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Abstract. We establish existence of classical solutions for nonlinear parabolic systems in divergence form
on R”, under mild regularity assumptions on coefficients in the problem, and under the assumption of
Holder continuous initial conditions. Our analysis is motivated by the study of stability for stationary and
traveling wave solutions arising in such systems. In this setting, large time bounds obtained by pointwise
semigroup techniques are often coupled with appropriate short time bounds in order to close an iteration
based on Duhamel-type integral equations, and our analysis gives precisely the required short time bounds.
This development both clarifies previous applications of this idea (by Zumbrun and Howard) and establishes
a general result that covers many additional cases.

1. Introduction

For u € RN and x € R", we consider nonlinear systems

Bu,_z[z Z Azl(u,x,t)D“uj , (1.1)

=1 ° j=ll]e|<@2p-1) X1

fori =1,2,..., N.Here, p denotes a positive integer, and « is a standard multi-index
in x, so that for any function f(x)

9%19%2 ... 9%

DY f =
y axyoxy? ... dx,"

f

We assume Eq. (1.1) is uniformly parabolic in the following sense:
(P)If{A;(&;u, x, t)}?’:] denote the eigenvalues of

S0 Awiwx 05 GE),

=1 |a|=2p—1)
then for any compact set C C RY, and for some values 0 < v < T,

sup Redj(§;u,x,1) < —Ap <0,
|&]=1
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forall (4, x,t) e K xR" x [r,T],and j € {1, 2, ...,N}_._
Our standing assumptions on the coefficient functions Aij’ ;(u, x, 1) will be specified
in terms of the following definition.

DEFINITION 1.1. We will say Aij,l(“’ X, t) is Lipschitz—Holder continuous (ex-
ponent y ) uniformly with respect toUd C RN x R" x [z, T provided there exists a
constant C = C(U) so that

N N y
1 1 e
|AY  (ur, x1, 1) — A (w2, x2, )| < CHluy — ua| + [x1 — xa|” + |1y — 12|77

forall (uy, x1,t1), (U2, x2, ) €U.

We will work with both the weak and strong formulations of (1.1), and corre-

spondingly, we will have two levels of assumptions. Our weak assumptions will be as
follows: N
(W1) Given any compact set K C R", the coefficients AZ’ ; are continuous bounded
functions in Qx (=K x R" x [t, T]. -
(W2) Given any compact set B C R”, the coefficients Ag’ ; are Lipschitz—Holder
continuous (exponen_t‘y) with respect to (u, x,t) € K x B x [t, T]. For all « so that
| =2p — 1, the Aij’ ; are Lipschitz—Holder continuous (exponent y) uniformly for
(u,x,t) € Q.

Our strong assumptions will be as follows: - -

(S1) In addition to (W1), assume the derivatives D, Aij’ ,(u, x, 1) and D, Ag’ (u, x, 1)
both satisfy the assumptions described in (W1) for A;’ I
(S2) In addition to (W2), assume the derivatives D, Afx] ;(u, x, 1) and Dy Afj (U, x, 1)
both satisfy the assumptions described in (W2) for AZ /-

Our analysis is motivated by applications to the study of asymptotic stability for
stationary and traveling wave solutions to equations of form (1.1). For example, in
[5,9], the authors consider traveling wave solutions u(x — st) for viscous conservation
laws

u+ fw)y = (Bu)uy)y, (1.2)

where u, f € RY and B € RV*V and where it is clear since f (u) only appears under
differentiation that we can take f(0) = 0 without loss of generality. Writing

1
A(u) ::/0 Df(yu)dy, (1.3)
we obtain the relation f(u) = A(u)u, and so, (1.2) can be expressed as

Uu; = ( — A(u)u + B(u)ux) , (1.4)

X

or equivalently
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N

du; _( Z u)uj—i-sz](u)M]\) :

: ./1 X

In this way, (1.2) has form (1.1) with AO | = A,-j and Ali]:l = B;;. Parabolicity is a
requirement on the eigenvalues of —BEZ, and the standard full viscosity assumption

made in [5,9] is that the eigenvalues of B all have positive real part (see, e.g., (H1) of
[5]). We conclude that

Re 2j(&;u,x,1) < —BE?,

forall j € {1,2,..., N}, where 8 denotes the smallest real part of any of the eigenval-
ues of B. Clearly, if we restrict to |§| = 1, we obtain our parabolicity condition with
Ao = B. In this case, since the coefficients depend only on u, (W1)—(W2) reduce to the
assumption of Holder continuity on A(u) and B(u) (on compact subsets of RY) and
(S1)—(S2) reduce to Holder continuity of Dufi(u) and D, B(u) (on compact subsets
of RV).

Likewise, it is straightforward to verify that multidimensional viscous conservation
law systems

n n
w+ Y fla = D (B wuy)y, (1.5)
j=1 Jok=1

for x € R, u, f/ € RY, and B/¥ € R¥*N can be expressed in form (1.1) and are
parabolic provided

n
a( > Bf"s,;sk) > bol¢|*.
Jok=1
Here, o denotes spectrum, and our notation signifies that each eigenvalue of the indi-

cated matrix satisfies this condition. Another important family of parabolic equations
comprises Cahn-Hilliard systems

ou; al

l
— =V [ ZMW)V((—FAu),- + Fu;u)) | (1.6)
j=l1
which are parabolic provided the product of N x N matrices M (u)I" is positive definite
uniformly in u.
Our main result is the following theorem.

THEOREM 1.1. Suppose (1.1) is uniformly parabolic in the sense of (P) that (S1)—
(S2) hold and that u®(-) € C”(R) for some Holder index 0 < y < 1. Then, there
exists a solution to (1.1), denoted u, on some sufficiently small time interval [t, T] SO
that u(x, t) = u*(x) and for any o € (z, T)

ueCH @R x [, T) NPT E R x [0, T)).

Y ~
Moreover, u is the unique solution in CVo (R x [v, T)).
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REMARK 1.1. While Theorem 1.1 is interesting in its own right as a sufficiency
condition for the short-time existence of strong solutions of (1.1), we have been primar-
ily motivated here by applications to the study of stability for stationary and traveling
wave solutions of (1.1). In analyses of viscous conservation laws [5,9], Cahn—Hilliard
equations and systems [2,3], and related equations [4), it has been shown that sta-
bility can often be established by combining large time bounds obtained by pointwise
semigroup techniques with the short-time theory developed here. This procedure is
discussed, for example, in [5] and [3], where the latter paper bases its discussion
directly on the current analysis. We note here that one of the most important elements
of this procedure is that for small times, the solution u(x, t) of (1.1) can be expressed
as

u(x,r>=/ Glx. 15 £, DuE, T)dE,
RY!

where the Green’s function G satisfies estimates developedin [1]. This characterization
of u allows us to easily obtain estimates on derivatives of u in terms of u itself (at a
shifted time) by placing derivatives on the Green’s function.

Alternative approaches and developments in related settings appear, for example,
in [6,8], and the substantial list of references discussed in those papers. Aside from a
difference of approach (an emphasis on Green’s functions here, as opposed to more
modern techniques in [6,8]), the current analysis differs from [6,8] and many other
investigations in its restriction to Cauchy problems of the form (1.1) on unbounded
domains. (Section 4 of [8] is concerned with problems in divergence form, similar to
(1.1), on bounded domains). This specialization allows us to obtain a result that (1)
is stated in terms convenient for application to stability analyses and (2) requires less
regularity on initial conditions than is assumed in any analyses that we are aware of.

Outline of the paper. In Sect. 2, we establish some notational conventions that will
be taken throughout the analysis. In Sect. 3, we carry out a linear analysis for a class
of linear parabolic systems in weak form, and in Sect. 4, we establish a number of
estimates that will be necessary for our nonlinear (Contraction Mapping Theorem)
argument. Finally, in Sect. 5, we carry out the CMT argument and establish the full
stated regularity of solutions to the strong problem (1.1).

2. Notation

For any m x n matrix A, we will denote components as A;; or A, depending upon
convenience. We will use the norm notation

m n %
|A| := (ZZA?I.) :
i=1j=1

In calculations in which a new constant appears in each step, we will often take the
convention of labeling the constants as Cy, C3, etc. or (especially in exponents) cy,
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c2, etc. In many cases, we will begin a calculation by dividing an expression into two
summands I = [ + I, and we will continue by further dividing each summand. In
this case, we will write /; = J; + J> and if necessary J; = K| + K>3, proceeding
alphabetically, so that location in the cascade is clear. Once the case of /; is finished,
we will begin with I, starting over with I = J; + J5.

Throughout the analysis, we refer to times 7, T and f, as discussed in the introduc-
tion. Our convention is that T denotes our initial time, 7 denotes a possibly large time,
and [z, T'] is an interval over which our equation coefficients satisfy our regularity
assumptions. Finally, T € (t, T) denotes a time, so that T — 7 is as small as required
by the analysis.

The primary reference for this analysis is Friedman’s book [1] in which the state-
ments of results are not numbered by chapter. For clarity here, we will add the relevant
chapter to the start of Friedman’s numbering, so, for example, Friedman’s Theorem
2.1 of Chapter 9 will be designated here as Theorem 9.2.1. In most cases, we will refer
to page numbers as well.

3. Friedman’s linear theory for the weak formulation

Given any function # in an appropriate function space, we consider the linear prob-
lem associated with (1.1)

dui _Z[Z > A a0, x, t)D“u]} , 3.1)

=1 ° j=lle|=2p-1 X

fori =1,2,..., N. We will write
Ad 1) == A ((x, 1), x, 1), (3.2)

Our primary goal in this section is to use the parametrix methods of [1] (originally
developed by Levi [7]) to analyze a weak form of (3.1). For this analysis, we make
the following assumptions on Afx’ ;(x,t): forsome T > 0
(A1) The coefficients Ag ;(x, t) are continuous bounded functions in 2 = R" x [z, T'],
and for all @ so that |¢| = 2p — 1, the Ag ;(x, t) are continuous in ¢ uniformly with
respect to (x, t) in 2.
(A2) The coefficients AZ ;(x, 1) are Holder continuous (exponent y) in x uniformly
with respect to (x, ¢) in bounded subsets of €2, and for all « so that || =2p — 1, the
A;j ;(x, 1) are Holder continuous (exponent y) in x uniformly with respect to (x, 7) in
Q.

To begin, we define the function space

S:={p € C>(R" x [t, T]; R") : spt(¢p) C R" x [, T)},
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noting in particular that ¢ € S = ¢(x, T) = 0. Wesay u € C2P—LOR" x [1, T)) is
a weak solution of (3.1) provided that

T 0¢; ol ~ij o
/t Rn—udxdt //nzax,<z Z Al,x.t)D uj]dxdt

j=1le|<2p—1

—/ @i (x, Du; (x, T)dx, (3.3)
]Rn

foreachi € {1,2,,..., N} and each function ¢ € S.

Following Friedman’s analysis of strongly formulated linear parabolic systems in
[1], we will construct a Green’s function (N x N matrix) G(x, t; &, t) for (3.3). In
particular, we construct G so that if u? (x) denotes any function continuous on R”,
then

u(x,t) =/ G(x,t; & T)u" (§)dg (34)

satisfies (3.3) with

hm ulx,t) =u'(x),
l—)f

forall x € R”. We stress at the outset that our approach is constructive, so it is natural
to make assumptions on the properties that G is expected to have and to verify them
directly from the object we construct. Assuming, then, that G exists, and assuming
that we can justify differentiation under the integral sign, we expect G to satisfy the
relation

T

/ / 8¢l/ E Gik(x, t; &, Dyuy (§)dEdxdt = / @i (x, Tuj (x)dx

. " n Rl‘l
//,,Za"”[z 3 ey

j=1lx|<2p—1
x/ ZD;‘C‘ij(x,t;E,t)u,ﬁ(é)dé]dxdt. (3.5)
" k=1
Recalling that formally
N
/ ¢i(x, Duj (x)dx =/ ¢i(x, T)/ ZGik(X» T3 &, Dug (§)dédr,
R" R" 1

we can exchange the order of integration to write

N T ¢
Z/R u;(s)[/ i a—'G,k(x &, r)dxdt:| de
k=1 T IR
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N
:Z/ ”15(5)[_/ ¢i(x, T)Gir(x, 7, &, T)dx
k=1 R7 R2
09 [ < i i}
/ /nzaxl[z Z Aa,z(x’f)Dijk(x,t;S,r)]dxdt}dg.

Jj=1la|=2p-1
3.6)
We will construct G so that
T ¢l k
/ —Gik(x,t; &, T)dxdt = —¢;(§, 7)4;
T R» ot
Za¢’ Z > AL (.0ODEGj(x. 1€, 7) fdxde, (3.7)
n axl A s jk * .

Jj=1la|=2p—1

where 8£‘ denotes a standard Kronecker delta function.
Following the general approach of [1], we construct G with the form

Gx,r:86,1)=2Z(x —§,1;§,7)

t n
+[ [ Xz, rnno@rpiois v, G3)
T n P

or in component form
Gik(x,1:86,7) = Zip(x —§, 1,8, 7)

//nzzzm@ Vo, )00, (v, 016, dydo,  (39)

p=1m=1

where Z and each of the ®” are N x N matrices to be specified below. We note for
comparison with our reference that [1] addresses strong-form equations,

N
9 y
“‘ => > A, 0D%;, (3.10)

j=1 a|<2p

and in that setting, the analogous form of G is (the expression for I' on p. 252 of [1])

t
G(x.1:6,7) = Z(x — E.1:£,7) +/ / Z(x — y.1: y, 0)®(y, 0 £, D)dydo.
T R’l

Continuing now with the weak case, the components of Z(x — &,¢; y, t) solve the
parametrix equation

0Zik L i
—G-Eny =323 > AL0.0

I=1 j=1|a|=2p—1

0 9Zjk

x—£&,t;y,1), (3.11)
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along with the condition that for any u”™ € C(R")

lim Z(x —&, ;& Dut (§)dE = u" (x).

t—tt Jrn
Alternatively, we can write (3.11) in vector form for the kth column Zj,
azk . azk
=> > Awy.nDi= (3.12)
=1 |a|=2p—1

Since our equation for Z is in the class analyzed by Friedman in [1], we will take the
existence of Z and many of its properties directly from that reference.

LEMMA 3.1. Let assumptions (Al) and (A2) hold, and suppose Z is defined as in
(3.11). Then, for each multi-index 0 < |a| < 00, there exist constants cy and Cy 5O
that

_ntle| x=&12P \1/2p—1
IDYZig| < Ca(t — )~ 2 e,

foralli,k € {1,2,...,N},all (x,t) e R" x (7, T), and all ¢ € R".

REMARK 3.1. This lemma is simply a restatement in our context of Theorem 9.2.1
on p. 241 of [1]. The proof appears in that reference.

We now derive integral equations for the matrices ®. To start, we set

L —/ / %Z,k(x & t; &, t)dxdx

/ /,IZM[Z Z Uz(x DY Zj(x — E,t,f,t)]dxdt.

j=1]a|<2p—1

Integrating the first summand by parts in #, using (3.11) and rearranging terms, we can
write

Y L
lik = —¢i (£, T)8F — 2 5 Kilr 13 & mdxdr,
© JRUID XI

where

N
KhG g ny==> > (A;{,,(g,t)—A;{,,(x,t))Dgzjk(x—s,t; £,7)

j=1la|=2p—1

N
+>0 > AL 0D Zj(x —E. 11 £, 7). (3.13)

j=1la|<2p-2
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Likewise, set

T oag [ Y 9 Zimx =y, 1y, 0)
Jix = / /n a—t'/ /n Z Z ai ™ dDZk(y, o; &, t)dydodxdr
T T P

p=1m=1

r " i [~ i
_/r /nl:la_xliz Z A (x, 1)

j=1lal<2p-1
t n
o f 2
T JR?

p=1m=1

N

BZ - 7t7 )
ZD}‘? jm (X axj Y, 0) ank(y,a;é, t)dydo}dxdt.

Integrating by parts again on the first summand, first in x then in ¢, using (3.11) and
rearranging terms, we find

r % a¢i 1
Jix = Za—)q@ik(x, t; &, 7)dxdt
T n [:1

T n B(f) ¢ N n
- ) KMl (x 11y, 0)®” (v, 01 £, T)dydodxdr,
// an/{/ﬂzz LG, 15y, ), (v, 03 €, T)dydod

=1 m=1 p=1

where

ol 0Zim(x —y,t;y,0)
_l, ~i7 ~i7 .' - s by El
K (x,t;y,0) = —Z (A;{l(g, 1 — A (x, t))D;‘ / -

j=1|a|=2p—1 P

il - AZim(x —E,1,€,7)

+>. Ag (DY == (3.14)
=1 la|<2p-2 o

Upon substituting (3.8) into (3.7), we find the relation
Lik + Jix = =i (€, D)3}

Using our expressions for /;x and Jik, we can write this as
T n
0 (x, t
_/ / 2 MKi’k(x, 1: &, t)dxdr
T n axl
I=1
T n
Ai(x, 1)
+/T /n Za—xlq’ik(x,t; &, T)dxds
=1

r é Agi(x, 1) 7 AR =N o
-/ ;8—XI i D2 Ky o)) (. 01 & T)dxdr =0,

m=1 p=1
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We will construct the matrices @' so that the integrand multipliers of % all agree.
Writing this result in matrix form, we obtain the collection of matrix integral equations

O (x,1;6,7) = K (x, 1, €, 1)

t n
[ X Ry 0@ o dvdo, (19
T JR?
p=1

foreach!l € {1,2,...,n}. We observe that for each /, we have the same general form
as Friedman’s (9.4.7) (from [1]), though our K satisfies different estimates than does
Friedman’s K, and for Friedman K appears twice, in place of both our K and our

K% Foreachl € {1,2,...,n}, we now proceed by writing ®' as an infinite sum
o
O, 16, 1) = D D (x, 1€, 1), (3.16)
v=1
where
O (x. 16, 7) = K'(x, 118, 1) (3.17)
and forv =23, ...,

t n
q>i(x,r;§,r)=// > KM (x iy, 0)@)_ (v.0.6, T)dydo.  (3.18)
T np:l

Following the development on pp. 252-255 in [1] (and for additional details and insight
pp. 14-15 of the same reference), we can verify that the sum in (3.16) is uniformly
(uniform in x and &) a geometric series in t — T and so converges for |t — 7| < 1.

In preparation for our analysis of the ®/, we state a lemma summarizing properties
of K! and K%,

LEMMA 3.2. Let assumptions (Al) and (A2) hold, and suppose K' and K'-* are
defined, respectively, as in (3.13) and (3.14). Then, there exist constants ¢ and C so
thatfor0 <1 <t < T, with T sufficiently small,

n=loy _ x=£2P 1/2p-1)
efc(?) /@p

KL (.6, 1)| <Ct—1)"' "

’

and

- _q_n-y x—£12P \1/2p—1
RLP (e 6. 1) < Ct— 1) 17 e

s

foralll,pe{1,2,...,n},i,ke{l,2,...,N}, and x, & € R".

Proof Since the K/ and K" are defined in terms of Z and its derivatives, these esti-
mates follow from Lemma 3.1 with one additional observation. Under our assumptions
(A1) and (A2), we have the uniform estimate

|Af¥j,l(€7 t) — Aij’l(x, H| < C‘|x _ EIV



Vol. 15 (2015) Short-time existence theory 413

for || = 2p — 1 and some constant C. We observe that for ] =2p —1

(A7, (6.0 — AY ) (x,0)DE Zji(x — .16, 7)

~ _nd2p—lxE2P10p—1)
<CCulx —E"(t—1) 2 e it . (3.19)
Now,
— 14 _£2p _e2p
X el - e —¢| -
Rk A = =SV < ¢ g ey (3.20)

Y
t—1)r

for some constant Cy, so the right side of (3.19) is

~ — & +2p—1— x—£|2P _
CCu =Sl gy e VO
(t —T)v/2p
_nk2p-loy x=PP1@p-1
<Ci-v 2 e CF) e

for some constant C;. Noting that estimates on the other summands in K l.lk are smaller
if t — 7 is small, we conclude the claimed estimate.
The proof is similar for K/, O
In order to obtain estimates on the ®', we must understand kernel interactions. For
this, we will recall Lemma 9.4.7 from p. 253 of [1], which requires the following
notation: we set

n 1/q )
x| = (Z |xi|q) where ¢ = 2p’i o (3.21)

i=1

and for T < o < t, we define

! 1
—y|IPP\ =T _E)2P\ BT
fn(x,é,y; t, t,o) = (u) +(M) .

t—o o—1
While the norm || - || will be convenient for calculations, we will ultimately express
our estimates in terms of standard Euclidean norm | - |. We note the equivalence
|x|2P/2p—1)

2p/(2p—1) 2p/(2p—1)
S < Il < || :

LEMMA 3.3. Let

n n
Io:= [ (t—0)"2%(0c —1) e WhEyitnalgy
Rn
where Tt < o < t, x € R", & € R", and a denotes any positive number. For any
0 < € < 1, there exists a constant M, depending only on €, a, p and n, so that

_n Ix—€12P \1/2p—1
o < Mt — oy om0,
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REMARK 3.2. We will repeatedly use Lemma 3.3 in the following form: Given
constants c¢1 and C1, there exist constants ¢y and C» so that

_n _n =y 1/@p-1) _ . (=127 1/@p-1
C [ t—0) B0 —1) T ) gra(BE T
RVL

_ .
SGt—1) e @

Y

( Ix:slzi’ y/ep=n
-7

LEMMA 3.4. Let Assumptions (Al) and (A2) hold and suppose the matrices Cb{,
are defined as in (3.17) and (3.18). Then, there exist constants ¢ and C so that for
O0<t<t< T, with T sufficiently small,

+2p—1— —£|2P _
n+2p VVE_C(\ArEIT )I/(Zp 1

1ol (x, 6, 1) <Ct—1)" >

foralll € {1,2,...,n}andv = 1,2, ..., and forall x,& € R".

REMARK 3.3. The most important observation in Lemma 3.4 is that to leading
orderint — t ® is bounded like K".

Proof First, for v = 1, this is simply Lemma 3.2. For v = 2,

t n
|¢é<x,r;§,r)|s//RZ|1€”f’(x,t;y,o>1<”<y,a;s,r>|dydo
T n o=1

! _j_ny _pon=loy
scl//(r—a) W (o — 1)
T n

o =yPP =1y v=E2P 1 2p—1)
xe 1) =) dydo.

Applying Remark 3.2, we obtain

g ep-1)
1D (x, 116, 7) < Calt — 1) e 20 )

t
A 14y
x/(t—a) Yo -0 do
T

_qon=l=2y —EPP1/ep-1)
<G-v 7 e

)

which is the claim for v = 2. We observe here that the estimate obtained from the
integration over o is most easily found by dividing the interval of integration into two
subintervals, [z, (t — t)/2] and [(t — T)/2, t].

The general step can now be carried out by induction. The main issue regards
recovering a constant ¢ that is not reduced during the induction step. (In our calculation,
¢z is smaller than c1). This is overcome with the observation that the constant arising
from K'-P is always the same. See p. 254 of [1] for details. O

Combining the estimates of Lemmas 3.1 and 3.4, and using representation (3.8),
we can obtain estimates on G.
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LEMMA 3.5. Let assumptions (Al) and (A2) hold, and suppose G is defined as
in (3.8). Then, there exist positive constants ¢ and C so that for any multi-index
O0<|a|<2p—1linx,andfor0 <t <t < T, with T sufficiently small

ntlal _C(‘X*$|21))|/(2p—1)
-t

IDYG(x,t;&, 1) <C(t—1) % e ,
forall x, & € R".

Proof Since the estimates on Z are inherited immediately, we need only consider
estimates on the integral in (3.8). Assuming that differentiation under the integral sign
can be justified, we compute

! n
// D DiZy,(x —y.1:y.0)®°(y. 01§, 7)dydo
T ”p:l

n+lal+1 n—l-y

t
§C1/ t—0) » (-1 ' 7
T JR"

—y|2p _ —& 2P _
eicl(‘xt—yjr yl/@ep 1)6761(\)”?r y1/@p=1)

X dydo

=P yepen 1 _ g+t Clyply
<Gt — ) e 2= ) / (t—0) 2 (0 —1) " do.
T

In this last integral, we immediately understand the limitation to |«| + 1 < 2p. We
obtain an estimate by

+ - £12p _
n M'*'ﬁg_cl(hzflr Y/ @p=1)

Gt —1) %

’

which is smaller than the claimed estimate. (We recall that the claimed estimate is
determined by Z). Finally, we note that essentially the same argument, with an appeal
to the Mean Value Theorem, justifies differentiating under the integral sign. g

REMARK 3.4. In fact, we can show slightly more. We can establish that ®" is
Holder continuous and use this fact to justify computing derivatives up to order |o| =
2p — 1, though we postpone this calculation until we develop the regularity theory of
Sect. 5.3.

One of the most important preliminary observations we will make regards integra-
tiqr_l of G and its derivatives over R". To begin, we observe that if the coefficients
A:{l (i.e., the coefficients with || = 0) of (3.1) are all O (or simply constant), then
the components of # will only appear under differentiation. In this way, we know that
if (1.1) is initialized by any constant vector u(x,0) = up = constant, then it will
be solved for all time by the same vector u(x, t) = ug for all t+ > 0. If G denotes a
Green’s function associated with this equation, we clearly have

uy = / G(x,t; &, t)upds, (3.22)
Rn

for all up € R”. It follows that in this case, G integrates to the identity matrix.
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Of course we must take care here that the solution u(x,t) = ug is indeed the
solution we obtain through our construction of the Green’s function, and uniqueness
is not guaranteed by our standard assumptions (A1) and (A2). Precisely, in order to
obtain uniqueness, we require the following:

(A3) For each 0 < |a| < 2p, the derivatives D,’?Ag,l(x, t) for 0 < |B] < || are
continuous bounded functions in 2 = R" x [0, T'], and they are Holder continuous
with exponent y uniformly with respect to (x, #) in bounded subsets of 2.

According to Theorem 9.5.6 on p. 260 of [1], if (A1), (A2) and (A3) all hold, then

there exists at most one solution of (3.1) such that for some k£ > 0,

T
—klx2P/@p=D)
/ / lu(x, t)|e X qxdr < o0.
0 n

We can proceed by taking sequences of smooth (e.g., mollified) coefficients AZ, ; SO
that

AZ,I(L 1) = Agi(x,1), q— 00,

pointwise for (x, ¢) in 2. The Green’s functions associated with these mollified co-
efficients integrate to identity by uniqueness, and this integral is obtained in the limit
for G.

Finally, we can guarantee that the Green’s function associated with the weak for-
mulation satisfies the same property by noting that for the problem with mollified
coefficients, the Green’s function for the weak formulation will be the same as for the
strong formulation by construction. Again, integration to identity is obtained in the
limit. N

So far, our discussion has centered around the case AB{ ; = 0. At this point, we
take advantage of our constructive approach to verify that the general case is a slight
perturbation of this more restrictive case. First, we can write

K'=P + 0
Ial,p — ﬁl,p + Ql,p’

where Q! and Q'-? denote the portions of K! and K'-?, respectively, that involve AOJ.
Precisely, from (3.13) and (3.14),

N
Qi(x, 1;6,7) = DAY (x, D Zjx(x — £, 1€, 7); i, Q' = AoiZ
j=1

07 ; —&, 1€, . - ~ 07
mX =858 T); 1.e., Ql”o = Ao —.
8xp Bxp

(3.23)

N
o
Qi (6, 16, 7) = > Ag (x, 1)
j=1

We also write

! 11 1,0
P, =0, +0,7,
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where CIJ{;O comprises all terms in <I>{) [from (3.17) and (3.18)] that include A~O,l . Finally,

o o0
o =>" oL =D (@) + o)) = o' + o0 (3.24)
v=1 =1

In this way, we can construct our Green’s function (3.8) as

G(xvt;évt) = Z(x _é’t;évt)

t n
+/ / D Zy,(x—y.t:iy.0)
T JR? =1

X (@pﬁl()% O';‘i:’f)+q>p’0(y9o—;%"t))dyda' (325)

Noting that the Green’s function for the case Af)j ;(x, 1) = 0 is precisely

Gx,1;6, 1) =2Z(x —§,1:§,7)

t n
+// > Zy,(x—y. 11y, 0)@" ! (y,0: &, T)dydo,
T ”p=l

we have from (3.22) the useful relation

/ [Z(x—s,r;é,r)

t n
+// szp(x—y,t;y,cr)@p‘](y,a;é,r)dydaldé=I, (3.26)
T n o=1
for all (x, ) in Q.

In order to estimate the remaining part of G, we first require an estimate on @',
We begin by noting that d>ll’o = Q!, and generally (directly from (3.18))

¢ n
@ (x, 1;€,7) =/ /R Z(ﬁl’”(x,t; y,0)+ Ql”’(x,t;y,o))
T "p:]

x®? | (y,0;&, t)dydo. 3.27)

Forv = 2,
t n
h(x,1; &, 7) =/ /R Z(P”" + Q””)(x,t;y,o)
T "p:1

X (P'O + Qp) (y,0; &, t)dydo. (3.28)

We clearly have three terms that involve Q' and/or Q"*. Each can be analyzed in the
same way, so we focus on the choice

¢ n
1 :=/ / D PY(x,15y,0) 0 (y, 03 &, T)dydo.
T ”p=1
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Recalling definition (3.23) and the estimates of Lemmas 3.1 and 3.2, we have

t n—y |,-_,v‘2l7 —
1l = Cl/ / (t—0) ' (o — ) Tem Y
T JR?

2P _
eicl(bai‘r )l/(2p 1)

X dydo

g2 yapeny 1 e
<Gt —1) w2 (t—o0) Twdo
T

=y x=ERP L 10p-1)
<Gyt —1)" e yerh.

In this calculation, we have used Remark 3.2. Proceeding similarly for the other two
terms in <I>12’0, we conclude

_g2p _
e_c(\x[i yI/@p=1)

1,0 . -=r
@y (x, 158, )| <C@t—1) 2

for some constants ¢ and C.
We see that <I>12’0 does not blow up as fast for r — t as does <I>11’0, and we can see
from (3.27) that the rate of blow-up (or decay for v sufficiently large) on @0 will

pa
generally be improved over the rate associated with @{)‘91 by a factor of (r — 7).
In this way, we recognize that the leading order term for ¢ sufficiently close to T is
CI>11’0 = Q. We conclude the estimate

N \x;&\zl’ )/ @p=1)
-7

1DM0(x, 118, 7)| < C(t — 1) e (3.29)

We now state a lemma that will be fundamental to our analysis.

LEMMA 3.6. Let assumptions (Al) and (A2) hold, and suppose G is defined as in
(3.8). Then, there exists an N x N matrix function R(x, t; T) and a constant C so that
for any multi-index 0 < |o| < 2p—1linx, andfor0 <t <t < T, with T sufficiently
small

/ G(x,1;6,1)dE =1+ R(x,1; 1),
RVL

and

1+

IDYR(x, ;1) < Ct—1)' %7, (3.30)

forall x € R™.

Proof Following the calculations leading up to Lemma 3.6, we see that all that remains
is to establish the claimed estimates on

t n
R(x,t;7) :=/ I/ / Zpr(x —y,1; 9,000y, 0; £, T)dydo [dE.
R" T n
p=1
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Formally, for each o described in the theorem’s statement, we can write

n

¢ n
DYR(x, t; r)=/ [/ / ZD?Zx,,(x—y,t;y,cr)(Dp’O(y,cr;é,r)dydaldé,
T n =1

from which we obtain the estimate

t _ ntlal+l o
uﬁRuxnnscE/[/ /a—a) e — o
n T n

=2 1 @p-t - =EPP N 1/2p-1
et (RO e (BEEm) Ver )dyda]dé

£2P
-7

_n lx— - ! o+l
< Cz/ (t — 1) e 1)/ (t—o)" 2 dod&
n T

_ ntlaf+1 =27 \1/2p—1
<G [ -0 et g
Rn

1 lal+1
SCy(t—1) .

O

LEMMA 3.7. Let assumptions (Al) and (A2) hold, and suppose G is defined as
in (3.8). Then, there exist constant C and C so that the following estimates hold for
O0<t<t< T, with T sufficiently small:

(I) Forany x1,x e R", 0 <t <t < T,

1= 4r
<C@—1) 2 |x; —x2|";

‘/ (G(m,t;é,f)—G(Xz,t;é,r))dé
RV!
(Il) Forany x1,xp e R, 0 <t <t < T, and forany f € CY(R"),0 <y < 1

< Clx1 —x2|";

/;(Guhnar»—GuLnarﬂf@y@

(IIl) Forany x e R"and 0 <t <t <t < T

ty

_1 A
<Cltr—1)'" "2 (p—1)%

/ (G(x»ll;éf»f) —G(x, 038, f))di‘

(IV) Forany x € R and 0 <t < t] < b < T, and for any f € CY(R"),
0<y<l1

~ a
=C —11);

/n (G(x, 1:8,7) =Gx, n: &, T))f(&)dé

The constants C and C both depend on the bounds of the PDE coefficients and the
Holder constant for f. The constant C additionally depends on the Hélder constant
associated with the coefficients Aqj, while the constant C does not.
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REMARK 3.5. The final note regarding constants will be extremely important in
our proof of the main theorem.

Proof of Case (I). If we combine (3.25) with (3.26), we find

/ (G(xl, fET) — Gl ti £, r))ds

t n
= / / / Z AZy, (x1, 1)@y, o; &, T)dydods,
n T n p:1

where
AZy,(x1,x2) = Zy,(x1 — ¥, t;y,0) — Zx,(x2 — ¥, 1, y,0).

(Here, and in similar instances below, we suppress dependence on certain variables
for notational brevity).

1
At this point, we divide the analysis into two cases: (1) |x] — x3| < ( — 7)2r; and
1
@) Ix1 —x2| > (t —1)%.

1
Case (1) |x1 — x| < (t — 1) 2. For Case (1), we write

t n
/// D AZy,(x1.x) @ (y, 01 £, T)dydodé
nJr n p:]
=L Ixy—xa 2P n
=/ / / ZAZXp(xl’xZ)q)p'o(y,U;E,T)dyd(rdg‘
nJr np:l

t n
+/ / / E Apr(X1,xz)d>"’°(y,o;é,r)dydad%‘
nJi—3 v —x 2 JRY T
2 p=1

=11+ .
For I, we can apply the Mean Value Theorem to the components of Z,, . We have
Zy =y 16,0~ Z (a—y. 1,6, D) =Dy ZY (xF —y, 1:£,7) - (x1 —x2), (3.31)

for some x* = x*(x1, x2, y, &; t, ) (depending also on i and j) on the line between
x1 and x3. According to Lemma 3.1

" 42 PP 1yep-1)
DL ZY (x* =y 16,0 < Ct—v)" 7 e

We write
xp—y=x2—x"+x"—y=lr -yl < |- x|+ -yl

which implies

2p T *|2p T * 2p 7

X2 — Pl 2p X2 — X -l x*— -l

v — | o[ (2=l (o .
r—t r—t r—t
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Upon rearranging this and raising expressions as exponents of e, we find

_2r 2 *2
e —y12P 1/@p—1 20T (PP 1ep-1) =t PP 1ep-1
e_(z—ir) /@p=1) < 6_2 p=T (22200 /2p )e(T) /2p )'

Now, x* is on the line between x; and x, so
|xo —x*| < |x2 — x1].

For I}, wehavet <o <t — %|x1 — x2|?P, so that
1 1
t—o0 2=l — x> 5 X2 — X7

It follows that

Lo —x* 127 1 /2p—1) 1/@p—1)
e ) < 2,

We see that there exist constants C and ¢y, which can be expressed explicitly from
the preceding considerations, so that

*_u12p _ | _vi2p _
e,c(%)l/up 1) ,Cl(%)l/@p 1>‘

< Cie (3.32)

Combining these observations, we can compute (using Lemma 3.3)

=L lx1—xa 2P Cmi2 L
|11|§C2|x2—X1|/ / / (t—o) 2 (0 —1) 2
Rt Jt n

o —y[2P _ —£|2P _
7C1(\r2t7.\al )l/(21} 1)6762(‘)05‘7 Y/ @p 1)]

xe dydodé

o 1=3ln—x2? L (2P ep)
< Cilxp —x1|(t —1) 2 (t—o) re B = dodé.
R Jt

Recalling again that |x; — x| < [2(¢ —0)]/2P, we have, foro € [t, 1 — %le —x2|2”],
the inequality

_1 1-y _r
|x1 = x2|(t —0) 27 <27 |xa — x|V (t —0) .

We have, then,

|2]7

I+y Ixp—£[2P yi/@p=1)
-7

N 17%|x|7x2
] < C4|X2—x1|y(t—f)_27’/ / (t—o) 2 e 3T dods
n T

_ntlty =€ ep-1y
< Cslo—xi"(t—0)' " / e =) dg
n

I+y

< Celxa—xi"(t =)' "2,
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For I, we use the more rudimentary estimate
|Zx,(x1 =y, 15y,0) = Zy,(x2 = y,1; y,0)|
okt [ =P ep-1 =P -1y
<C(t—o0) 2 [e )T e L (333)
Estimates on /5 can be divided into two terms, one associated with each summand on

the right-hand side of this last inequality. For notational convenience, we will express
these as I} = J; + J». For J;, we have

n+1
| < CI/ / / t—0) % (-1 %
" Ji— gl —x 2

b =127 S 1ye2p-1 =527 \1/@p—1
XE_CI( — yl/@p=1) _Cl( —£b y1/2p=1)

dydodé
_L lx —&1%P -
<Gt —1) / / (t— o) we ) Vg,
nJi—gixi—xpr
(3.34)

At this point, we observe the integral

d _1 1
/ (t—o0) 2?do = — (t—a) 2
x1—x2[2P 1-

1
2p 1—5|x1—x2|?P

(I=55)
1 1 2p 1 _
= (§|x1—xz|2") =———71h —xo f1?P7!

]__ —_
2p 2p

‘We can conclude the estimate
2p—1
[J1] < Calx1 — x2|P

Finally, recalling that we remain in Case (1), we have
— 0P = xp = 0| x — PP < xy — x|V (£ — o
lx1 — x2f = |x; — x2|" |x1 — x2] [x; — x| (r —1) %
which gives the claimed estimate. The analysis of J> is almost identical.
T . . .
Case (2) |x1 — x2| > (¢t — t)?r. For Case (2), we again use (3.33), which again
leads to two terms, which we designate I, = J; + J>. (We recall our convention that

even when we have expressed /1 as a sum J; + Jp, we write I, = J; + J» with a new
choice of J1 and J;). Proceeding as in (3.34), we compute

_n d _L lv —£12P -
il= =0 2p/ / (t — o) P 1)dadé

1 —
<Gu-0"T =i -1 5 lx1 —x2]”,

where in obtaining this final inequality, we have observed that in Case (2) (f — ) % <
X1 — x2]”.
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This establishes Case (I) of the lemma.
Proof of Case (II). For Case (II), we divide the analysis into the same two subcases
as we used in Case (I).

Case (1) |x1 —x2| < (t — r)ﬁ. For Case (1), we write
/Rn (G(xl, 156, 7) — Gx, 156, T))f(é)d%‘
= / (G(Xh 1,6, 71) = Glx, 13§, f)) (f(é) - f(m))dé

+/” (G(xw‘;é,f) —G(x2, 15 &, T))f(xz)dé =N+D.

For 11, we apply the Mean Value Theorem to G, similarly as applied to Z, in (3.31)
to obtain the estimate

ol P 1/ep-)
1Gij(x1,158,7) — Gij(x2, 1§, D = Clxy —x2|(t — 1) e =T

’

for some positive constants ¢ and C, and for x* = x*(xy, x2, 7, &, 7) (depending also
on i and j) on the line between x| and x;. Using (3.32) with & replacing y, we obtain
the inequality

*_g2p _ _g12r _
e_c(lx rjl y1/@p=D < Cle_Cl(lxzril yi/ep 1).

In this way, we can write

_ntl =P 1ep—1
|| < Calxi — xa2|(1 — 7) / e =) & — x|"dg
n

_ 1=y
< C3lx; —x2|(t — 1) 7 < Cslx1 — x|V,

where in obtaining the penultimate inequality, we have used the idea of (3.20), while
in obtaining the final inequality we have simply used the inequality defining Case
(1). We emphasize that C3z, denoted C in the statement of our lemma, depends on the
Holder constant associaj[ed with f, but not on the Holder constants associated with
the PDE coefficients A .

In this case, we obtain a much smaller term from I> by directly applying the result
of Case (I) from the lemma.

Case (2) |x1 — xa| < (¢ — 7). For Case (2), we write
/ ,1 (G(xl, FET) — Gl 1, f))f(éf)dé
= /R” G(xi, 56, 1)(f(E) — f(x1)dé — /]R" G(x2,t; 6, 1)(f(§) — f(x2))dE

+/R" GOy, 11 6.1 (F(x1) — fxa))de
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+/ (G(xl, (6 T) — Gl 13 £, r))f(xz)dé
=hL+Db+ 5L+
For I, we have from Lemma 3.5
|11|5c1(;_f>—ﬁ/

where we have used (3.20) and the inequality defining Case (2). The analysis of I is
clearly the same as that of /1, resulting in the same estimate. For /3, we have

PP -1y s
e ACEIT e 7 ds < -0 < Colvi—xal”,

n

o —&12P .
—a e 1)|962 —x1|Vd§ < Calx; — x2|”.

3] < C1(r — r)‘%/ e

n

Finally, using the estimate from Case (I), we see that /4 is much smaller.
Proof of Case (III). If we combine (3.25) with (3.26), we find

/(G(x,n;s,r)—G(x,rz;s,r))ds

11 n
— [ [ [ Xz i@ 000 dvdads
n )¢ np=1
o) n
S A D R R
n J¢ np:l

It will be convenient to rearrange the right-hand side of this last relation as

n n
[ ] X az, 000006 ndvdods
R Jt n
p=1

t n
[ Yz vy 000016 rpdydode =i 1y + 1
nJt np:1
(3.35)
where
AZy (t1,10) = Zy,(x =y, 11;y,0) — Zy,(Xx =y, 12, y,0).

At this point, we divide the analysis into two cases, in precisely the same spirit as
our analysesof (I and (IN): (1), — 1 <ty —t;and ) th — 11 > 1) — 7.

Case (1) tp — t; <t — t. For Case (1), we observe that t < 1] — %(tz —1) <t,
allowing us to write

f—4(m— n
1— 5 (2—11) 0
I =/ / / E AZ,, (1, )P (y,0; &, 1)dydodé
nJr np:l

1 n
[ | 282,007 (. 016, rydydode
n =3 (6—n) " =1

=:J1+ /5.
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For Ji, we apply the Mean Value Theorem to Z, in 7, noting that estimates on
t-derivatives of Z can be obtained from Lemma 3.1 and the defining relation (3.11).
Proceeding similarly as in (3.31), we find that for each component Z%/

Zy (x—y.tiy,0) = Z (x =y, 123y, 0)

2
n+l x=yI“P \1/@2p—1
1- 2p efcl(ﬁ) /@p=h

<Ci(t*—o)" b —11), (3.36)

for some constants ¢; and C; and some value t* = t*(t1, t2, x, y, o) between t; and
tr. For Ji, we have

HH—o<tf—o0<3(t —o),

so that for new constants ¢, and C,, we have

Zy (x =y i y,0) = ZY (x =y, 121y, 0)

2p
ntl . x=yI7PN1/2p-1)
2 (5r=s)

<Cyti—o) e (th—11).

‘We obtain the inequality

n—1-n) okl _n
|J1] <C3(t2—t1)/ / (tl_o) r(o—T)

—e (m 1/@2p— 1) _ (\y H P)1/(2p N

Xe dydodé

o h—3—n) IENRPNG =avLe
< Ca(ty — 1) (11 —7) 2P/ / (h—o) = e dods.
R Jt

Carrying out the integration over o explicitly, and recalling that in Case (1) (f; —
1) 1/2P < (1 — 11)~ V2P, we obtain the estimate

-1 _n —ey(lx §|2p)l/(2p—l)
[J1I| <Cs(p—1) (@1 —1) 27 | e - d&
n

1—L v 1=
< Ce(a—t1) 2 <Ce(ta —1)?(t1 —1T) 2.
For J,, we use the idea of (3.33) to obtain an estimate by two terms, which we

denote J» = K + K>. For the first,

_ntl _n
miza [ [ [ -0 Fe-n
v JnYo-m Jro

—e (\x vl ”)1/(2p 1> _ (|\ |1’)1/(2p 1

xe dydodé

lx—&[2P y/@p=1)
d

_n f oL P
=Gt —1) (h—o) e = 077
nJ—=L(t—n)
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Carrying out the integration over o explicitly, we obtain an estimate by

_n -1 _03(Ix75\21’)1/(2p71>
Ki] < C3(t) — 1) (2 —11) 2 e n-t d&

n

1—L b 1—
SCitr—1t) ¥ <Catr—t)> (1 —1) 727

J. Evol. Equ.

The term for K> can be analyzed similarly, completing the analysis of J,, which

completes the analysis of /] [from (3.35)].

For I, we use the estimates of Lemma 3.1 to write

2 _ntl _n
|| < Cy (p—0) 2 (oc—1) 2
n tl Rn

2p
ey (BN @p-D =P 1y2p-1
xe a (=) e 1) /@p=h

dydodé

o & CL oyt yep-n
<Cm-—-1) % (h—o0) e P dodt.
R Jh

Once again carrying out the integration over o explicitly, we estimate

o

1—L _cz(\xff\zp)l/(prl)
|| < C3(tp —1) 22 (tp — 1) 27 e -t dg
n

1—L v 1= v
SCitr—t) 7 <Cata—t)>» (2 —1) 727

Case (2) t, — t; > t1 — 1. For Case (2), we use the idea of (3.33) (with different
values of ¢ instead of different values of x), and we express the resulting two terms as

Iy = J1 + J». For Ji, we write

h _ntl _n
|Jl|sa// 1 -0) F o —1)
n t R”

o (PP 12p-1y =122 \1/@p—1
xe ci -0 ) 6—01(?) /@p=h

dydodé

—n 4 1ol yep-n
=G —1) (ty —o) e -t dodé
Rt Jt

Carrying out the integration over o explicitly, we estimate

n+l

[kl _C2(|X—§|2p)l/(2p71)
[Jil < Cs(p—1) 2 e - dg
n

1—L i 1—1tr
<SGt —71) 2 <G —t)»(—1T) .
The analysis of J is similar.
Finally, for />, we have

B _ntl _n
|12ISC1/ / (-0 (o — 1)
nJn R®

e (PP 1ep- ly=&12P \ 1/2p—1
xe ci( h—0o ) 6*61(?) /2p=D

<Ct—1) % /

Rn

dydodé

o) L xERPP S @p-1)
/ (th — o) e 2R dod
1
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In this case, we obtain

- 1— L _Cz(M)l/(zp—l)
|12| S C3(t2 - T) 2p (t2 - t]) 2p e n—t
R
1-54 X 1_ 1y
= C4(t2 - tl) 2p < C4([2 — ll)ZP (tz — T) 2p

Proof of Case (IV). For Case (IV), we divide the analysis into the same two subcases
as we used in Case (III).
Case (1) tp — 11 < t; — t. For Case (1), we write

/n (G(x,n; £.1) = Gx. i £, r))f(é)dé
- /R (G(x, N6 D) — Gx, b3 &, r)) (f(é) - f(x))ds

—I—/ (G(x,tl;éyf) - G(x,tz;é,f))f(x)d%' =h+Dh.

For I, we would like to apply the Mean Value Theorem as in our analysis of Case
(II), but we must keep in mind that when working with the weak formulation, G is not
necessarily differentiable in ¢. Using (3.8), we can write

L= /R CAZ(, )(F(&) ~ fOE

1 n
+ /R / / D AZy, (11, 0)P° (v, 03 £, T)(f(E) — f(x)dydodg
T np:l

H n
—/ / / S 7o =y, 137, ) (3, 05 £, T(f(E) — f(0)dydode
nJn np:l

= J1+ + J3, (3.37)
where
AZ(ty, ) =Z(x —§,11:8, 1) - Z(x —§,12;§,7)
AZy,(t1,12) = Zy,(Xx —y,115,0) — Zy,(Xx — y,12; y,0).
For J1, we apply the Mean Value Theorem to the components of Z to obtain estimates
of the form

ZU(x —&,1136,1) = ZV (x — &, 123 €, 7)

_g12p _
1= —er (B VD

<t —1) e (ty — 1), (3.38)

where t* = t*(t1, fp, x, &, T) (depending also on i and j) is a value between #; and 7;.
In Case (1), (-, — t1) < (t* — 7) and

%(fz —1) < (" —1) <2t —1).
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Combining these inequalities, we can conclude

o Cz(lx —£| ”)1/<2p 1

[J1] <C2(t2—t1)2P/ (—7) P He” & — x|"dé

< Cs(tz—ll)ZP-

For J,, we write
1n—5(n2—1) n
2= / ] / / D AZy, (11, )P (y, 01 &, T)(f(E) — f(x))dydode
T n Pt
1 n
/ / ; / D AZy (11, 1)P (v, 05 €, T)(f () — f(x)dydods
tIn—g (- JR T

=: K| + K». (3.39)

For K since 0 < t; — %([2 — 11), we can use the Mean Value Theorem again. In
this case,

1
E(IQ —1) <tf—0o <3(t —o0),

and we obtain an inequality

fh—3 Ln—1) oy ntl Ly _nmloy
|K1|<cl(zz—n)2p// / I(ll—a) 55—

=y 12p—1y
er () er |§—x|7’]dydcrd$

=R 1ap-1)
xe e 1)

z _n n—3 (=1 _r_1 RS
=Cn—n)>rt —1) (n—o) » »(—1) "
nJr

—g2P _
7C2(‘X £ )l/(Zp 1)

xe -7 |& —x|y]d0d$.

Carrying out the remaining two integrals, we find

2
7(.2(\xfé| p)l/(prl)

K1 < C3(tr — tl)ﬁ(tl - T)_ZL;’/ e -t |& — x|"d&

n

s s
S Cu(tp — )2 (1 —T)?P.

For t; — t small, this gives the claimed estimate with an arbitrarily small choice of
constant C. (This last point is important, because C4 depends on the Holder constant
for the PDE coefficients, and C does not).
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For K5, we proceed by writing

131 n
K> =/ / / Zpr(x—y,tlgy,o)cbp(y,a;f,r)
n Sy n—n) JR o=1

x(f(§) — f(x))dydods

H n
—/ / / > Zy,(x = y. 1y, o)’ (y, 01 £.7)
n 1 n
t1—5(2—11) p=1

x(f(&) — f(x))dydods
=: L1+ L».

For L, we estimate

n _n+l 71711—1—}/
izaf | [a-orF o0
nJu—%m—n) JR

2
x=yI=P \1/@2p—1 —&2P -
—er (BB e )e_c](\yai y1/@p=1)

xXe

|€ — x|” tdydodE
_n n _ 1 ,]+HJ
< Ca(t1 — 1) 21’/ / (t —o) 22 (c — 1) 2p
n l
t1—5(2—11)

k=g S 1ep-1)
e (52

|& — x|Vdodé.
Recalling that in this case (6 — 7) > %(1‘1 — 7), we obtain

g layen h 1
L1 < (o — 1)+ / / (1 —0) %
n =3 (n-1)

_g12p _
—ep () e

xXe

o by _ 1
<Gt —t) " —n) 2p/
n

& —x|"dodg

_£2
a2
112y _L

<Cst—0) " (-1
In this case 1, — f; < t; — 7, and using this, we conclude
i i
[L1] < Cs(ty — 1) (12 — 11) %7,

which is sufficient.

|§ — x[7dg

429

The expression L, can be analyzed similarly, and this finishes the analysis of K>

and thus of J, [from (3.37)].
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For J3, we estimate directly

n _ntl _1_n—1—1/
|J3|scl/ / / [(rz—a) B o — 1)
n [1 n

e (PP ep-n =622\ 1/@p—1)
¢ N VT e CE VI ey Hdydode

_n ) _ _1+HJ
=Cr—1) (r—0) ¥(o—1) %
R* J1

_g12p _
—ea (M 2p-

X

xXe

|E — x|7’]dad’§.

We find

=127 \1/@2p—1
6‘_62(?) /@p=1)

_n a
53l < Cata — 7) 2v<t2—n>2~/ & — x| de

n

pa pa
S Cu(tr =) (2 — 1) %,

which is sufficient for , — t sufficiently small.
This concludes the analysis of /1. Since /> can be understood from Case (III), the
argument is complete. g

4. Estimates for the contraction argument

In this section, we gather some important preliminary observations that will be used
in our contraction mapping argument. Given some function u* € CV (R"), for some
Holder index 0 < y < 1, we will work with the metric space

S:={ue C”%(Rn x [1,T]) :u(x, 7) = u*(x), ||u||Cy,2P

, <K}, (41

for some constant K > 0 and some sufficiently small time T > 0. Here,

lu(xr, 1) —u(x, )]

lull , r = sup |u(x,)|+  sup
Cy 2 xeR”~ X1,X0€R" x#xp |X] - x2|)/
te[r,T] re[z,T]
lu(x, t1) — u(x, )]
+ sup - . “4.2)
xR [ty — 12|27

t1,helt, Tln#n

We recall that given any # € S, we can define the associated linear problem (3.1),
and we denote by Z¥ the parametrix associated with this problem, and by ®**-! and
®"P0 the respective ®° and ®”-0 [as defined in (3.24)]. In what follows, we drop
the tilde notation for convenience.



Vol. 15 (2015) Short-time existence theory 431

We will set
AZ(u,v) =Z"(x —&,1;€, 1) — Z%(x — E.t;€,1)
AZi(u,v) =2 (x =&, 1;5,1)—Z/(x —&,1;€,7)
AR (u,v) = O (x, 16, 7) — PV (x, 17 €, 7)
A0 (u, v) i= dH0(x, 15 €, 1) — @VE0(x, 15 €, 7). (4.3)

LEMMA 4.1. Suppose (P) and (WI)-(W2) hold, u,v € S, and 7", Z"
satisfy (3.11) with, respectively, A;j’l(x, ) = A;],l(u(x, t),x,t) and Aij’l(x, t) =
A;jyl(v(x, t),x,t). Then, for0 <t <t < T, with T sufficiently small, and for any
multi-index «, there exist constants c, cq and C, C so that

(1)

y=n=lel _  x=€2P \1/2p-1)
DgAZ(uv U) S Ca”u - U” (t —_ 'L') 2p e cal [ )

Y
c’p

—n— _£12p _
71+%ﬂla‘eic‘1(‘xt5"r yl/ep 1)'

DS AZ:(u, v)

< — —
< Callu =il .z (¢t =)

(1)
gl 8?2 1yep-1)
‘Ad(u,v) <Clu—vl| ,p (-1 14235 () e
(e
yon =127 \1/2p—1
'A@D”“(u, V< Cllu—vll (-7 e CEY,
c2r

foreachl € {1,2,...,n}.

Remark on the proof of Part (I). The proof of Part (I) closely follows Friedman’s
proof of Lemma 9.3.3 in [1], and we omit most of the details. In obtaining our formu-
lation, we use one additional fact,

sup |u(x, 1) —v(x, )] < [lu — v V,L(t—f)ﬁ 4.4
xeR cr
This is clear since, by definition

(ux,n) —v(x, 1)) = (ux, ) —v(x, 1)) < |lu—v] (12 — 1),

Y
C%ﬁ

forall 11, 1, € [z, f’], 11 # tp. The claim is immediate upon taking f, =t and t; = 7
(keeping in mind that u, v € S = u(x, v) = v(x, 7) = u* (x)).
Proof of Part (II). We begin by writing

o]

q)u,l — Z CI)\”)’Z,

v=1
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where CDLI"I = K"“! and forv=2,3,...
t n
Ul (x, 1, 7) =/ / D K 15y, 0@y (v, 05 &, T)dydos
T n el

i.e., (3.17) and (3.18) in our current notation. Here, we denote by K**! and K*!*,
respectively, the expressions for K/ and K** [from (3.13) and (3.14)] associated with
u.

Noting that

o]

ol — ot =" (@‘;J - c1>3”), (4.5)

v=I

we consider the differences <I>’;*l — <I>3’l, beginning with v = 1. In this case, we have

(d)”f’l(x, 5E 1) — oV (x, 1 €, r)) = (K"’l(x, & 1) — KV (x, 138, T))

ik

N
=-> > {(Aij’l(u,g,t)—A;j’l(u,x,t))Df b

j=1la|=2p—1

ik

—(A;{,(v,s,r)—Ai{,,(v,x,t))Df: ;fk]

N
+> > [A;‘l’,l(u,x,t)Dg “e—Ag (v, x, DY jk]: I + I,
j=1|a|<2p-2

where for notational brevity we have omitted the dependence of Z on (x,t; &, 1),
and where u and v always depend on (x, t) or (£, r), consistent with the remaining
dependence of A:j ;- We can rearrange /I as

N
I =—Z Z [(A;j’l(u,g,[)—Afxf’l(u,x,t))(D? jk = Dx ;}k)]

j=1|a|=2p—1
N

- [(A;{l(u, 1) — A (v, E, t)) - (A;{,w, x.1)
j=1|a|=2p—1

~AY (v, x, z))]Dgzjk
= J1+ /L.

For Ji, we note, using (W2) and the fact thatu € S,

Ag,](uv Sa t) - A;j’[(ua X, t)

=C (IM(EJ) —ulx, 0 +1§ —xly) <ol —x|”.
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Using in addition Part I of this lemma and the idea of (3.20), we find

g M2y 2P 1ep-)
il = Cllu = vl y (=)~ 5 e =
clw

For J,, we note
AT 1) — AY 0,8, 0| < Clug, 1) — v(x, 1)
<Clu—vl ,y(t—1)%, (4.6)
c’2p

and conclude

oy £ 12p—1)
2l < Cllu = vl p (¢t =072 e
c”2p

(If we assume greater regularity on the coefficients Afx’ ; [i.e., we assume (S1)—~(S2)],
we can recover the estimate for Ji; in fact, this is the primary reason for taking this
choice of arrangement).

Proceeding similarly for />, we can take advantage of the lower-order derivative to
obtain an estimate that is smaller than the estimate on I for ¢+ — 7 sufficiently small.
This concludes the analysis for v = 1.

According to our definitions, we have obtained an estimate on the difference | K —
K|, and by almost precisely the same calculation, we can verify

‘K“"’”(x, 1€ ) — K (x 1€ 0)

- _g2p _
_1+VTPne_C(7‘XIE‘r y/er=b

< Cllu —vll .z ¢ —1) 4.7

P

Forv = 2,3, ..., we proceed by writing

ol (x, 118, 7) — DY (x, 118, 7)
t n

=// Z[Ku’l’p(x’“y"’)‘bﬁfl(y,ff;é,r)
T np=1

—K%bP(x, 1y, )P’ (v, 05 &, r)]dydo

t n
= / / > (f”’l’p(x, t;y,0) — KU (x 15y, 6)) QU (v, 0; &, 1)dydo
T n P

t n
+/ / ZK”’l’p(x,t; y,a)(cbllffl(y,a;é,t)—d>1'jf1(y,a;§,‘c))dyda
T n P

=5 +07"

the superscript on I, serving as an index rather than a power. We can estimate /1 as in
the case v = 1 and obtain the same estimate we found for J; in that case. For 12" _1,
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we can use the estimate for v = 1 to show that 121 satisfies the same bound as J; (from
the case v = 1). In this way, the difference @;’l — <I>§‘l is smaller than the difference

CD”’Z - <I>”’l and the general case follows by induction.

For the final estimate of Lemma 4.1, we begin by observing @’ Lo = Q*!. Com-

puting directly, we find
u 1,0

ENT NI He N ))
= Ao,l(ua-xs I)Zu(-x - %‘a ta %‘s T) - Ao,l(vv-xa t)Zv(-x _E’tv %‘7 T)

= (A(),l(u, X, t) - AO,[(vav t))Zu(x - S’ 1 E? t)

—i—AO’[(U,)C,t)(ZM(.X _$7t;€7 T) - Zv(-x _E’tvéa T)) = Il + 12-

Proceeding with (4.6) and Part I of the lemma, we conclude

pon (gl EIZI’ 1/@p—1)
|11|+|12|SC”M—U”CVZLP([—T) 2p e c(—=—)
Likewise, for v = 2,3, ..., we write

00, 18, 1) — @M 0(x 15 €, T)

t n
2// Z[P"’l’p(x’ﬁyﬁ)d’ﬁ’_pfo(y,a;é,t)
T n P
—PUlP(x, 1 y,a)cbvpo(y,a g, r)]dyda
t n
2 .l
T n pzl

—0" P (x, 15y, )V (v, 0 €, r)]dyda
=11 + b.

For I, we rearrange terms as

1

—

(4.8)

// Z[P”lp(xty,a) P”lp(xtya)] upo(y,a‘g‘r)dydo

// ZP”%cry,o) o0y, 058, 7) — “’°<y,osr>]dyda

= J+Jy" 1.

For J1, we use (3.29) and note that the difference P*!# —
estimates as the difference K*/-* — KV-1P [i.e., (4.7)] to find

y=n =P 1/2p-1)
il = Cllu—vl| , x @ —1)%e =,
Cc’2r

PVLP gatisfies the same
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For J,, we start with the case v = 2 for which we can use (4.8) to obtain an estimate
smaller than the one on J; by factor (t — ) % Once we establish the full estimate on
I1 + I, we will be able to obtain the general statement by induction.

For I, we write

t n
b =// Z[Q"“’(x,r; y,o)—Q”*”"(x,t;y,a>}q>‘;ff‘(y,a;s,r)dydo
T n =1

t n
A 0,1 0,1
+/ / ZQU’l‘p(x,t;y,a) CIJZ_pl (v,0; &, r)—CD:j_pl (y,0; &, 1) tdydo
T np:l
= J1+ /.

We can estimate the difference Q*># — QV"!># in a manner very similar to our previous
calculations, and combining this estimate with (3.4) and the first estimate of Part (II),
we find the estimate

r=n g2 y1ep-n)
[J1] 4+ 2] < Cllu — v|| y%(l—r)Zpec( =) '
c’2p

This completes the proof of Lemma 4.1. U

5. Nonlinear analysis

Given a function u(x, t), let Gt (x, t; &, T) denote the Green’s function associated
with (3.1), as constructed in Sect. 3. Fix some function u* € CY (R") and define the
nonlinear map (dropping the tilde for notational brevity)

Tu ::/ G"(x, t; &, T)u" (£)dE. .1)
Rn

Our goal in this section is to verify that 7 is an invariant contraction map on the metric
space S defined in (4.1).

We note at the outset that if the coefficients of (3.1) are defined by u € S, then by
virtue of (W1)—(W2) we can conclude (A1)—(A2) will hold. In this way, we can employ
all the lemmas established in Sect. 3. In particular, the Holder constants associated
with the coefficients of (3.1) will depend on K.

5.1. Invariance
We begin by showing that u € S = 7u € S. First, we see from Lemma 3.6 that

by continuously extending 7 u in the limit as ¢t — ™, we have (7u)(x, T) = u®(x).
In order to see that |7u| , v < K, we need to consider the three summands of
C

v2p
(4.2) applied to 7 u. First,

Tu(x,t) :=/ G"(x,t; &, r)uf(x)d$+/ G"(x,t; &, )" (&) —u’ (x))d&.
n RVI
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Using Lemmas 3.5 and 3.6, we find that for  — 7 sufficiently small
TG, 0] < |u" ()] +Ctt — ),

for some constant C. By taking K sufficiently large, we can ensure

K
sup [(Tu)(x, 1) < —.
XER" 3
relr,T]

Next, we have directly from Lemma 3.7 Part (I) that
[(Tu)(xi, 1) = (Tu)(x2, )] < Clxy — x2|”,

where C does not depend on the Holder constant associated with the coefficients in
(3.1) and consequently does not depend on K. Accordingly, we can choose K large
enough so that

|(Tu)(x1, 1) — (Tu)(x2, 1)] - K
x1.x0€RM x| #xo |-xl - x2|J/ 3
tefr,T]

Finally, using Lemma 3.7 Part (IV), we find that K can be chosen sufficiently large
so that

|(Tu)(x, 1) = (Tu)(x, )| _K
3

pa
xeR! [ty — 1] %P
r.nelt.T)n#n
Combining these inequalities, we clearly have

3y

N 7Tull ,» <K,
C
andso7u € S.
5.2. Contraction

The contraction argument consists of establishing three inequalities, associated with

v . .
the summands in our C”"27 norm. We carry these out in the next three subsections.
5.2.1. Supremum inequality
In this section, we verify that there exists a value 0 < 6 < 1 so that

(5.2)

1T =Tl .z < Ollu—vll .z

forallu,v € S.
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We begin by writing, for u, v € S,

Tu—Tv:/ (G“(x,t;é,r)—G”(x,t;é,f))uf(é)dé
=/ (G”(x,t;é,r)—Gv(x,t;é‘,r))ur(x)dé

+/ (G”(x, t;6,71) =G (x, 1; €, T))(MT(S) —u"(x))dg =1 1) + L.
Using (3.26), we find that

t n
Iy =u’(x)/ / / ZIZi’p(x—y,t;y,o)dﬂ””o(y,a:é, 7)
n T n p:l

—Z (x =y, 15y, )"0y, 0 &, t)}dydddf
t n
= u’(x)/ / / D AZy,(,v)@ POy, 0: £, T)dydodé
n T n p:l

t n
—|—ut(x)/ / / ZZ}C’I) (x—y,1;y, ) AP (u, v)Ydydodé =: J| + Ja,
nJr np:l

where
AZy, (u,v) = Z)'ﬁp(x —vy,t;y,0) — Z}jp(x —v,1;y,0)
AP0 (u,v) = 0P 0(y, ;& 7) — D70y, 01 £, 7). (53)
Using (3.29) and Part (I) of Lemma 4.1, we compute

! y—n-1 _n

il < Cillu —vll , (t—0o) » (c—1) %
' R n
t JR

—) _ _e2p B
Xe—Cl(%)l/(ZP l>e—cl(%)l/(2p 1

dydodé
_n ! =1 lx—£2P \1/@2p—1
< Callu = vll .4, =) / /(t—a) 7 2O g e
P nJr

< C 1_,'_}/2771
- — P
< Gsllu—vll .z (=)'

Likewise, for J, we combine (3.1) with the first estimate in Part (I) of Lemma 4.1 to
obtain precisely the same estimate we found for J;.
For I, we write

G'(x,1;6,1) - G'(x, 1,6, 1) =Z"(x —§, 16, 0) - Z'(x —§, 136, 7)

t n
) Z[Zfépoc—y,r;y,o><1>"’p<y,o;s,r>
T "p:1

—Z}C’p (x—vy,t;9,0)®""(y,0;&, 1) tdydo.
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Rearranging terms similarly as in our analysis of /1 and using Lemma 4.1, we can
verify the estimate

G'(x,1;6,7) — G’ (x,1;€,7)

yon lx—g[2P -
<Clu—vll ,yt—1)7 e EDNE (5.4)
ch
Integrating, we find
Y
Ll < Clt—) 7 llu—vl 7.
c”2p
This establishes the first part of (5.2)
sup |7Tu—Tv| <0|lu— v||Cy 5.5

2
xeR™ P
te[r,T]

for T sufficiently small.

REMARK 5.1. We observe for future reference that we have established here that
forany f € CY(R") (and for t — t sufficiently small), we have the estimate

/" (G"(x, fET) - G b, f))f(é)dé

i
=Ce—o7lu—vl .z
5.2.2. Ax Inequality

Next, we establish the inequality

‘(Tu(xl, )-Tv(xy, t)) — (Tu(xz, )-Tv(x, t))

su <0O|u—v 7.
p po— <Olu—vl .z

x1.xp€R” X1 #x9
te[r,T]
(5.6)

We divide this analysis into two cases, [x; — x2| < ( — 'L’)l/ @p) (denoted Case X1)
and |x; — x2| > (t — 7)//@P) (denoted Case X2).
Case X1. |x; — x3| < (r — 7)!/@P), We begin by writing

(Tu(xl, t) — Tv(xy, t)) — (Tu(xz, t) — Tv(xy, t))

=/ [(G“(xl,t;é, 1) — G'(x1, 15 &, T))
Rn

—(G”(X2, 16, 7) —G'(x2, 13§, T)) }uf(é)dé
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=/ [(G“(xl,t;é, 1) — G'(x1, 15 &, T))

—(G“(xz, 1;6,7) —G"(x2, 15 &, r)) lu’(xz)dé

+/ [(G“(xl,t;é,r) - G”(Xl,t;é’f))

—(G”(m, 1;6,7) —G'(x2, 13§, T)) } (uf(é) - uT(Xz))dS = I+ L.
5.7

For I, we can use (3.26) to see that

t n
Ilzuf(xz)/ // Z(AZXPQ"”O(xl;u,v)—AprCDp’O(xz;u,v))dydadé,
n T n p=1

(5.8)
where
AZy, @700 u,0) = ZY (x =y, 1; 5,009 (y, 07§, 1)
~Z (x =y, 1,5, 000" (y, 06, 0).  (59)

In the current case (i.e., for |[x; — x2| < (t — 7)1/@P)), we can divide the interval
[z, t] into a union of two subintervals [1, t — %|x2 —x1|*Pland [t — %|x2 —x1]?7, 1].

We have
=4 —x( 2P n
I = uf(xz)/ / / Z (AZXPQJP)O()([; u,v)
R* Jt np:l

—AZ,, d"0(x0; u, v))dydad§

t n
+u” (x2) / / / Z(Azx,,w’o(xl;u,v)
" [*%|x2*)€1|2p "p:1

—AZy, " 0(x0; u, v))dydodé
= J1 + /.
For Ji, there is no problem applying the Mean Value Theorem to each summand in

the integrand. We obtain expressions of the form

IAZxﬂ”’O(xu U, v) — AZ, @ (xa: u, v)]

ij

= DX[AZxﬂcbp’O(x*; u, v)] (1 = x), (5.10)
ij
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for some vector x* = x;“j (x1,x2,t,y,0,&, t) (depending also on i and j) on the line
between x; and x,. Proceeding now as in previous calculations, we write

IAprCDP’O(x*; u, v)]
ij
= [(sz“xp(x* =y, t;y,0) = Dy Z', (x* =y, 15y, a))CD“"”O(y, 0; &, r)]”
L
+[DXZ”xp =y, 1y, a)(Q”””O(y, 0;6,7) — QZ}p’O(y, 038, t))}
ij
= K| +Kj. (5.11)

For K, we observe from Lemma 4.1 and using (3.29)

2)/
Kil < Cillu=vll_, p (4 =0) 7 (0 =) %

et —»|21’ 1@p—1) . (=ERP 1/@p—1)
xe 1 ) e 1) . (5.12)

Likewise, for K, we have

% _"zﬁ o
Kyl < Cillu—vll , p(t—0) #(c—1) %
c”zp

et (/@) oy (o @y (5.13)
Each of these terms corresponds with a summand in J1, and we denote the full expres-
sion for Ji as J; = K| + K3, where K| comprises terms like K} and K> comprises
terms like K73

Using the argument following (3.31), we find

t_j|x2_xl|2p n+ 2 n+2—y
K1l < Cillu — vl yzp/ / (t—o) (0 —7)
Rn

ot fv\ 2P 1)@p— 1> =527 \1/@p—1)
xe €1 ) —a5=) Ix2 — x1|dydodé

n
< — —7) 2
< Colu leCV,ZLp(l 7)

1 2
t—5x2—x1? 2 2P
2 _2—y o lx—El 1/@2p-1)
X/ / (1= 0) 7 fxy —xife ) g de,
nJt

T . .
In this case |x; — x| < [%(t — 0)]?», and we obtain the estimate
1_7
K1l < C3lxa —xi|Vlu—vll , »(t—1) 2
c’zr

which for r — t small is much better than we require.
A similar argument leads to the same estimate on K».
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For J, we cannot apply the Mean Value Theorem, because the associated higher-
order derivatives are not integrable up to ¢. Instead, we proceed directly, writing J, =
K| + K5, where

Ki= [ /1 |2/ }:(Z"cn Vo1 3, )00y, 05 8, )
n —7)(2 x1|°P n

—Z};p (x1 —y,t;y, o)@v’p’o(y, o; &, r))dyad%‘. (5.14)

We rearrange the summands in the integrand into two terms
(Z;‘p(xl =y iy, 0) = Zy (x1—y. 1y, 0))<I>“’”’0(y, 0;§,7)

+Z7 (1 =y, 15y, U)(@‘"”O(y, 0:6,1) — "0y, 03 €, r)) =: L1 + La.
(5.15)

Employing now (3.29) and Lemma 4.1, we compute

ntl-y 1,
L= Crlle=vl g | / [0 -
R J 1=y —x 22

_y2p _ —_g2p _
_CI(mt_yﬂl )l/(2p l)e—Cl(ly(,i yI/@p=1

xe dydodé

_n
< Cllu — v|| ,L(f —-17) ¥

ey =EPPep-
/ / (t—0) 2 e 2= e )dadé.
1= eo—x 2

Bearing in mind the limits of o integration, we obtain the estimate

2p—(1— 1-L
IL1] < C3llu —vll , p 1x1 — 2P~ < Cyllu — vl , 2 (t — 1) 7 |x1 — x27,
c’2p c”2p

where in obtaining this last inequality, we have used the inequality defining the current

case (|xo — x1| < (1 — 7)27). The quantity denoted L can be analyzed similarly, and
this completes the analysis of K. Likewise, we can analyze K> similarly as K, since
all that changes is that x; is replaced by x;. This complete the analysis of J, and hence
of I; [from (5.7)].

Turning now to I, we have

b =/ [AZ(xl;u,v)—AZ(Xz;u,v)](u’(S)—ur(xz))dé

¢ n
+/ / / Z ’Apr(I)p(xl; u,v) — Apr(I)'O()Q; u,v) dydadg
n Jr n pot

=:J1 + J,
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where AZ and AZ, ’ @7 are defined similarly as in (5.9).
For Ji, we can apply the Mean Value Theorem similarly as in (5.10) to obtain an

estimate of the form
ntl-y 7cl(lx*;5\21’)1/(2p71>

il = Cillu =l 2 1x2 = xi (t—7) 7
R}l

& — xa|"dé
1-2

< — — — 1) 2
< Collu v||cy.%IX2 x|t — 1)

Y
= G3llu —vf lxo —x1 [ (t — 7).

Y
C%Z?

For J,, we write

=% |xa—x1 2P
b = / / / [AprQDp(xl;u, v)—AZxPCDp(xz;u,v)]
n T n

x (" (§) —u" (x2))dydodé

// 2/ [AZXPCD”(xl;u,v)—AprCDp(xz;u,v)]
oS- Jre

X" (&) — u" (x2))dydodg
=: K1+ K>.

For K1, we apply the Mean Value Theorem precisely as in (5.10) and (5.11), except
with ®*20 and V-0, respectively, replaced by ®** and ®V». We express the
rearrangement of (5.11) as Ky = L + L7, and from Lemmas 4.1 and 3.4, and using
the argument following (3.31) to accommodate the value of x*, we obtain the estimate

”2*}/ _nfl—y
il < Crllu =, // [-oF oo
P n Jt 2|x2 X1\2p R2

_Cl(\xr_ﬂ P)l/(zp—l) _Cl(\kf\ ”)1/(2p71)

xe lx1 — x2|l§ — X2|ydyd0d€

1+1/
< Collu— vl 46 =) // (t—0) T (o - 1+ 5
n St g —x %

o —EPP ep-1)
= I = xlls - xldode.

xe
.. L .
On this interval |x; — x| < [2(t — 0)]?7, and we can write
_n
[L1] = C3llu — ]| y,ﬁ(t —1) 7 |x1 —x2l”

_1 qaltr Ixz SI e y1/@p=1)
/ / (t-0) W (o—1) T e & — x2ldodg
R Ji— 3 |xp—x |22

_n—y Ixy—&12P yl/@p=1
< Callu = vl (=07 F =l [ EEDN e g
n

Y
< Csllu —v| , @t —1)7|x1 —x2|".
c’2p
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The analysis of L, is almost identical to that of L and gives the same estimate.
This completes the analysis of K, and we turn to K>, for which we avoid the Mean
Value Theorem. We rearrange terms similarly as in our expressions J; = K| + K>
leading into (5.14) and express the right-hand side as K5 = L(x1) + La(x2). We then
further separate these terms as in (5.15), starting with L1 = M| + M5. For M|, we
employ the estimates of Lemmas 4.1 and 3.4 to obtain the estimate

_ntloy _qonzley
M) < Cyllu — | yzp/ / , (t—g) 2 (0 —1) 2p
1= % xa—x 2P

2p
—ep (L2 17@p-D o (B =i 2P 1/@p-1)

xe |E — x2|ydydad§

_1+1+J
< Colle—vl g =0 | ) e (o -0
X2—X1

_ m é\ 2p yl/@p=1)
x e ¢ & — x2|" dodE.
Over this interval, 0 — 7 > %(t — 1), and so, we can compute

1+1+y n _]—y
IMi] < Callu — vl _, v (t—1) t—o) 2
e n S =t —xy 2P

_g12p
—es( m[j\ )1/(2p—|)

xXe

& — x2|"dodé

—1 iy 2p—1
S Cqllu—v|| , r@—1) 2 lxp — x| 2P~ 1Y
c’2p R?

_£2p
Xe_c“(mfi‘ )1/(2,;—1)

& — x2|"dE.
At this point, we use the triangle inequality |§ — x3| < |€ — x1| 4+ |x1 — x2]|. For the
summand |§ — x|, we obtain an estimate by

_]+ﬂ 2p—1 Y
Csllu—vl| , » (t—1) 7 xp—x [P < Collu—vll , y t—1)7 |[x1—x2]”.
c”2p c”2p

The summand |x] —x3| in our triangle inequality leads to the same estimate, completing
the analysis of M. The analysis of M5 is similar, leading to the same estimate, and this
concludes the analysis of Lj. The analysis of L; is similar to that of L, concluding
the analysis of K>, which in turn concludes the analysis of J;. Finally, this concludes
the analysis of I> [from (5.7)], and we have concluded the result for Case X 1.
Case X2. [x] — x2| > (t — v)'/@P)_In this case, we use the simple inequality

‘(Tu(xl, t) — Tvu(xg, t)) — (Tu(xz, t) — Tv(xy, t))‘

A

‘Tu(-xly t) - TU(.X], t)

+ ‘TM(XZ, t) - TU(XL t)

=11+ L.
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According to Remark 5.1,

Y
| <=C@—o)rlu—vl , 1.
c’2p

L . . . . .
In this case (f — t)2 < |x; — x2|”, and we immediately obtain the inequality

Y
< —1)2r — 14 —
1] < =1 ey =2l Ju = vl .

Clearly, I can be analyzed similarly, and this completes the analysis of X2. Com-
bining cases X1 and X2, we have established the claimed inequality (5.6).

5.2.3. At Inequality

Finally, we establish the inequality

'(Tu(x, n)r-Tv(x, tl)) — (Tu(x, H)>-Tv(x, tz))

sup 7
11.1p€lt, Tl £ty [t — 12| 2P
xeR"

)

< —
<Olu—vll .z

(5.16)

for some T sufficiently small and some 0 < 6 < 1. Without loss of generality, we
will take 11 < 1.
Case T1. 1, — 11 < t; — t. We begin by writing

(’Tu(x, 1) — Tou(x, tl)) — (Tu(x, ) — Tv(x, tz))
= / [AG(tl; u,v) — AG(t; u, v)}u’(x)dé

+/” [AG(tl; u,v) — AG(t2; u, v)](u’(é) —u'(x))dé
— I + D, (5.17)
where
AG(t;u,v) := G"(x, 1, £,7) — G*(x, 1; £, 7). (5.18)

Beginning with /1, we conclude from (3.26)

151 n
I :/ [/ / 2 AZy, @115 u, v)dydo
R~ T n
p=1

t n
- / 2 / ZAzxde(tz;u,v>dyda]u’<s>ds
T n p=1
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n n
:/ [/ / ZAZqu)p’O(tl;uy U)_AZXPCD'O’O(tz;u,v)}dydo-}uf(x)dg
Rn T n
p=1

t n
_/ [/2/ ZAZx/)@p’O(U; u, v)dydo]ut(g)dg =:J1+ ], (5.19)
R7 n n P

where

AZy, @0t u,v) = ZY (x =y, 1y, 0) "0y, 05 &, 1)
—Z) (x =y, 1; 7,007y, 07§, 7).

For J;, we write

11— % (ta—t1) n
Ji =/ [/ / ZI:Aprd)p’o(tl;u,v)
R? T n o=1

~AZ,, " (t2; u, v)i|dyda qu(x)dé

1 n
O, .
+/[/ D [Azxpcl>” (s, v)
1=z (=) JR" =

—AZy, @012 u, v)i|dydo }uf(x)ds
=: K1 + K».
For K1, we can apply the Mean Value Theorem in ¢ to the difference
AZy, @7 O(t1;u,v) — AZy, @7 (tr; u, v).

More precisely, similarly as in (5.10), we can express the ij entry of this matrix as
[Z“rxp (x =y, 1%y, 0)®" (y, 0: &, 1)

_thxp(x _yat*;yva)ch’p’O(y’U;Evr)] (tl _tz)v (520)
ij

for some value t* = t*(¢1, 12, x, y, &, 0, T) (also depending on i and j) between ¢
and 7. As usual, we now rearrange this last expression into convenient differences

[(Z“zx,,(x =yt y,0) = 2, (x — y, 1%y, 0)) " 0(y, 05 £, t)] (h — 1)
ij

+(zvtx,,(x -y, 15, 0)(¢v,p,o(y, 0§, 1) — o0y, 03 &, r))] (1 — ).
ij
(5.21)
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We respectively associate these last two summands with terms we will denote L1+ L».

Using Lemma 4.1 and the estimate (3.29), we find (suppressing dependence of t* on
q)

n—3(n-n) i iy .

[Li] < Cillu—vl , » (t* — o) W (0 —1) 2
"% Jgn .
T R

X -y 2P _ —g[2P _
—ep (T2 var 1>e,C|(%)1/<zp 1

Xe (tr — t1)dydodé.

Over this interval of integration t* — o > %(lz — 11), and so we have the inequality

__ndloy « _ntl b
w (h—1) <@ —0) 2 (r—1)¥.

(t* —o)
At the same time,

HH—o <tf—o <3 —o),

soinall appearances t*—o can be replaced with 1 —o (with new constants). Combining
these observations and carrying out the integration over y, we obtain the inequality

Y _n
[Li| < Co(ta —t) % flu —v|| , x (01 —1) 2
c”zp

1
1—5(ta—11) s _Cz(lxl—s\zl’)1/(2p—1)
X (Hh—o) e n-o dodé&
R* Jt

pa 1—-L
< — — 2 — 2
< C3llu vllcy,% (ty =) (yp — 1) 27,
which is much smaller than our claim. The analysis of L, is similar, leading to the
same estimate, and this completes the analysis of K.
For K>, we avoid the Mean Value Theorem, analyzing instead each expression

AZy, @0t u, v)

individually. We express the resulting expression as K» = L1 + L», and in both cases,
we use the rearrangement

(Zjﬁp(x = Y15y 0) = Zy (x =y, 155 0))d>“"”0(y, 0;&,7)

+2Z) (x =y, 13y, a)(cb"’p")(y, 0 8,7) — U0y, 03 €, r)). (5.22)



Vol. 15 (2015) Short-time existence theory 447

For L1, we express the associated integrals as L1 = M + M>, and for M1, we obtain
the inequality

n _ntl-y _n
|M1| < Cillu — vl y,l/ / (n—o) 2 (c—1)
2 Jrn Jn—f(—n) JRn

1=y 1@ p—1 —£|2P _
—er (2B P, (122 1ep-h

xe dydodé&

_n g _l=y
<Clu—v| , r(1—71) 2"/ / (tr—o)
cre =3 m-n)

=€ ep-1)
e (=)

dodé&.
Carrying out the integration over o, we obtain the estimate

_ x| —& 2P _
L e er

n
_n 1—-1=v
M| < Csllu —vll , » (11 —7) 2”/ (—1) e
c’2p R~
1-1r b -
SGlu—v||l ,r(ta—t) 2 =Calu—v| ,r(a—t)¥ 1 —1) 2,
c’zr c”zp

where in obtaining this last inequality we have observed that we are in the case t, —#] <
nh—r.

The analysis of M> is similar and leads to the same estimate, and this completes the
analysis of L. For L;, the only difference is that 71 is replaced by #,, but in this case

H—1<t—1=<2 —1),

and so we obtain the same estimate with different constants. This completes the analy-
sis of K>, which in turn completes the analysis of J; [from (5.19)].

For J>, we use (5.22) (with t,) for the integrand and express the resulting summands
as Jo» = K| + K». Proceeding similarly as in the analysis of M just above, we obtain
the same estimate as there. At this point, we have verified

A 1—L
| = Callu — vl (=)t —1) 2.

Y
C%ﬁ

For I, we write

n= (AZ(’“ u.v) = AZ(niu, v>)<u’(s) " (0)d
¢ n
+/ /l/ ZApr¢p(t1;u,v)(ut(é) —u"(x))dydodé
n T n IO=1

t n
_/ /2/ z AZy, @ (t2; u, v)(u" (§) — u" (x))dydods
n )¢ n P

= Ji + b (5.23)
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For Ji, we apply the Mean Value Theorem in the form
(AZ(tl; u,v) — AZ(tr; u, v))
ij
= iZ”t(x =yt 8, 0) = Z% (x =y, "8, 1) (11 — 1),
ij
for t* = t*(11, 12, x, y, &, T) (depending also on i and j) between #; and #;. Using
Lemma 4.1, we estimate

1-=r

—y2p _
2]J e_Cl(‘xt*}Jr )1/(2[7 b

7] < Cilty — 1) llu — vl y,L/ =7 |x — &7 dg,
c’2p R?

where Ji comprises terms of the form J;. Keeping in mind that we are in the Case
T'1, we have the inequality

H—1T<t—1<2t —1),

which allows us to replace t* — t with #{ — 7 up to a constant. Upon making this
substitution and integrating, we obtain

—142
I 1< Calta—11) (11 —7) 5 lu— UII . <C3(—t) 7 (=) ¥ Ju— vII v g5

where in obtaining this last inequality, we have used the inequality defining Case 7'1.
This completes the analysis of J; [from (5.23)].
For J», it is useful to write

t n
b =/ /1/ Z[Azxpdﬂ’(tl;u,v)—AprCDP(tz;u,v)]
n T n p=1
X (U7 (§) — u” (x))dydods
t n
[ Y sz i e @ - utwoaydod
n tl ﬂp:l
— K| + K. (5.24)

For K1, we further subdivide the intervals of integration, writing

t—%(t—1) n
Klz// / Z[Azxpdﬂ’
n . Jr np=1

x(ti;u, v) — AZy, @ (t; u, v)](uf(é‘) — u" (x))dydodé

/ / / [AZXPCDP(tl;u,v)—AZX/JCD‘)(Q;u,v)]
"Jn— (tz ) JR?

xu" (&) —u (x))dydddé
=: L + L. (5.25)
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For L1, we apply the Mean Value Theorem as in (5.20), and rearrange the result as
in (5.21) into L1 = M| + M>. For the resulting M1, we obtain terms of the form

1
* n—5(t2—t1) N - +2|— 1 nzl Y
M7 < Cillu—vll , 1 (1" —o) r (0 —1) P
c”2 Jgrn J: Rn

r—y|2P _ —£|2P _
Xefcl(l\,*ng )l/(Zp l)eicl(“gi‘r )1/(2p 1)

(ty —1)|§ — x["dydodé.
In this case, we have the inequality
t1—o <t*—o <3(t) — o),

so that t* — o is interchangeable with #; — o up to a change of constants. In addition,
th —t1 < 2(t; — o), and we can write

. v n—%6—1)
IMi| < Callu — vl y,L(lz — 1)

/<t1—o~) (o — 1) *"5/

ey (PP 12— 1) B |‘ s\ 2r )/@p=1)
xe =) i |& — x| dydodé
i _n
<Gllu—vl|l ,r(E—1n)*{ —1) 2
C 7 2p
3(t—n) L 4l
(ty —o) (0 —1) 2
n
ey \2” 1/@p=1)
xe =) |E — x|V dodE.

Integrating in both o and &, we conclude
Y
¥ < _ _ 2p _ 2
[LT] < Cqllu UIICy,%p(tz 1) () — 1),

Since M comprises terms of form M7, this completes the analysis of M;. The
analysis of M5 is similar, and so, we have concluded the estimate for L [from (5.25)].
For L,, we avoid the Mean Value Theorem, proceeding instead by writing

I’l

L2 = / / / AZy, (11 u, v) (" (€) — u” (x))dydods
nJt—L(t—n)

=1

/ / / ZAZ D (123 u, v) (' (§) — u” (x))dydodé
nJ— (lz 1)

=: M| + M>.

For My, we rearrange AZ,, ®” as
AZy, @" (1w, v) = [Z)‘ép(x &6, 1) - Z; (x =&, 1538, f)]ﬂb“’p(y,cr; £.7)

+Z}\”)p(x - ga 1; Ev r)[q)”’p(ya o, Sa 7:) - q)v’p(ya g; E’ 'L')],
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and we use this arrangement to write M1 = N1 + N.
For N1, we employ the estimates of Lemmas 3.4 and 4.1 to obtain an estimate by

1 ntl-y 711—1—1/
[N1| = Cillu — v VL/ / (tr—o) % (c—1) %
c’2p n _ L R
t1—5(f2—t1)
_ M 1/@2p— 1) —ey (2t 2P 1/@p—1)
xe =) a5 & — x|”dydode

_ly 14ty

<C2||M—U|| % (th—1) 2 (t1 —o) 2 (o0 —1) 2p

nJt— (lz 1)
—c2(|" £ p)l/(Zp i

e |& — x|VdodéE.

Over this interval of integration in o, we have the inequality o — 7 > %(zl — 1), and
_1_nzloy . i n-l-y
consequently, the term (o — 1) =25~ canbe replaced with (7] — r) “ 2 (with

a change of constant). Upon making this replacement and integrating in both o and &,
we obtain the estimate

1—1=r 14ty
IN1] < C3llu — Ullcy%(tz —t) -1y %
Y Y
< Cyllu —v| , (2 —11)2r (51 —T)?P,
c”2r

where in obtaining this last inequality, we have used the inequality defining case 7'1.
This completes the analysis of N;. The analysis of N> is similar, and this completes the
analysis of Mj. The analysis of M> is similar to the analysis of M (with #, replacing
t1), and we obtain the same estimate (keeping in mind , — t < 2(#; — 7) in this case).
This completes the analysis of L,, which in turn completes the analysis of K [from
(5.24)].

For K5, we can proceed almost exactly as we did with M and M>, except that the
limits on the integration over o change. We obtain the same estimate we found above
for M. This concludes the analysis of K, which concludes the analysis for J, and in
turn I [from (5.17)]. This finishes Case T'1.

Case T2. (t — t;) > (11 — 7). For this case, we will not need to apply the Mean Value
Theorem, and the analysis will be much easier. In particular, we simply estimate

‘(Tu(x, 1) — Tou(x, tl)) — (Tu(x, ) —Tv(x, tz))‘

< ‘Tu(x,n) — T, )|+ |Tulx, ) —Tv(x, )| =: || + ||

We now analyze each of these summands on the right-hand side by the general
method we used in the strand (/>-J>-K-L;) of Case T 1. We obtain the estimates

)
P

;] < Cllu—vll EAUEIILE

In this case t; — t < (» — 1), and likewise #, — T < 2(tp — t1), and this immediately
gives the claimed estimate (5.16) for T — t sufficiently small.
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5.3. Regularity

Our estimates from Sects. 5.1 and 5.2 are sufficient by virtue of the Contraction
Mapping Theorem to ensure the existence of a unique solution to the weak formulation
of (1.1). We stress that this construction has been carried out in the context of our
weak assumptions (W1)-(W2), along of course with uniform parabolicity (P). We
summarize our work so far in the following theorem.

THEOREM 5.1. Suppose (1.1) is uniformly parabolic in the sense of (P) that
(W1)—(W2) hold and that for some value t € [0, T), u®(-) € C¥(R) for some Holder
index 0 < y < 1. Then, there exists a value T e (z, T), with T -1 possibly small,
so that for any o € (1, T) there exists a weak solution to (1.1)

we B R % [0, T) NP (R x [0, T)).
Moreover, u is the unique weak solution of (1.1) in Cy’ﬁ (R" x [0, TY).

In this section, we verify that under the stronger conditions (S1) and (S2), u is
actually a classical solution to (1.1).
We recall that by construction, we can write our weak solution as

u(x,t) :/Rn G(x,1; &, T)u’ (§)dg, (5.26)

for a function G (previously denoted G*) that can be expressed as
t n
G, 1,6, 0)=Z(x—§,1;§, f)+/ / D Zy,(x—y.1:y,0)0"(y,0: &, T)dydo.
T JR"
p=1

Using the estimates of Lemmas 3.1 and 3.4, we readily verify that G is 2p — 1 times

differentiable in x with estimate
_ntel 2P 1@p-1)
IDYG(x.1:£,7)| < C(t — 1)~ 20 e e )Y

for all || < 2p — 1. The difficulty arises when we try to put a 2p x derivatives or
one ¢ derivative on G, in which case we must take considerable care with integrability
over 7, t].

Under assumptions (S1) and (S2), we can differentiate Z with respect to y, and in
particular, we can express the useful relation

d
WZ(X =y, 0)=—Zy,(x —y,t;y,0)+ Zy,(x —y,t;y,0), (527)
P
where Zy = denotes differentiation with respect to y, only as it appears in the third
place holder. This allows us to express G (after integrating by parts) as

t n
G(x,t;ij,‘[)=Z(x—§',t;$,r)+// Zzyp(x_yat§ya0)q)p(y»<7;€»t)dyd0
T JRR?
p=1

t n
—i—/ / Z Z(x =y, t;y,0)®f (y,0:§, 1)dydo. (5.28)
T n e
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Of these three summands, Z is already understood, and the third summand is effec-
tively the same term that arises in Friedman’s strong analysis. More precisely, our <D’; )
blows up at the same rate in 0 — 7 as Friedman’s ® (cf (9.4.7) on p. 252 of [1]). We
focus, then, on the second integrand, which we denote as V (x, t; &, t). In addition,
we write

n
J(x,t,0;€,1) ::/R ZZ},p(x—y,t;y,a)dbp(y,a;s, 7)dy,

p=1

so that
t
V(x,r;s;,r)=/ J(eo 1,05 €, )do
T

We begin by verifying that V is 2p times differentiable in x. To begin, we observe
that for ¢t > o, we can write

n
> D7y, (x — y. 11y, 0)® (v, 03 &, T)dy.
n p

DEJ(x 1,0 £, 7) =/

R

According to (9.3.11) on p. 249 of [1], we have, for any multi-index «, the estimate

ntla| x=y[2P \1/@p—1)
o

IDYZy,(x =y, t;y,0)| < C(t —0) 2 ) (5.29)
where we note in particular that the y-differentiation (for y only in the third position)
does not increase the blow-up as ¢ approaches o. In this way, we can start with the
naive estimate

n+|e| 1 n—1—y

IDYJ(x, 1,056, D <C | (t—0) 7 (c—71) %7
Rl‘l

—y2p _ —£|2P -
we 1 IR e (PR VD g

_n _ | _1+H’7V
<C@t—-1) ¥(t—0) (0 —1) 2p

(—£[2P _
gD e

x (5.30)

Here, we can pause to observe the fundamental problem that for |o| = 2p, this
estimate is not integrable in o up to ¢ = ¢. In order to remedy this, we obtain an
alternative estimate by writing

n
D%J(x, 1,05, 7) =/ > DYZy,(x -y, t:y, 0) PP (x, 01 &, T)dy
n p=1

n

+/ : D)(?Z}p(x_ystvyva)[cbp(xs67€9T)_q)p(y967€»r)]dy:Il+12
R~
p=1
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Beginning with /1, we note that, for each summand, ®” can be pulled out of the
integration. We recall that for any fixed z € R”, the function Z(x — y,f;z,0) is a
Green’s function for the PDE

0Z;k

n N
. 3Z4k
- =33 Aas@DDY S (x = £.1:2,7). (5.3D)

=1 j=1|a|=2p—1

Since constant vectors in R” are clearly solutions to this system, we must have the
identities

/ Z(x—y,t;z,0)dy=1= / Z.,(x =y, t;z,0)dy =0. (5.32)
]Rn Rn
In this way, we can write

/ DYZ;,(x —y,t;y,0)dy
Rn

= / Df(Zzp(x —y,t5,0)— DzZZﬂ(x -y, 1;x, 0))dy,

bearing in mind that the differentiation D¢ is only with respect to x as it appears in
the first placeholder. According to Lemma 9.3.4 of [1], we have

‘D?Zyp(x -y, t;y,0) — D?Zyp(x —y,1;x,0)

_ntla] =P 1@p-1y
<C@t—0) 2 |y—x[Ve i) ,

for some positive constants ¢ and C. We see that

—lo|

/ DYZ, (x =y, t:y,0)dy| < Ci(t —o) 20 .
Rﬂ

In this way,

Y= n=l-y _ x=£2P 1/@p-1)
efcz(?)/ P ,

|
L1 <Cat—0) 7 (0 —1) ' (5.33)

for some positive constants ¢, and C».
For I, we observe that precisely the same analysis that leads to (9.4.17) on p. 255
of [1] leads to the inequality

q)p(y7 o, Ev ‘C) - ch(-xv o] Ev T)

<Cilx —ylPo —1) %

3

_|_n+B=l=y [ecl(U;Elrzp)l/(Zpl) n ecl(lxaslrzp)l/(zpl)]

for any 0 < B < y and some positive constants ¢; and C;. Upon integrating, we
immediately see that

+1— —g|2P _
Y ﬂe*"Z(lXUi yH/@p=1)

n B
L <Cyt—1) % (t—0) T —1) T , (5.34)
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for some constants ¢> and Cs.
Now, we evaluate

[

T+

2
da=/
T

t

+ ‘Dﬁf(x,r,a;s,o
T+t
2

do

D¢J(x,t,0;&, 1)

D¢J(x,t,0;&,1)

do.

For the integration on [, TTH], we use (5.30), while for integration over [TTJ”, t], we
use (5.33) and (5.34). We find

t
/
for some positive constants ¢ and C.

We have verified that the second summand of G (x, ¢; &, t) [in (5.28)] is 2p times

differentiable in x. By analyzing the third summand in a similar way, we conclude
that for each multi-index || < 2p, we have the estimate

n—l-y —€12P \1/(2p—1
1t (et epo

DYJ(x,t,0;&,1)|do <C(t—1)

’

_ ntle| x=&12P \172p—1
IDXG(x,1:6. 1) < Colt — 1) 2 e e )/

for some positive constants ¢, and C,. (We note for clarity that the estimates on G are
ultimately determined by those on Z). This is precisely the same estimate we found
in Lemma 3.5, extended to the broader range |«| < 2p.

Turning now to differentiation with respect to 7, we begin by writing (for 2 > 0
small)

t+h
Vit hi £ 1) — Vix g, r>=/ JGeot +ho o3 £ D)o
t
t
+/ (J(x,t+h,a;§,t)—J(x,t,a;é,r))da =11 + Db.
T

For 11, we can analyze J (x,t + h, 0; &, t) similarly as we did D¢ J (in fact, with
less effort), and we find

n=l-y _ x=£2P . 1/@p-1)
==

J, 1,060 <Clt—1) ' 27 e :
where by J(x,t,17; &, 7) we mean

lim J(x,t,0;&,1).

o—>1

For I, we use the Mean Value Theorem to write

taJ
Iz=h/ —(x, 1%, 0;&, 1)do,
: Ot
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for some t* = t*(¢, h, x, €, 0, T) between ¢ and ¢ + h. We observe from the definition
of J and the observation from (3.11) that time derivatives of Z can be exchanged
for 2 p space derivatives that this integrand can be estimated as in our analysis of DY
differentiation. We find

n—I1—

. I —1-r=—r
lim |—=|<C(t—1) 2
h—0+ h
Noting that a very similar argument works for 4 < 0, we conclude the estimate

( \xl—izf’ y1/@p=1)

Gi(x. 16, 7)| < Ct —7) e ,

for some positive constants ¢ and C.

We can now differentiate u in (5.26) directly (bringing derivatives under the integral
sign), and we see that u € C*\(R" x [o, 7~’] forany o € (t, 7~“]. We conclude that u
is in fact a strong solution of our original equation (1.1).

Finally, we obtain the additional Hélder regularity C*” 7135 (R x [0, T for all
t<o<T by an argument similar to the proof of Lemma 4.1, augmented by the
observations used in this section to obtain higher-order regularity.

This concludes the proof of Theorem 1.1. 0
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