dt
= λmax(X)X, (4.8)

which is our coarsening ODE on R.
As a case study we consider equation (1.1) with

F (u) = 250u4 − 500u2.

The leading eigenvalues in this case are plotted as a function of amplitude in Figure 1. Using
(1.10) we can obtain leading eigenvalues as a function of period, and upon substitution of
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Figure 2: Comparison of leading eigenvalues obtained by perturbation and computation.

these values into λmax(X) we can solve (4.8). The solution is plotted in Figure 4. In Figure 4
we take as our initial period the spinodal period Xs, given in (1.20). For our current choice
of F , Xs = .2810. To be clear, we do not expect (4.8) to be a good model for such an
early stage of coarsening, but the figure we obtain still captures the expected logarithmic
rate. We stress that accurately integrating the Cahn–Hilliard equation to large times is
computationally intensive, and so it is particularly in these late-time regimes when our
results are most useful.
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