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Abstract. We establish existence of classical solutions for nonlinear parabolic systems in divergence form
on R

n , under mild regularity assumptions on coefficients in the problem, and under the assumption of
Hölder continuous initial conditions. Our analysis is motivated by the study of stability for stationary and
traveling wave solutions arising in such systems. In this setting, large time bounds obtained by pointwise
semigroup techniques are often coupled with appropriate short time bounds in order to close an iteration
based on Duhamel-type integral equations, and our analysis gives precisely the required short time bounds.
This development both clarifies previous applications of this idea (by Zumbrun andHoward) and establishes
a general result that covers many additional cases.

1. Introduction

For u ∈ R
N and x ∈ R

n, we consider nonlinear systems

∂ui
∂t

=
n∑

l=1

{ N∑

j=1

∑

|α|≤(2p−1)

Ai j
α,l(u, x, t)Dαu j

}

xl

, (1.1)

for i = 1, 2, . . . , N . Here, p denotes a positive integer, and α is a standard multi-index
in x , so that for any function f (x)

Dα f := ∂α1∂α2 . . . ∂αn

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

f.

We assume Eq. (1.1) is uniformly parabolic in the following sense:
(P) If {λ j (ξ ; u, x, t)}Nj=1 denote the eigenvalues of

n∑

l=1

∑

|α|=(2p−1)

Aα,l(u, x, t)(iξ)α(iξl),

then for any compact set K ⊂ R
N , and for some values 0 ≤ τ < T ,

sup
|ξ |=1

Reλ j (ξ ; u, x, t) ≤ −λ0 < 0,
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for all (u, x, t) ∈ K × R
n × [τ, T ], and j ∈ {1, 2, . . . , N }.

Our standing assumptions on the coefficient functions Ai j
α,l(u, x, t)will be specified

in terms of the following definition.

DEFINITION 1.1. We will say Ai j
α,l(u, x, t) is Lipschitz–Hölder continuous (ex-

ponent γ ) uniformly with respect to U ⊂ R
N × R

n × [τ, T ] provided there exists a
constant C = C(U) so that

|Ai j
α,l(u1, x1, t1) − Ai j

α,l(u2, x2, t2)| ≤ C

{
|u1 − u2| + |x1 − x2|γ + |t1 − t2|

γ
2p

}
,

for all (u1, x1, t1), (u2, x2, t2) ∈ U .

We will work with both the weak and strong formulations of (1.1), and corre-
spondingly, we will have two levels of assumptions. Our weak assumptions will be as
follows:
(W1) Given any compact set K ⊂ R

N , the coefficients Ai j
α,l are continuous bounded

functions in �K := K × R
n × [τ, T ].

(W2) Given any compact set B ⊂ R
n , the coefficients Ai j

α,l are Lipschitz–Hölder
continuous (exponent γ ) with respect to (u, x, t) ∈ K × B × [τ, T ]. For all α so that
|α| = 2p − 1, the Ai j

α,l are Lipschitz–Hölder continuous (exponent γ ) uniformly for
(u, x, t) ∈ �K.

Our strong assumptions will be as follows:
(S1) In addition to (W1), assume the derivatives Du A

i j
α,l(u, x, t) and Dx A

i j
α,l(u, x, t)

both satisfy the assumptions described in (W1) for Ai j
α,l .

(S2) In addition to (W2), assume the derivatives Du A
i j
α,l(u, x, t) and Dx A

i j
α,l(u, x, t)

both satisfy the assumptions described in (W2) for Ai j
α,l .

Our analysis is motivated by applications to the study of asymptotic stability for
stationary and traveling wave solutions to equations of form (1.1). For example, in
[5,9], the authors consider traveling wave solutions ū(x−st) for viscous conservation
laws

ut + f (u)x = (B(u)ux )x , (1.2)

where u, f ∈ R
N and B ∈ R

N×N , and where it is clear since f (u) only appears under
differentiation that we can take f (0) = 0 without loss of generality. Writing

Ã(u) :=
∫ 1

0
Df (γ u)dγ, (1.3)

we obtain the relation f (u) = Ã(u)u, and so, (1.2) can be expressed as

ut =
(

− Ã(u)u + B(u)ux

)

x

, (1.4)

or equivalently
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∂ui
∂t

=
(

−
N∑

j=1

Ãi j (u)u j +
N∑

j=1

Bi j (u)u jx

)

x

.

In this way, (1.2) has form (1.1) with Ai j
0,1 = Ãi j and Ai j

1,1 = Bi j . Parabolicity is a
requirement on the eigenvalues of −Bξ2, and the standard full viscosity assumption
made in [5,9] is that the eigenvalues of B all have positive real part (see, e.g., (H1) of
[5]). We conclude that

Re λ j (ξ ; u, x, t) ≤ −βξ2,

for all j ∈ {1, 2, . . . , N },where β denotes the smallest real part of any of the eigenval-
ues of B. Clearly, if we restrict to |ξ | = 1, we obtain our parabolicity condition with
λ0 = β. In this case, since the coefficients depend only on u, (W1)–(W2) reduce to the
assumption of Hölder continuity on Ã(u) and B(u) (on compact subsets of RN ) and
(S1)–(S2) reduce to Hölder continuity of Du Ã(u) and DuB(u) (on compact subsets
of RN ).
Likewise, it is straightforward to verify that multidimensional viscous conservation

law systems

ut +
n∑

j=1

f j (u)x j =
n∑

j,k=1

(B jk(u)uxk )x j (1.5)

for x ∈ R
n , u, f j ∈ R

N , and B jk ∈ R
N×N can be expressed in form (1.1) and are

parabolic provided

σ

( n∑

j,k=1

B jkξ jξk

)
≥ b0|ξ |2.

Here, σ denotes spectrum, and our notation signifies that each eigenvalue of the indi-
cated matrix satisfies this condition. Another important family of parabolic equations
comprises Cahn–Hilliard systems

∂ui
∂t

= ∇ ·
{ N∑

j=1

Mi j (u)∇((−��u) j + Fu j (u))

}
, (1.6)

which are parabolic provided the product of N×N matricesM(u)� is positive definite
uniformly in u.

Our main result is the following theorem.

THEOREM 1.1. Suppose (1.1) is uniformly parabolic in the sense of (P) that (S1)–
(S2) hold and that uτ (·) ∈ Cγ (R) for some Hölder index 0 < γ < 1. Then, there
exists a solution to (1.1), denoted u, on some sufficiently small time interval [τ, T̃ ] so
that u(x, τ ) = uτ (x) and for any σ ∈ (τ, T̃ )

u ∈ Cγ,
γ
2p (Rn × [τ, T̃ ]) ∩ C2p+γ,1+ γ

2p (Rn × [σ, T̃ ]).
Moreover, u is the unique solution in Cγ,

γ
2p (Rn × [τ, T̃ ]).
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REMARK 1.1. While Theorem 1.1 is interesting in its own right as a sufficiency
condition for the short-time existence of strong solutions of (1.1), we have been primar-
ily motivated here by applications to the study of stability for stationary and traveling
wave solutions of (1.1). In analyses of viscous conservation laws [5,9], Cahn–Hilliard
equations and systems [2,3], and related equations [4], it has been shown that sta-
bility can often be established by combining large time bounds obtained by pointwise
semigroup techniques with the short-time theory developed here. This procedure is
discussed, for example, in [5] and [3], where the latter paper bases its discussion
directly on the current analysis. We note here that one of the most important elements
of this procedure is that for small times, the solution u(x, t) of (1.1) can be expressed
as

u(x, t) =
∫

Rn
G(x, t; ξ, τ )u(ξ, τ )dξ,

where theGreen’s functionG satisfies estimates developed in [1]. This characterization
of u allows us to easily obtain estimates on derivatives of u in terms of u itself (at a
shifted time) by placing derivatives on the Green’s function.

Alternative approaches and developments in related settings appear, for example,
in [6,8], and the substantial list of references discussed in those papers. Aside from a
difference of approach (an emphasis on Green’s functions here, as opposed to more
modern techniques in [6,8]), the current analysis differs from [6,8] and many other
investigations in its restriction to Cauchy problems of the form (1.1) on unbounded
domains. (Section 4 of [8] is concerned with problems in divergence form, similar to
(1.1), on bounded domains). This specialization allows us to obtain a result that (1)
is stated in terms convenient for application to stability analyses and (2) requires less
regularity on initial conditions than is assumed in any analyses that we are aware of.
Outline of the paper. In Sect. 2, we establish some notational conventions that will

be taken throughout the analysis. In Sect. 3, we carry out a linear analysis for a class
of linear parabolic systems in weak form, and in Sect. 4, we establish a number of
estimates that will be necessary for our nonlinear (Contraction Mapping Theorem)
argument. Finally, in Sect. 5, we carry out the CMT argument and establish the full
stated regularity of solutions to the strong problem (1.1).

2. Notation

For anym×n matrix A, we will denote components as Ai j or Ai j , depending upon
convenience. We will use the norm notation

|A| :=
( m∑

i=1

n∑

j=1

A2
i j

) 1
2

.

In calculations in which a new constant appears in each step, we will often take the
convention of labeling the constants as C1, C2, etc. or (especially in exponents) c1,
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c2, etc. In many cases, we will begin a calculation by dividing an expression into two
summands I = I1 + I2, and we will continue by further dividing each summand. In
this case, we will write I1 = J1 + J2 and if necessary J1 = K1 + K2, proceeding
alphabetically, so that location in the cascade is clear. Once the case of I1 is finished,
we will begin with I2, starting over with I2 = J1 + J2.
Throughout the analysis, we refer to times τ , T and T̃ , as discussed in the introduc-

tion. Our convention is that τ denotes our initial time, T denotes a possibly large time,
and [τ, T ] is an interval over which our equation coefficients satisfy our regularity
assumptions. Finally, T̃ ∈ (τ, T ) denotes a time, so that T̃ − τ is as small as required
by the analysis.
The primary reference for this analysis is Friedman’s book [1] in which the state-

ments of results are not numbered by chapter. For clarity here, we will add the relevant
chapter to the start of Friedman’s numbering, so, for example, Friedman’s Theorem
2.1 of Chapter 9 will be designated here as Theorem 9.2.1. In most cases, we will refer
to page numbers as well.

3. Friedman’s linear theory for the weak formulation

Given any function ũ in an appropriate function space, we consider the linear prob-
lem associated with (1.1)

∂ui
∂t

=
n∑

l=1

{ N∑

j=1

∑

|α|≤(2p−1)

Ai j
α,l(ũ(x, t), x, t)Dαu j

}

xl

, (3.1)

for i = 1, 2, . . . , N . We will write

Ãi j
α,l(x, t) := Ai j

α,l(ũ(x, t), x, t). (3.2)

Our primary goal in this section is to use the parametrix methods of [1] (originally
developed by Levi [7]) to analyze a weak form of (3.1). For this analysis, we make
the following assumptions on Ãi j

α,l(x, t): for some T > 0

(A1)The coefficients Ãi j
α,l(x, t) are continuous bounded functions in� = R

n×[τ, T ],
and for all α so that |α| = 2p − 1, the Ãi j

α,l(x, t) are continuous in t uniformly with
respect to (x, t) in �.

(A2) The coefficients Ãi j
α,l(x, t) are Hölder continuous (exponent γ ) in x uniformly

with respect to (x, t) in bounded subsets of �, and for all α so that |α| = 2p − 1, the
Ãi j

α,l(x, t) are Hölder continuous (exponent γ ) in x uniformly with respect to (x, t) in
�.
To begin, we define the function space

S := {φ ∈ C2(Rn × [τ, T ];Rn) : spt(φ) ⊂ R
n × [τ, T )},
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noting in particular that φ ∈ S ⇒ φ(x, T ) ≡ 0. We say u ∈ C2p−1,0(Rn × [τ, T ]) is
a weak solution of (3.1) provided that

∫ T

τ

∫

Rn

∂φi

∂t
uidxdt =

∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)D

αu j

}
dxdt

−
∫

Rn
φi (x, τ )ui (x, τ )dx, (3.3)

for each i ∈ {1, 2, , . . . , N } and each function φ ∈ S.
Following Friedman’s analysis of strongly formulated linear parabolic systems in

[1], we will construct a Green’s function (N × N matrix) G(x, t; ξ, τ ) for (3.3). In
particular, we construct G so that if uτ (x) denotes any function continuous on R

n ,
then

u(x, t) =
∫

Rn
G(x, t; ξ, τ )uτ (ξ)dξ (3.4)

satisfies (3.3) with

lim
t→τ+ u(x, t) = uτ (x),

for all x ∈ R
n . We stress at the outset that our approach is constructive, so it is natural

to make assumptions on the properties that G is expected to have and to verify them
directly from the object we construct. Assuming, then, that G exists, and assuming
that we can justify differentiation under the integral sign, we expect G to satisfy the
relation

∫ T

τ

∫

Rn

∂φi

∂t

∫

Rn

N∑

k=1

Gik(x, t; ξ, τ )uτ
k (ξ)dξdxdt = −

∫

Rn
φi (x, τ )uτ

i (x)dx

+
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)

×
∫

Rn

N∑

k=1

Dα
x G jk(x, t; ξ, τ )uτ

k (ξ)dξ

}
dxdt. (3.5)

Recalling that formally

∫

Rn
φi (x, τ )uτ

i (x)dx =
∫

Rn
φi (x, τ )

∫

Rn

N∑

k=1

Gik(x, τ ; ξ, τ )uτ
k (ξ)dξdx,

we can exchange the order of integration to write

N∑

k=1

∫

Rn
uτ
k (ξ)

[ ∫ T

τ

∫

Rn

∂φi

∂t
Gik(x, t; ξ, τ )dxdt

]
dξ
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=
N∑

k=1

∫

Rn
uτ
k (ξ)

[
−

∫

Rn
φi (x, τ )Gik(x, τ, ξ, τ )dx

+
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)D

α
x G jk(x, t; ξ, τ )

}
dxdt

]
dξ.

(3.6)

We will construct G so that
∫ T

τ

∫

Rn

∂φi

∂t
Gik(x, t; ξ, τ )dxdt = −φi (ξ, τ )δki

+
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)D

α
x G jk(x, t; ξ, τ )

}
dxdt, (3.7)

where δki denotes a standard Kronecker delta function.
Following the general approach of [1], we construct G with the form

G(x, t; ξ, τ ) = Z(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t; y, σ )�ρ(y, σ ; ξ, τ )dydσ, (3.8)

or in component form

Gik(x, t; ξ, τ ) = Zik(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

N∑

m=1

Zimxρ
(x − y, t; y, σ )�

ρ
mk(y, σ ; ξ, τ )dydσ, (3.9)

where Z and each of the �ρ are N × N matrices to be specified below. We note for
comparison with our reference that [1] addresses strong-form equations,

∂ui
∂t

=
N∑

j=1

∑

|α|≤2p

Ai j
α (x, t)Dαu j , (3.10)

and in that setting, the analogous form of G is (the expression for � on p. 252 of [1])

G(x, t; ξ, τ ) = Z(x − ξ, t; ξ, τ ) +
∫ t

τ

∫

Rn
Z(x − y, t; y, σ )�(y, σ ; ξ, τ )dydσ.

Continuing now with the weak case, the components of Z(x − ξ, t; y, τ ) solve the
parametrix equation

∂Zik

∂t
(x − ξ, t; y, τ ) =

n∑

l=1

N∑

j=1

∑

|α|=2p−1

Ãi j
α,l(y, t)D

α
x
∂Z jk

∂xl
(x − ξ, t; y, τ ), (3.11)
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along with the condition that for any uτ ∈ C(Rn)

lim
t→τ+

∫

Rn
Z(x − ξ, t; ξ, τ )uτ (ξ)dξ = uτ (x).

Alternatively, we can write (3.11) in vector form for the kth column Zk

∂Zk

∂t
=

n∑

l=1

∑

|α|=2p−1

Ãα,l(y, t)D
α
x
∂Zk

∂xl
. (3.12)

Since our equation for Z is in the class analyzed by Friedman in [1], we will take the
existence of Z and many of its properties directly from that reference.

LEMMA 3.1. Let assumptions (A1) and (A2) hold, and suppose Z is defined as in
(3.11). Then, for each multi-index 0 ≤ |α| < ∞, there exist constants cα and Cα so
that

|Dα
x Zik | ≤ Cα(t − τ)

− n+|α|
2p e−cα(

|x−ξ |2p
t−τ

)1/(2p−1)
,

for all i, k ∈ {1, 2, . . . , N }, all (x, t) ∈ R
n × (τ, T ], and all ξ ∈ R

n.

REMARK 3.1. This lemma is simply a restatement in our context of Theorem 9.2.1
on p. 241 of [1]. The proof appears in that reference.

We now derive integral equations for the matrices �l . To start, we set

Iik :=
∫ T

τ

∫

Rn

∂φi

∂t
Zik(x − ξ, t; ξ, τ )dxdx

−
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)D

α
x Z jk(x − ξ, t, ξ, τ )

}
dxdt.

Integrating the first summand by parts in t , using (3.11) and rearranging terms, we can
write

Iik = −φi (ξ, τ )δki −
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl
K l
ik(x, t; ξ, τ )dxdt,

where

Kl
ik(x, t; ξ, τ ) := −

N∑

j=1

∑

|α|=2p−1

(
Ãi j

α,l(ξ, t) − Ãi j
α,l(x, t)

)
Dα
x Z jk(x − ξ, t; ξ, τ )

+
N∑

j=1

∑

|α|≤2p−2

Ãi j
α,l(x, t)D

α
x Z jk(x − ξ, t; ξ, τ ). (3.13)



Vol. 15 (2015) Short-time existence theory 411

Likewise, set

Jik :=
∫ T

τ

∫

Rn

∂φi

∂t

∫ t

τ

∫

Rn

n∑

ρ=1

N∑

m=1

∂Zim(x − y, t; y, σ )

∂xρ

�
ρ
mk(y, σ ; ξ, τ )dydσdxdt

−
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

{ N∑

j=1

∑

|α|≤2p−1

Ãi j
α,l(x, t)

×
∫ t

τ

∫

Rn

n∑

ρ=1

N∑

m=1

Dα
x
∂Z jm(x − y, t; y, σ )

∂xρ

�
ρ
mk(y, σ ; ξ, τ )dydσ

}
dxdt.

Integrating by parts again on the first summand, first in x then in t , using (3.11) and
rearranging terms, we find

Jik =
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl
�l

ik(x, t; ξ, τ )dxdt

−
∫ T

τ

∫

Rn

n∑

l=1

∂φi

∂xl

∫ t

τ

∫

Rn

N∑

m=1

n∑

ρ=1

K̄ l,ρ
im (x, t; y, σ )�

ρ
mk(y, σ ; ξ, τ )dydσdxdt,

where

K̄ l,ρ
im (x, t; y, σ ) :=−

N∑

j=1

∑

|α|=2p−1

(
Ãi j

α,l(ξ, t) − Ãi j
α,l(x, t)

)
Dα
x
∂Z jm(x − y, t; y, σ )

∂xρ

+
N∑

j=1

∑

|α|≤2p−2

Ãi j
α,l(x, t)D

α
x
∂Z jm(x − ξ, t; ξ, τ )

∂xρ

. (3.14)

Upon substituting (3.8) into (3.7), we find the relation

Iik + Jik = −φi (ξ, τ )δki .

Using our expressions for Iik and Jik , we can write this as

−
∫ T

τ

∫

Rn

n∑

l=1

∂φi (x, t)

∂xl
K l
ik(x, t; ξ, τ )dxdt

+
∫ T

τ

∫

Rn

n∑

l=1

∂φi (x, t)

∂xl
�l

ik(x, t; ξ, τ )dxdt

−
∫ T

τ

∫

Rn

n∑

l=1

∂φi (x, t)

∂xl

∫ t

τ

∫

Rn

N∑

m=1

n∑

ρ=1

K̄ l,ρ
im (x, t; y, σ )�

ρ
mk(y, σ ; ξ, τ )dxdt=0.
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We will construct the matrices �l so that the integrand multipliers of ∂φi
∂xl

all agree.
Writing this result in matrix form, we obtain the collection of matrix integral equations

�l(x, t; ξ, τ ) = Kl(x, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

K̄ l,ρ(x, t; y, σ )�ρ(y, σ ; ξ, τ )dydσ, (3.15)

for each l ∈ {1, 2, . . . , n}. We observe that for each l, we have the same general form
as Friedman’s (9.4.7) (from [1]), though our Kl satisfies different estimates than does
Friedman’s K , and for Friedman K appears twice, in place of both our Kl and our
K̄ l,ρ . For each l ∈ {1, 2, . . . , n}, we now proceed by writing �l as an infinite sum

�l(x, t; ξ, τ ) =
∞∑

ν=1

�l
ν(x, t; ξ, τ ), (3.16)

where

�l
1(x, t; ξ, τ ) = Kl(x, t; ξ, τ ) (3.17)

and for ν = 2, 3, . . . ,

�l
ν(x, t; ξ, τ ) =

∫ t

τ

∫

Rn

n∑

ρ=1

K̄ l,ρ(x, t; y, σ )�
ρ
ν−1(y, σ, ξ, τ )dydσ. (3.18)

Following the development on pp. 252–255 in [1] (and for additional details and insight
pp. 14–15 of the same reference), we can verify that the sum in (3.16) is uniformly
(uniform in x and ξ ) a geometric series in t − τ and so converges for |t − τ | < 1.

In preparation for our analysis of the �l , we state a lemma summarizing properties
of Kl and K̄ l,ρ .

LEMMA 3.2. Let assumptions (A1) and (A2) hold, and suppose K l and K̄ l,ρ are
defined, respectively, as in (3.13) and (3.14). Then, there exist constants c and C so
that for 0 ≤ τ < t ≤ T̃ , with T̃ sufficiently small,

|Kl
ik(x, t; ξ, τ )| ≤ C(t − τ)

−1− n−1−γ
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

,

and

|K̄ l,ρ
ik (x, t; ξ, τ )| ≤ C(t − τ)

−1− n−γ
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

,

for all l, ρ ∈ {1, 2, . . . , n}, i, k ∈ {1, 2, . . . , N }, and x, ξ ∈ R
n.

Proof Since the Kl and K̄ l,ρ are defined in terms of Z and its derivatives, these esti-
mates follow fromLemma 3.1with one additional observation. Under our assumptions
(A1) and (A2), we have the uniform estimate

| Ãi j
α,l(ξ, t) − Ãi j

α,l(x, t)| ≤ C̃ |x − ξ |γ
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for |α| = 2p − 1 and some constant C̃ . We observe that for |α| = 2p − 1
∣∣∣∣( Ã

i j
α,l(ξ, t) − Ãi j

α,l(x, t))D
α
x Z jk(x − ξ, t; ξ, τ )

∣∣∣∣

≤ C̃Cα|x − ξ |γ (t − τ)
− n+2p−1

2p e−cα(
|x−ξ |2p
t−τ

)1/(2p−1)
. (3.19)

Now,

|x − ξ |γ
(t − τ)

γ
2p
e−cα(

|x−ξ |2p
t−τ

)1/(2p−1) ≤ C1e
− cα

2 (
|x−ξ |2p
t−τ

)1/(2p−1)
, (3.20)

for some constant C1, so the right side of (3.19) is

C̃Cα

|x − ξ |γ
(t − τ)γ/2p (t − τ)

− n+2p−1−γ
2p e−cα(

|x−ξ |2p
t−τ

)1/(2p−1)

≤ C2(t − τ)
− n+2p−1−γ

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
,

for some constant C2. Noting that estimates on the other summands in Kl
ik are smaller

if t − τ is small, we conclude the claimed estimate.
The proof is similar for K̄ l,ρ . �
In order to obtain estimates on the �l , we must understand kernel interactions. For

this, we will recall Lemma 9.4.7 from p. 253 of [1], which requires the following
notation: we set

‖x‖ :=
(

n∑

i=1

|xi |q
)1/q

where q = 2p

2p − 1
, (3.21)

and for τ < σ < t , we define

fn(x, ξ, y; t, τ, σ ) :=
(‖x − y‖2p

t − σ

) 1
2p−1

+
(‖y − ξ‖2p

σ − τ

) 1
2p−1

.

While the norm ‖ · ‖ will be convenient for calculations, we will ultimately express
our estimates in terms of standard Euclidean norm | · |. We note the equivalence

|x |2p/(2p−1)

2p/(2p−1)
≤ ‖x‖2p/(2p−1) ≤ |x |2p/(2p−1).

LEMMA 3.3. Let

Ia :=
∫

Rn
(t − σ)

− n
2p (σ − τ)

− n
2p e−a fn(x,ξ,y;t,τ,σ )dy,

where τ < σ < t , x ∈ R
n, ξ ∈ R

n, and a denotes any positive number. For any
0 < ε < 1, there exists a constant M, depending only on ε, a, p and n, so that

Ia ≤ M(t − τ)
− n

2p e−a(1−ε)(
‖x−ξ‖2p

t−τ
)1/(2p−1)

.
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REMARK 3.2. We will repeatedly use Lemma 3.3 in the following form: Given
constants c1 and C1, there exist constants c2 and C2 so that

C1

∫

Rn
(t − σ)

− n
2p (σ − τ)

− n
2p e−c1(

|x−y|2p
t−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dy

≤ C2(t − τ)
− n

2p e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
.

LEMMA 3.4. Let Assumptions (A1) and (A2) hold and suppose the matrices �l
ν

are defined as in (3.17) and (3.18). Then, there exist constants c and C so that for
0 ≤ τ < t ≤ T̃ , with T̃ sufficiently small,

|�l
ν(x, t; ξ, τ )| ≤ C(t − τ)

− n+2p−1−νγ
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

for all l ∈ {1, 2, . . . , n} and ν = 1, 2, . . . , and for all x, ξ ∈ R
n.

REMARK 3.3. The most important observation in Lemma 3.4 is that to leading
order in t − τ �l is bounded like K l .

Proof First, for ν = 1, this is simply Lemma 3.2. For ν = 2,

|�l
2(x, t; ξ, τ )| ≤

∫ t

τ

∫

Rn

n∑

ρ=1

|K̄ l,ρ(x, t; y, σ )K ρ(y, σ ; ξ, τ )|dydσ

≤ C1

∫ t

τ

∫

Rn
(t − σ)

−1− n−γ
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x−y|2p

t−τ
)1/(2p−1)−c1(

|y−ξ |2p
t−τ

)1/(2p−1)
dydσ.

Applying Remark 3.2, we obtain

|�l
2(x, t; ξ, τ )| ≤ C2(t − τ)

− n
2p e−c2(

|x−ξ |2p
t−τ

)1/(2p−1)

×
∫ t

τ

(t − σ)
−1+ γ

2p (σ − τ)
−1+ 1+γ

2p dσ

≤ C3(t − τ)
−1− n−1−2γ

2p e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
,

which is the claim for ν = 2. We observe here that the estimate obtained from the
integration over σ is most easily found by dividing the interval of integration into two
subintervals, [τ, (t − τ)/2] and [(t − τ)/2, t].

The general step can now be carried out by induction. The main issue regards
recovering a constant c that is not reduced during the induction step. (In our calculation,
c2 is smaller than c1). This is overcome with the observation that the constant arising
from K̄ l,ρ is always the same. See p. 254 of [1] for details. �
Combining the estimates of Lemmas 3.1 and 3.4, and using representation (3.8),

we can obtain estimates on G.



Vol. 15 (2015) Short-time existence theory 415

LEMMA 3.5. Let assumptions (A1) and (A2) hold, and suppose G is defined as
in (3.8). Then, there exist positive constants c and C so that for any multi-index
0 ≤ |α| < 2p − 1 in x, and for 0 ≤ τ < t ≤ T̃ , with T̃ sufficiently small

|Dα
x G(x, t; ξ, τ )| ≤ C(t − τ)

− n+|α|
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

,

for all x, ξ ∈ R
n.

Proof Since the estimates on Z are inherited immediately, we need only consider
estimates on the integral in (3.8). Assuming that differentiation under the integral sign
can be justified, we compute

∣∣∣∣
∫ t

τ

∫

Rn

n∑

ρ=1

Dα
x Zxρ (x − y, t; y, σ )�ρ(y, σ ; ξ, τ )dydσ

∣∣∣∣

≤ C1

∫ t

τ

∫

Rn
(t − σ)

− n+|α|+1
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x−y|2p
t−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dydσ

≤ C2(t − τ)
− n

2p e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
∫ t

τ

(t − σ)
− |α|+1

2p (σ − τ)
−1+ 1+γ

2p dσ.

In this last integral, we immediately understand the limitation to |α| + 1 < 2p. We
obtain an estimate by

C3(t − τ)
− n+|α|

2p + γ
2p e−c1(

|x−ξ |2p
t−τ

)1/(2p−1)
,

which is smaller than the claimed estimate. (We recall that the claimed estimate is
determined by Z ). Finally, we note that essentially the same argument, with an appeal
to the Mean Value Theorem, justifies differentiating under the integral sign. �

REMARK 3.4. In fact, we can show slightly more. We can establish that �l is
Hölder continuous and use this fact to justify computing derivatives up to order |α| =
2p − 1, though we postpone this calculation until we develop the regularity theory of
Sect. 5.3.

One of the most important preliminary observations we will make regards integra-
tion of G and its derivatives over Rn . To begin, we observe that if the coefficients
Ãi j
0,l (i.e., the coefficients with |α| = 0) of (3.1) are all 0 (or simply constant), then

the components of u will only appear under differentiation. In this way, we know that
if (1.1) is initialized by any constant vector u(x, 0) ≡ u0 = constant, then it will
be solved for all time by the same vector u(x, t) ≡ u0 for all t ≥ 0. If G denotes a
Green’s function associated with this equation, we clearly have

u0 =
∫

Rn
G(x, t; ξ, τ )u0dξ, (3.22)

for all u0 ∈ R
n . It follows that in this case, G integrates to the identity matrix.
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Of course we must take care here that the solution u(x, t) ≡ u0 is indeed the
solution we obtain through our construction of the Green’s function, and uniqueness
is not guaranteed by our standard assumptions (A1) and (A2). Precisely, in order to
obtain uniqueness, we require the following:
(A3) For each 0 ≤ |α| ≤ 2p, the derivatives Dβ

x Ã
i j
α,l(x, t) for 0 ≤ |β| ≤ |α| are

continuous bounded functions in � = R
n × [0, T ], and they are Hölder continuous

with exponent γ uniformly with respect to (x, t) in bounded subsets of �.
According to Theorem 9.5.6 on p. 260 of [1], if (A1), (A2) and (A3) all hold, then

there exists at most one solution of (3.1) such that for some k > 0,
∫ T

0

∫

Rn
|u(x, t)|e−k|x |2p/(2p−1)

dxdt < ∞.

We can proceed by taking sequences of smooth (e.g., mollified) coefficients Ãq
α,l so

that

Ãq
α,l(x, t) → Ãα,l(x, t), q → ∞,

pointwise for (x, t) in �. The Green’s functions associated with these mollified co-
efficients integrate to identity by uniqueness, and this integral is obtained in the limit
for G.
Finally, we can guarantee that the Green’s function associated with the weak for-

mulation satisfies the same property by noting that for the problem with mollified
coefficients, the Green’s function for the weak formulation will be the same as for the
strong formulation by construction. Again, integration to identity is obtained in the
limit.
So far, our discussion has centered around the case Ãi j

0,l ≡ 0. At this point, we
take advantage of our constructive approach to verify that the general case is a slight
perturbation of this more restrictive case. First, we can write

Kl = Pl + Ql

K̄ l,ρ = P̄l,ρ + Q̄l,ρ,

where Ql and Q̄l,ρ denote the portions of Kl and K̄ l,ρ , respectively, that involve Ã0,l .
Precisely, from (3.13) and (3.14),

Ql
ik(x, t; ξ, τ ) =

N∑

j=1

Ãi j
0,l(x, t)Z jk(x − ξ, t; ξ, τ ); i.e., Ql = Ã0,l Z

Q̄l,ρ
im (x, t; ξ, τ ) =

N∑

j=1

Ãi j
0,l(x, t)

∂Z jm(x − ξ, t; ξ, τ )

∂xρ

; i.e., Q̄l,ρ = Ã0,l
∂Z

∂xρ

.

(3.23)

We also write

�l
ν = �l,1

ν + �l,0
ν ,
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where�l,0
ν comprises all terms in�l

ν [from (3.17) and (3.18)] that include Ã0,l . Finally,

�l =
∞∑

ν=1

�l
ν =

∞∑

ν=1

(�l,1
ν + �l,0

ν ) =: �l,1 + �l,0. (3.24)

In this way, we can construct our Green’s function (3.8) as

G(x, t; ξ, τ ) = Z(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t; y, σ )

×
(

�ρ,1(y, σ ; ξ, τ ) + �ρ,0(y, σ ; ξ, τ )

)
dydσ. (3.25)

Noting that the Green’s function for the case Ãi j
0,l(x, t) ≡ 0 is precisely

G(x, t; ξ, τ ) = Z(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t; y, σ )�ρ,1(y, σ ; ξ, τ )dydσ,

we have from (3.22) the useful relation
∫

Rn

{
Z(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t; y, σ )�ρ,1(y, σ ; ξ, τ )dydσ

}
dξ = I, (3.26)

for all (x, t) in �.
In order to estimate the remaining part of G, we first require an estimate on �l,0.

We begin by noting that �l,0
1 = Ql , and generally (directly from (3.18))

�l
ν(x, t; ξ, τ ) =

∫ t

τ

∫

Rn

n∑

ρ=1

(
P̄l,ρ(x, t; y, σ ) + Q̄l,ρ(x, t; y, σ )

)

×�
ρ
ν−1(y, σ ; ξ, τ )dydσ. (3.27)

For ν = 2,

�l
2(x, t; ξ, τ ) =

∫ t

τ

∫

Rn

n∑

ρ=1

(
P̄l,ρ + Q̄l,ρ

)
(x, t; y, σ )

×
(
Pρ + Qρ

)
(y, σ ; ξ, τ )dydσ. (3.28)

We clearly have three terms that involve Ql and/or Q̄l,ρ . Each can be analyzed in the
same way, so we focus on the choice

I :=
∫ t

τ

∫

Rn

n∑

ρ=1

P̄l,ρ(x, t; y, σ )Qρ(y, σ ; ξ, τ )dydσ.
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Recalling definition (3.23) and the estimates of Lemmas 3.1 and 3.2, we have

|I | ≤ C1

∫ t

τ

∫

Rn
(t − σ)

−1− n−γ
2p (σ − τ)

− n
2p e−c1(

|x−y|2p
t−σ

)1/(2p−1)

× e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσ

≤ C2(t − τ)
− n

2p e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
∫ t

τ

(t − σ)
−1+ γ

2p dσ

≤ C3(t − τ)
− n−γ

2p e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
.

In this calculation, we have used Remark 3.2. Proceeding similarly for the other two
terms in �

l,0
2 , we conclude

|�l,0
2 (x, t; ξ, τ )| ≤ C(t − τ)

− n−γ
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

for some constants c and C .
We see that �

l,0
2 does not blow up as fast for t → τ as does �

l,0
1 , and we can see

from (3.27) that the rate of blow-up (or decay for ν sufficiently large) on �l,0
ν will

generally be improved over the rate associated with �
l,0
ν−1 by a factor of (t − τ)

γ
2p .

In this way, we recognize that the leading order term for t sufficiently close to τ is
�

l,0
1 = Ql . We conclude the estimate

|�l,0(x, t; ξ, τ )| ≤ C(t − τ)
− n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
. (3.29)

We now state a lemma that will be fundamental to our analysis.

LEMMA 3.6. Let assumptions (A1) and (A2) hold, and suppose G is defined as in
(3.8). Then, there exists an N × N matrix function R(x, t; τ) and a constant C so that
for any multi-index 0 ≤ |α| < 2p−1 in x, and for 0 ≤ τ < t ≤ T̃ , with T̃ sufficiently
small

∫

Rn
G(x, t; ξ, τ )dξ = I + R(x, t; τ),

and

|Dα
x R(x, t; τ)| ≤ C(t − τ)

1− 1+|α|
2p , (3.30)

for all x ∈ R
n.

Proof Following the calculations leading up to Lemma 3.6, we see that all that remains
is to establish the claimed estimates on

R(x, t; τ) :=
∫

Rn

{ ∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t; y, σ )�ρ,0(y, σ ; ξ, τ )dydσ

}
dξ.
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Formally, for each α described in the theorem’s statement, we can write

Dα
x R(x, t; τ) =

∫

Rn

{∫ t

τ

∫

Rn

n∑

ρ=1

Dα
x Zxρ (x − y, t; y, σ )�ρ,0(y, σ ; ξ, τ )dydσ

}
dξ,

from which we obtain the estimate

|Dα
x R(x, t; τ)| ≤ C1

∫

Rn

{ ∫ t

τ

∫

Rn
(t − σ)

− n+|α|+1
2p (σ − τ)

− n
2p

×e−c1(
|x−y|2p
t−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dydσ

}
dξ

≤ C2

∫

Rn
(t − τ)

− n
2p e−c2(

|x−ξ |2p
t−τ

)1/(2p−1)
∫ t

τ

(t − σ)
− |α|+1

2p dσdξ

≤ C3

∫

Rn
(t − τ)

1− n+|α|+1
2p e−c2(

|x−ξ |2p
t−τ

)1/(2p−1)
dξ

≤ C4(t − τ)
1− |α|+1

2p .

�

LEMMA 3.7. Let assumptions (A1) and (A2) hold, and suppose G is defined as
in (3.8). Then, there exist constant C and C̃ so that the following estimates hold for
0 ≤ τ < t ≤ T̃ , with T̃ sufficiently small:

(I) For any x1, x2 ∈ R
n, 0 ≤ τ < t ≤ T̃ ,

∣∣∣∣
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
dξ

∣∣∣∣ ≤ C(t − τ)
1− 1+γ

2p |x1 − x2|γ ;

(II) For any x1, x2 ∈ R
n, 0 ≤ τ < t ≤ T̃ , and for any f ∈ Cγ (Rn), 0 < γ < 1

∣∣∣∣
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
f (ξ)dξ

∣∣∣∣ ≤ C̃ |x1 − x2|γ ;

(III) For any x ∈ R
n and 0 ≤ τ < t1 < t2 ≤ T̃

∣∣∣∣
∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)
dξ

∣∣∣∣ ≤ C(t2 − τ)
1− 1+γ

2p (t2 − t1)
γ
2p ;

(IV) For any x ∈ R
n and 0 ≤ τ < t1 < t2 ≤ T̃ , and for any f ∈ Cγ (Rn),

0 < γ < 1
∣∣∣∣
∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)
f (ξ)dξ

∣∣∣∣ ≤ C̃(t2 − t1)
γ
2p ;

The constants C and C̃ both depend on the bounds of the PDE coefficients and the
Hölder constant for f . The constant C additionally depends on the Hölder constant
associated with the coefficients Ãα,l , while the constant C̃ does not.
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REMARK 3.5. The final note regarding constants will be extremely important in
our proof of the main theorem.

Proof of Case (I). If we combine (3.25) with (3.26), we find
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
dξ

=
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

�Zxρ (x1, x2)�
ρ,0(y, σ ; ξ, τ )dydσdξ,

where

�Zxρ (x1, x2) := Zxρ (x1 − y, t; y, σ ) − Zxρ (x2 − y, t; y, σ ).

(Here, and in similar instances below, we suppress dependence on certain variables
for notational brevity).

At this point, we divide the analysis into two cases: (1) |x1 − x2| ≤ (t − τ)
1
2p ; and

(2) |x1 − x2| > (t − τ)
1
2p .

Case (1) |x1 − x2| ≤ (t − τ)
1
2p . For Case (1), we write

∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

�Zxρ (x1, x2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

=
∫

Rn

∫ t− 1
2 |x1−x2|2p

τ

∫

Rn

n∑

ρ=1

�Zxρ (x1, x2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

+
∫

Rn

∫ t

t− 1
2 |x1−x2|2p

∫

Rn

n∑

ρ=1

�Zxρ (x1, x2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

=: I1 + I2.

For I1, we can apply the Mean Value Theorem to the components of Zxρ . We have

Zi j
xρ

(x1−y, t; ξ, τ )−Zi j
xρ

(x2−y, t; ξ, τ )=Dx Z
i j
xρ

(x∗−y, t; ξ, τ ) · (x1−x2), (3.31)

for some x∗ = x∗(x1, x2, y, ξ ; t, τ ) (depending also on i and j) on the line between
x1 and x2. According to Lemma 3.1

|Dx Z
i j
xρ

(x∗ − y, t; ξ, τ )| ≤ C(t − τ)
− n+2

2p e−c( |x∗−y|2p
(t−τ )

)1/(2p−1)
.

We write

x2 − y = x2 − x∗ + x∗ − y ⇒ |x2 − y| ≤ |x2 − x∗| + |x∗ − y|,
which implies

( |x2 − y|2p
t − τ

) 1
2p−1

≤ 2
2p

2p−1

{( |x2 − x∗|2p
t − τ

) 1
2p−1

+
( |x∗ − y|2p

t − τ

) 1
2p−1

}
.
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Upon rearranging this and raising expressions as exponents of e, we find

e−(
|x∗−y|2p

t−τ
)1/(2p−1) ≤ e−2

− 2p
2p−1 (

|x2−y|2p
t−τ

)1/(2p−1)
e(

|x2−x∗|2p
t−τ

)1/(2p−1)
.

Now, x∗ is on the line between x1 and x2 so

|x2 − x∗| ≤ |x2 − x1|.

For I1, we have τ ≤ σ ≤ t − 1
2 |x1 − x2|2p, so that

t − σ ≥ 1

2
|x1 − x2|2p ≥ 1

2
|x2 − x∗|2p.

It follows that

e(
|x2−x∗|2p

t−σ
)1/(2p−1) ≤ e2

1/(2p−1)
.

We see that there exist constants C1 and c1, which can be expressed explicitly from
the preceding considerations, so that

e−c( |x∗−y|2p
t−τ

)1/(2p−1) ≤ C1e
−c1(

|x2−y|2p
t−τ

)1/(2p−1)
. (3.32)

Combining these observations, we can compute (using Lemma 3.3)

|I1| ≤ C2|x2 − x1|
∫

Rn

∫ t− 1
2 |x1−x2|2p

τ

∫

Rn

{
(t − σ)

− n+2
2p (σ − τ)

− n
2p

×e−c1(
|x2−y|2p

t−σ
)1/(2p−1)

e−c2(
|y−ξ |2p

σ−τ
)1/(2p−1)

}
dydσdξ

≤ C3|x2 − x1|(t − τ)
− n

2p

∫

Rn

∫ t− 1
2 |x1−x2|2p

τ

(t − σ)
− 1

p e−c3(
|x2−ξ |2p

t−τ
)1/(2p−1)

dσdξ.

Recalling again that |x1−x2| ≤ [2(t−σ)]1/2p, we have, for σ ∈ [τ, t− 1
2 |x1−x2|2p],

the inequality

|x1 − x2|(t − σ)
− 1

2p ≤ 2
1−γ
2p |x2 − x1|γ (t − σ)

− γ
2p .

We have, then,

|I1| ≤ C4|x2−x1|γ (t−τ)
− n

2p

∫

Rn

∫ t− 1
2 |x1−x2|2p

τ

(t−σ)
− 1+γ

2p e−c3(
|x2−ξ |2p

t−τ
)1/(2p−1)

dσdξ

≤ C5|x2 − x1|γ (t − τ)
1− n+1+γ

2p

∫

Rn
e−c3(

|x2−ξ |2p
t−τ

)1/(2p−1)
dξ

≤ C6|x2 − x1|γ (t − τ)
1− 1+γ

2p .
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For I2, we use the more rudimentary estimate

|Zxρ (x1 − y, t; y, σ ) − Zxρ (x2 − y, t; y, σ )|

≤ C(t − σ)
− n+1

2p

{
e−c(

|x1−y|2p
t−σ

)1/(2p−1) + e−c(
|x2−y|2p

t−σ
)1/(2p−1)

}
. (3.33)

Estimates on I2 can be divided into two terms, one associated with each summand on
the right-hand side of this last inequality. For notational convenience, we will express
these as I1 = J1 + J2. For J1, we have

|J1| ≤ C1

∫

Rn

∫ t

t− 1
2 |x1−x2|2p

∫

Rn
(t − σ)

− n+1
2p (σ − τ)

− n
2p

×e−c1(
|x1−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C2(t − τ)
− n

2p

∫

Rn

∫ t

t− 1
2 |x1−x2|2p

(t − σ)
− 1

2p e−c2(
|x1−ξ |2p

t−τ
)1/(2p−1)

dσdξ.

(3.34)

At this point, we observe the integral

∫ t

t− 1
2 |x1−x2|2p

(t − σ)
− 1

2p dσ = − 1

1 − 1
2p

(t − σ)
1− 1

2p

∣∣∣∣
t

t− 1
2 |x1−x2|2p

= − 1

1 − 1
2p

(
1

2
|x1 − x2|2p

)(1− 1
2p )

= − 1

1 − 1
2p

|x1 − x2 f |2p−1.

We can conclude the estimate

|J1| ≤ C2|x1 − x2|2p−1.

Finally, recalling that we remain in Case (1), we have

|x1 − x2|2p−1 = |x1 − x2|γ |x1 − x2|2p−1−γ ≤ |x1 − x2|γ (t − τ)
2p−1−γ

2p ,

which gives the claimed estimate. The analysis of J2 is almost identical.

Case (2) |x1 − x2| > (t − τ)
1
2p . For Case (2), we again use (3.33), which again

leads to two terms, which we designate I2 = J1 + J2. (We recall our convention that
even when we have expressed I1 as a sum J1 + J2, we write I2 = J1 + J2 with a new
choice of J1 and J2). Proceeding as in (3.34), we compute

|J1| ≤ C1(t − τ)
− n

2p

∫

Rn

∫ t

τ

(t − σ)
− 1

2p e−c2(
|x1−ξ |2p

t−τ
)1/(2p−1)

dσdξ

≤ C2(t − τ)
1− 1

2p ≤ C2(t − τ)
1− 1+γ

2p |x1 − x2|γ ,

where in obtaining this final inequality, we have observed that in Case (2) (t − τ)
γ
2p <

|x1 − x2|γ .
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This establishes Case (I) of the lemma.
Proof of Case (II). For Case (II), we divide the analysis into the same two subcases
as we used in Case (I).

Case (1) |x1 − x2| ≤ (t − τ)
1
2p . For Case (1), we write

∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
f (ξ)dξ

=
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)(
f (ξ) − f (x2)

)
dξ

+
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
f (x2)dξ = I1 + I2.

For I1, we apply theMean Value Theorem toG, similarly as applied to Zxρ in (3.31)
to obtain the estimate

|Gi j (x1, t; ξ, τ ) − Gi j (x2, t; ξ, τ )| ≤ C |x1 − x2|(t − τ)
− n+1

2p e−c( |x∗−ξ |2p
t−τ

)1/(2p−1)
,

for some positive constants c and C , and for x∗ = x∗(x1, x2, t, ξ, τ ) (depending also
on i and j) on the line between x1 and x2. Using (3.32) with ξ replacing y, we obtain
the inequality

e−c( |x∗−ξ |2p
t−τ

)1/(2p−1) ≤ C1e
−c1(

|x2−ξ |2p
t−τ

)1/(2p−1)
.

In this way, we can write

|I1| ≤ C2|x1 − x2|(t − τ)
− n+1

2p

∫

Rn
e−c1(

|x2−ξ |2p
t−τ

)1/(2p−1) |ξ − x2|γ dξ

≤ C3|x1 − x2|(t − τ)
− 1−γ

2p ≤ C3|x1 − x2|γ ,

where in obtaining the penultimate inequality, we have used the idea of (3.20), while
in obtaining the final inequality we have simply used the inequality defining Case
(1). We emphasize that C3, denoted C̃ in the statement of our lemma, depends on the
Hölder constant associated with f , but not on the Hölder constants associated with
the PDE coefficients Ãi j

α,l .
In this case, we obtain a much smaller term from I2 by directly applying the result

of Case (I) from the lemma.

Case (2) |x1 − x2| < (t − τ)
1
2p . For Case (2), we write

∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
f (ξ)dξ

=
∫

Rn
G(x1, t; ξ, τ )( f (ξ) − f (x1))dξ −

∫

Rn
G(x2, t; ξ, τ )( f (ξ) − f (x2))dξ

+
∫

Rn
G(x1, t; ξ, τ )( f (x1) − f (x2))dξ
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+
∫

Rn

(
G(x1, t; ξ, τ ) − G(x2, t; ξ, τ )

)
f (x2)dξ

=: I1 + I2 + I3 + I4.

For I1, we have from Lemma 3.5

|I1|≤C1(t−τ)
− n

2p

∫

Rn
e−c1(

|x1−ξ |2p
t−τ

)1/(2p−1) |ξ−x1|γ dξ ≤ C2(t−τ)
γ
2p ≤ C2|x1−x2|γ ,

where we have used (3.20) and the inequality defining Case (2). The analysis of I2 is
clearly the same as that of I1, resulting in the same estimate. For I3, we have

|I3| ≤ C1(t − τ)
− n

2p

∫

Rn
e−c1(

|x1−ξ |2p
t−τ

)1/(2p−1) |x2 − x1|γ dξ ≤ C2|x1 − x2|γ .

Finally, using the estimate from Case (I), we see that I4 is much smaller.
Proof of Case (III). If we combine (3.25) with (3.26), we find

∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)
dξ

=
∫

Rn

∫ t1

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t1; y, σ )�ρ,0(y, σ ; ξ, τ )dydσdξ

−
∫

Rn

∫ t2

τ

∫

Rn

n∑

ρ=1

Zxρ (x − y, t2; y, σ )�ρ,0(y, σ ; ξ, τ )dydσdξ

It will be convenient to rearrange the right-hand side of this last relation as
∫

Rn

∫ t1

τ

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

−
∫

Rn

∫ t2

t1

∫

Rn

n∑

ρ=1

Zxρ (x − y, t2; y, σ )�ρ,0(y, σ ; ξ, τ )dydσdξ =: I1 + I2,

(3.35)

where

�Zxρ (t1, t2) := Zxρ (x − y, t1; y, σ ) − Zxρ (x − y, t2; y, σ ).

At this point, we divide the analysis into two cases, in precisely the same spirit as
our analyses of (I) and (II): (1) t2 − t1 ≤ t1 − τ ; and (2) t2 − t1 > t1 − τ .
Case (1) t2 − t1 ≤ t1 − τ . For Case (1), we observe that τ ≤ t1 − 1

2 (t2 − t1) ≤ t1,
allowing us to write

I1 =
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

+
∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ,0(y, σ ; ξ, τ )dydσdξ

=: J1 + J2.
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For J1, we apply the Mean Value Theorem to Zxρ in t , noting that estimates on
t-derivatives of Z can be obtained from Lemma 3.1 and the defining relation (3.11).
Proceeding similarly as in (3.31), we find that for each component Zi j

∣∣∣∣Z
i j
xρ

(x − y, t1; y, σ ) − Zi j
xρ

(x − y, t2; y, σ )

∣∣∣∣

≤ C1(t
∗ − σ)

−1− n+1
2p e−c1(

|x−y|2p
t∗−σ

)1/(2p−1)
(t2 − t1), (3.36)

for some constants c1 and C1 and some value t∗ = t∗(t1, t2, x, y, σ ) between t1 and
t2. For J1, we have

t1 − σ ≤ t∗ − σ < 3(t1 − σ),

so that for new constants c2 and C2, we have
∣∣∣∣Z

i j
xρ

(x − y, t1; y, σ ) − Zi j
xρ

(x − y, t2; y, σ )

∣∣∣∣

≤ C2(t1 − σ)
−1− n+1

2p e
−c2(

|x−y|2p
t1−σ

)1/(2p−1)

(t2 − t1).

We obtain the inequality

|J1| ≤ C3(t2 − t1)
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn
(t1 − σ)

−1− n+1
2p (σ − τ)

− n
2p

×e
−c2(

|x−y|2p
t1−σ

)1/(2p−1)

e−c2(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C4(t2 − t1)(t1−τ)
− n

2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

(t1−σ)
−1− 1

2p e
−c3(

|x−ξ |2p
t1−τ

)1/(2p−1)
dσdξ.

Carrying out the integration over σ explicitly, and recalling that in Case (1) (t1 −
τ)−1/2p ≤ (t2 − t1)−1/2p, we obtain the estimate

|J1| ≤ C5(t2 − t1)
1− 1

2p (t1 − τ)
− n

2p

∫

Rn
e
−c3(

|x−ξ |2p
t1−τ

)1/(2p−1)

dξ

≤ C6(t2 − t1)
1− 1

2p ≤ C6(t2 − t1)
γ
2p (t1 − τ)

1− 1+γ
2p .

For J2, we use the idea of (3.33) to obtain an estimate by two terms, which we
denote J2 = K1 + K2. For the first,

|K1| ≤ C1

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn
(t1 − σ)

− n+1
2p (σ − τ)

− n
2p

×e
−c2(

|x−y|2p
t1−σ

)1/(2p−1)
e−c2(

|y−ξ |2p
σ−τ

)1/(2p−1)
dydσdξ

≤ C2(t1 − τ)
− n

2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

(t1 − σ)
− 1

2p e
−c3(

|x−ξ |2p
t1−τ

)1/(2p−1)
dσdξ.
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Carrying out the integration over σ explicitly, we obtain an estimate by

|K1| ≤ C3(t1 − τ)
− n

2p (t2 − t1)
1− 1

2p

∫

Rn
e
−c3(

|x−ξ |2p
t1−τ

)1/(2p−1)

dξ

≤ C4(t2 − t1)
1− 1

2p ≤ C4(t2 − t1)
γ
2p (t1 − τ)

1− 1+γ
2p .

The term for K2 can be analyzed similarly, completing the analysis of J2, which
completes the analysis of I1 [from (3.35)].
For I2, we use the estimates of Lemma 3.1 to write

|I2| ≤ C1

∫

Rn

∫ t2

t1

∫

Rn
(t2 − σ)

− n+1
2p (σ − τ)

− n
2p

×e
−c1(

|x−y|2p
t2−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C2(t2 − τ)
− n

2p

∫

Rn

∫ t2

t1
(t2 − σ)

− 1
2p e

−c2(
|x−ξ |2p
t2−τ

)1/(2p−1)

dσdξ.

Once again carrying out the integration over σ explicitly, we estimate

|I2| ≤ C3(t2 − τ)
− n

2p (t2 − t1)
1− 1

2p

∫

Rn
e
−c2(

|x−ξ |2p
t2−τ

)1/(2p−1)

dξ

≤ C4(t2 − t1)
1− 1

2p ≤ C4(t2 − t1)
γ
2p (t2 − τ)

1− 1+γ
2p .

Case (2) t2 − t1 > t1 − τ . For Case (2), we use the idea of (3.33) (with different
values of t instead of different values of x), and we express the resulting two terms as
I1 = J1 + J2. For J1, we write

|J1| ≤ C1

∫

Rn

∫ t1

τ

∫

Rn
(t1 − σ)

− n+1
2p (σ − τ)

− n
2p

×e
−c1(

|x−y|2p
t1−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dydσdξ

≤ C2(t1 − τ)
− n

2p

∫

Rn

∫ t1

τ

(t1 − σ)
− 1

2p e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1)
dσdξ.

Carrying out the integration over σ explicitly, we estimate

|J1| ≤ C3(t1 − τ)
1− n+1

2p

∫

Rn
e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1)

dξ

≤ C4(t1 − τ)
1− 1

2p ≤ C4(t2 − t1)
γ
2p (t1 − τ)

1− 1+γ
2p .

The analysis of J2 is similar.
Finally, for I2, we have

|I2| ≤ C1

∫

Rn

∫ t2

t1

∫

Rn
(t2 − σ)

− n+1
2p (σ − τ)

− n
2p

×e
−c1(

|x−y|2p
t2−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C2(t2 − τ)
− n

2p

∫

Rn

∫ t2

t1
(t2 − σ)

− 1
2p e

−c2(
|x−ξ |2p
t2−τ

)1/(2p−1)

dσdξ.
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In this case, we obtain

|I2| ≤ C3(t2 − τ)
− n

2p (t2 − t1)
1− 1

2p

∫

Rn
e
−c2(

|x−ξ |2p
t2−τ

)1/(2p−1)

dξ

≤ C4(t2 − t1)
1− 1

2p ≤ C4(t2 − t1)
γ
2p (t2 − τ)

1− 1+γ
2p .

Proof of Case (IV). For Case (IV), we divide the analysis into the same two subcases
as we used in Case (III).
Case (1) t2 − t1 ≤ t1 − τ . For Case (1), we write

∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)
f (ξ)dξ

=
∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)(
f (ξ) − f (x)

)
dξ

+
∫

Rn

(
G(x, t1; ξ, τ ) − G(x, t2; ξ, τ )

)
f (x)dξ = I1 + I2.

For I1, we would like to apply the Mean Value Theorem as in our analysis of Case
(II), but we must keep in mind that when working with the weak formulation, G is not
necessarily differentiable in t . Using (3.8), we can write

I1 =
∫

Rn
�Z(t1, t2)( f (ξ) − f (x))dξ

+
∫

Rn

∫ t1

τ

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ(y, σ ; ξ, τ )( f (ξ) − f (x))dydσdξ

−
∫

Rn

∫ t2

t1

∫

Rn

n∑

ρ=1

Zxρ (x − y, t2; y, σ )�ρ(y, σ ; ξ, τ )( f (ξ) − f (x))dydσdξ

=: J1 + J2 + J3, (3.37)

where

�Z(t1, t2) := Z(x − ξ, t1; ξ, τ ) − Z(x − ξ, t2; ξ, τ )

�Zxρ (t1, t2) := Zxρ (x − y, t1; y, σ ) − Zxρ (x − y, t2; y, σ ).

For J1,we apply theMeanValueTheorem to the components of Z to obtain estimates
of the form

∣∣∣∣Z
i j (x − ξ, t1; ξ, τ ) − Zi j (x − ξ, t2; ξ, τ )

∣∣∣∣

≤ C1(t
∗ − τ)

−1− n
2p e−c1(

|x−ξ |2p
t∗−τ

)1/(2p−1)
(t2 − t1), (3.38)

where t∗ = t∗(t1, t2, x, ξ, τ ) (depending also on i and j) is a value between t1 and t2.
In Case (1), (t2 − t1) ≤ (t∗ − τ) and

1

2
(t2 − τ) ≤ (t∗ − τ) ≤ 2(t2 − τ).
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Combining these inequalities, we can conclude

|J1| ≤ C2(t2 − t1)
γ
2p

∫

Rn
(t2 − τ)

− γ
2p − n

2p e
−c2(

|x−ξ |2p
t2−τ

)1/(2p−1) |ξ − x |γ dξ

≤ C3(t2 − t1)
γ
2p .

For J2, we write

J2 =
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ(y, σ ; ξ, τ )( f (ξ) − f (x))dydσdξ

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

�Zxρ (t1, t2)�
ρ(y, σ ; ξ, τ )( f (ξ) − f (x))dydσdξ

=: K1 + K2. (3.39)

For K1 since σ < t1 − 1
2 (t2 − t1), we can use the Mean Value Theorem again. In

this case,

1

2
(t2 − t1) < t∗ − σ < 3(t1 − σ),

and we obtain an inequality

|K1| ≤ C1(t2 − t1)
γ
2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn

{
(t1 − σ)

− γ
2p − n+1

2p (σ − τ)
−1− n−1−γ

2p

×e
−c1(

|x−y|2p
t1−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1) |ξ − x |γ
}
dydσdξ

≤ C2(t2 − t1)
γ
2p (t1 − τ)

− n
2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

{
(t1 − σ)

− γ
2p − 1

2p (σ − τ)
−1+ 1+γ

2p

×e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1) |ξ − x |γ
}
dσdξ.

Carrying out the remaining two integrals, we find

|K1| ≤ C3(t2 − t1)
γ
2p (t1 − τ)

− n
2p

∫

Rn
e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1) |ξ − x |γ dξ

≤ C4(t2 − t1)
γ
2p (t1 − τ)

γ
2p .

For t1 − τ small, this gives the claimed estimate with an arbitrarily small choice of
constant C̃ . (This last point is important, because C4 depends on the Hölder constant
for the PDE coefficients, and C̃ does not).



Vol. 15 (2015) Short-time existence theory 429

For K2, we proceed by writing

K2 =
∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

Zxρ (x − y, t1; y, σ )�ρ(y, σ ; ξ, τ )

×( f (ξ) − f (x))dydσdξ

−
∫

Rn

∫ t2

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

Zxρ (x − y, t2; y, σ )�ρ(y, σ ; ξ, τ )

×( f (ξ) − f (x))dydσdξ

=: L1 + L2.

For L1, we estimate

|L1| ≤ C1

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

{
(t1 − σ)

− n+1
2p (σ − τ)

−1− n−1−γ
2p

×e
−c1(

|x−y|2p
t1−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |ξ − x |γ

}
dydσdξ

≤ C2(t1 − τ)
− n

2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

(t1 − σ)
− 1

2p (σ − τ)
−1+ 1+γ

2p

×e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1) |ξ − x |γ dσdξ.

Recalling that in this case (σ − τ) > 1
2 (t1 − τ), we obtain

|L1| ≤ C3(t1 − τ)
−1+ 1+γ−n

2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

(t1 − σ)
− 1

2p

×e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1) |ξ − x |γ dσdξ

≤ C4(t1 − τ)
−1+ 1+γ−n

2p (t2 − t1)
1− 1

2p

∫

Rn
e
−c2(

|x−ξ |2p
t1−τ

)1/(2p−1) |ξ − x |γ dξ

≤ C5(t1 − τ)
−1+ 1+2γ

2p (t2 − t1)
1− 1

2p .

In this case t2 − t1 < t1 − τ , and using this, we conclude

|L1| ≤ C5(t1 − τ)
γ
2p (t2 − t1)

γ
2p ,

which is sufficient.

The expression L2 can be analyzed similarly, and this finishes the analysis of K2

and thus of J2 [from (3.37)].
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For J3, we estimate directly

|J3| ≤ C1

∫

Rn

∫ t2

t1

∫

Rn

{
(t2 − σ)

− n+1
2p (σ − τ)

−1− n−1−γ
2p

×e
−c1(

|x−y|2p
t2−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |ξ − x |γ

}
dydσdξ

≤ C2(t2 − τ)
− n

2p

∫

Rn

∫ t2

t1

{
(t2 − σ)

− 1
2p (σ − τ)

−1+ 1+γ
2p

×e
−c2(

|x−ξ |2p
t2−τ

)1/(2p−1) |ξ − x |γ
}
dσdξ.

We find

|J3| ≤ C3(t2 − τ)
− n

2p (t2 − t1)
γ
2p

∫

Rn
e
−c2(

|x−ξ |2p
t2−τ

)1/(2p−1) |ξ − x |γ dξ

≤ C4(t2 − τ)
γ
2p (t2 − t1)

γ
2p ,

which is sufficient for t2 − τ sufficiently small.
This concludes the analysis of I1. Since I2 can be understood from Case (III), the

argument is complete. �

4. Estimates for the contraction argument

In this section, we gather some important preliminary observations that will be used
in our contraction mapping argument. Given some function uτ ∈ Cγ (Rn), for some
Hölder index 0 < γ < 1, we will work with the metric space

S := {u ∈ Cγ,
γ
2p (Rn × [τ, T̃ ]) : u(x, τ ) = uτ (x), ‖u‖

C
γ,

γ
2p

≤ K }, (4.1)

for some constant K > 0 and some sufficiently small time T̃ > 0. Here,

‖u‖
C

γ,
γ
2p

:= sup
x∈Rn

t∈[τ,T̃ ]

|u(x, t)| + sup
x1,x2∈Rn ,x1 �=x2

t∈[τ,T̃ ]

|u(x1, t) − u(x2, t)|
|x1 − x2|γ

+ sup
x∈Rn

t1,t2∈[τ,T̃ ],t1 �=t2

|u(x, t1) − u(x, t2)|
|t1 − t2|

γ
2p

. (4.2)

We recall that given any ũ ∈ S, we can define the associated linear problem (3.1),
and we denote by Zũ the parametrix associated with this problem, and by �ũ,ρ,1 and
�ũ,ρ,0 the respective �ρ,1 and �ρ,0 [as defined in (3.24)]. In what follows, we drop
the tilde notation for convenience.
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We will set

�Z(u, v) := Zu(x − ξ, t; ξ, τ ) − Zv(x − ξ, t; ξ, τ )

�Zt (u, v) := Zu
t (x − ξ, t; ξ, τ ) − Zv

t (x − ξ, t; ξ, τ )

��l(u, v) := �u,l(x, t; ξ, τ ) − �v,l(x, t; ξ, τ )

��l,0(u, v) := �u,l,0(x, t; ξ, τ ) − �v,l,0(x, t; ξ, τ ). (4.3)

LEMMA 4.1. Suppose (P) and (W1)–(W2) hold, u, v ∈ S, and Zu, Zv

satisfy (3.11) with, respectively, Ãi j
α,l(x, t) = Ai j

α,l(u(x, t), x, t) and Ãi j
α,l(x, t) =

Ai j
α,l(v(x, t), x, t). Then, for 0 < τ < t ≤ T̃ , with T̃ sufficiently small, and for any

multi-index α, there exist constants c, cα and C,Cα so that
(I)

∣∣∣∣D
α
x �Z(u, v)

∣∣∣∣ ≤ Cα‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n−|α|

2p e−cα(
|x−ξ |2p
t−τ

)1/(2p−1)

∣∣∣∣D
α
x �Zt (u, v)

∣∣∣∣ ≤ Cα‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ γ−n−|α|

2p e−cα(
|x−ξ |2p
t−τ

)1/(2p−1)
.

(II)

∣∣∣∣��l(u, v)

∣∣∣∣ ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ 1+γ−n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)

∣∣∣∣��l,0(u, v)

∣∣∣∣ ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

,

for each l ∈ {1, 2, . . . , n}.
Remark on the proof of Part (I). The proof of Part (I) closely follows Friedman’s
proof of Lemma 9.3.3 in [1], and we omit most of the details. In obtaining our formu-
lation, we use one additional fact,

sup
x∈R

|u(x, t) − v(x, t)| ≤ ‖u − v‖
C

γ,
γ
2p

(t − τ)
γ
2p . (4.4)

This is clear since, by definition

∣∣∣∣(u(x, t1) − v(x, t1)) − (u(x, t2) − v(x, t2))

∣∣∣∣ ≤ ‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p ,

for all t1, t2 ∈ [τ, T̃ ], t1 �= t2. The claim is immediate upon taking t2 = t and t1 = τ

(keeping in mind that u, v ∈ S ⇒ u(x, τ ) = v(x, τ ) = uτ (x)).
Proof of Part (II). We begin by writing

�u,l =
∞∑

ν=1

�u,l
ν ,



432 P. Howard J. Evol. Equ.

where �
u,l
1 = Ku,l and for ν = 2, 3, . . .

�u,l
ν (x, t; ξ, τ ) =

∫ t

τ

∫

Rn

n∑

ρ=1

K̄ u,l,ρ(x, t; y, σ )�
u,ρ
ν−1(y, σ ; ξ, τ )dydσ ;

i.e., (3.17) and (3.18) in our current notation. Here, we denote by Ku,l and K̄ u,l,ρ ,
respectively, the expressions for Kl and K̄ l,ρ [from (3.13) and (3.14)] associated with
u.

Noting that

�u,l − �v,l =
∞∑

ν=1

(
�u,l

ν − �v,l
ν

)
, (4.5)

we consider the differences �u,l
ν − �v,l

ν , beginning with ν = 1. In this case, we have

(
�

u,l
1 (x, t; ξ, τ ) − �

v,l
1 (x, t; ξ, τ )

)

ik

=
(
Ku,l(x, t; ξ, τ ) − K v,l(x, t; ξ, τ )

)

ik

= −
N∑

j=1

∑

|α|=2p−1

{(
Ai j

α,l(u, ξ, t) − Ai j
α,l(u, x, t)

)
Dα
x Z

u
jk

−
(
Ai j

α,l(v, ξ, t) − Ai j
α,l(v, x, t)

)
Dα
x Z

v
jk

}

+
N∑

j=1

∑

|α|≤2p−2

{
Ai j

α,l(u, x, t)Dα
x Z

u
jk − Ai j

α,l(v, x, t)Dα
x Z

v
jk

}
=: I1 + I2,

where for notational brevity we have omitted the dependence of Z on (x, t; ξ, τ ),
and where u and v always depend on (x, t) or (ξ, t), consistent with the remaining
dependence of Ai j

α,l . We can rearrange I1 as

I1 = −
N∑

j=1

∑

|α|=2p−1

{(
Ai j

α,l(u, ξ, t) − Ai j
α,l(u, x, t)

)(
Dα
x Z

u
jk − Dα

x Z
v
jk

)}

−
N∑

j=1

∑

|α|=2p−1

{(
Ai j

α,l(u, ξ, t) − Ai j
α,l(v, ξ, t)

)
−

(
Ai j

α,l(u, x, t)

−Ai j
α,l(v, x, t)

)}
Dα
x Z

v
jk

=: J1 + J2.

For J1, we note, using (W2) and the fact that u ∈ S,
∣∣∣∣A

i j
α,l(u, ξ, t) − Ai j

α,l(u, x, t)

∣∣∣∣ ≤ C1

(
|u(ξ, t) − u(x, t)| + |ξ − x |γ

)
≤ C2|ξ − x |γ .
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Using in addition Part I of this lemma and the idea of (3.20), we find

|J1| ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ 1+2γ−n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
.

For J2, we note
∣∣∣∣A

i j
α,l(u, ξ, t) − Ai j

α,l(v, ξ, t)

∣∣∣∣ ≤ C |u(ξ, t) − v(x, t)|

≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ
2p , (4.6)

and conclude

|J2| ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ 1+γ−n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
.

(If we assume greater regularity on the coefficients Ai j
α,l [i.e., we assume (S1)–(S2)],

we can recover the estimate for J1; in fact, this is the primary reason for taking this
choice of arrangement).
Proceeding similarly for I2, we can take advantage of the lower-order derivative to

obtain an estimate that is smaller than the estimate on I1 for t − τ sufficiently small.
This concludes the analysis for ν = 1.

According to our definitions, we have obtained an estimate on the difference |Ku,l−
K v,l |, and by almost precisely the same calculation, we can verify

∣∣∣∣K̄
u,l,ρ(x, t; ξ, τ ) − K̄ u,l,ρ(x, t; ξ, τ )

∣∣∣∣

≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ γ−n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
. (4.7)

For ν = 2, 3, . . . , we proceed by writing

�u,l
ν (x, t; ξ, τ ) − �v,l

ν (x, t; ξ, τ )

=
∫ t

τ

∫

Rn

n∑

ρ=1

{
K̄ u,l,ρ(x, t; y, σ )�

u,ρ
ν−1(y, σ ; ξ, τ )

−K̄ v,l,ρ(x, t; y, σ )�
v,ρ
ν−1(y, σ ; ξ, τ )

}
dydσ

=
∫ t

τ

∫

Rn

n∑

ρ=1

(
K̄ u,l,ρ(x, t; y, σ ) − K̄ v,l,ρ(x, t; y, σ )

)
�

u,ρ
ν−1(y, σ ; ξ, τ )dydσ

+
∫ t

τ

∫

Rn

n∑

ρ=1

K̄ v,l,ρ(x, t; y, σ )

(
�

u,ρ
ν−1(y, σ ; ξ, τ ) − �

v,ρ
ν−1(y, σ ; ξ, τ )

)
dydσ

=: I1 + I ν−1
2 ,

the superscript on I2 serving as an index rather than a power. We can estimate I1 as in
the case ν = 1 and obtain the same estimate we found for J1 in that case. For I ν−1

2 ,
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we can use the estimate for ν = 1 to show that I 12 satisfies the same bound as J1 (from

the case ν = 1). In this way, the difference �
u,l
2 − �

v,l
2 is smaller than the difference

�
u,l
1 − �

v,l
1 , and the general case follows by induction.

For the final estimate of Lemma 4.1, we begin by observing �
u,l,0
1 = Qu,l . Com-

puting directly, we find

�
u,l,0
1 (x, t; ξ, τ ) − �

v,l,0
1 (x, t; ξ, τ )

= A0,l(u, x, t)Zu(x − ξ, t; ξ, τ ) − A0,l(v, x, t)Zv(x − ξ, t; ξ, τ )

=
(
A0,l(u, x, t) − A0,l(v, x, t)

)
Zu(x − ξ, t; ξ, τ )

+A0,l(v, x, t)

(
Zu(x − ξ, t; ξ, τ ) − Zv(x − ξ, t; ξ, τ )

)
=: I1 + I2. (4.8)

Proceeding with (4.6) and Part I of the lemma, we conclude

|I1| + |I2| ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

.

Likewise, for ν = 2, 3, . . . , we write

�u,l,0(x, t; ξ, τ ) − �v,l,0(x, t; ξ, τ )

=
∫ t

τ

∫

Rn

n∑

ρ=1

{
P̄u,l,ρ(x, t; y, σ )�

u,ρ,0
ν−1 (y, σ ; ξ, τ )

−P̄v,l,ρ(x, t; y, σ )�
v,ρ,0
ν−1 (y, σ ; ξ, τ )

}
dydσ

+
∫ t

τ

∫

Rn

n∑

ρ=1

{
Q̄u,l,ρ(x, t; y, σ )�

u,ρ,1
ν−1 (y, σ ; ξ, τ )

−Q̄v,l,ρ(x, t; y, σ )�
v,ρ,1
ν−1 (y, σ ; ξ, τ )

}
dydσ

=: I1 + I2.

For I1, we rearrange terms as

I1 =
∫ t

τ

∫

Rn

n∑

ρ=1

{
P̄u,l,ρ(x, t; y, σ ) − P̄v,l,ρ(x, t; y, σ )

}
�

u,ρ,0
ν−1 (y, σ ; ξ, τ )dydσ

+
∫ t

τ

∫

Rn

n∑

ρ=1

P̄v,l,ρ(x, t; y, σ )

{
�

u,ρ,0
ν−1 (y, σ ; ξ, τ ) − �

v,ρ,0
ν−1 (y, σ ; ξ, τ )

}
dydσ

=: J1 + J ν−1
2 .

For J1, we use (3.29) and note that the difference P̄u,l,ρ − P̄v,l,ρ satisfies the same
estimates as the difference K̄ u,l,ρ − K̄ v,l,ρ [i.e., (4.7)] to find

|J1| ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

.
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For J2, we start with the case ν = 2 for which we can use (4.8) to obtain an estimate

smaller than the one on J1 by factor (t − τ)
γ
2p . Once we establish the full estimate on

I1 + I2, we will be able to obtain the general statement by induction.
For I2, we write

I2 =
∫ t

τ

∫

Rn

n∑

ρ=1

{
Q̄u,l,ρ(x, t; y, σ ) − Q̄v,l,ρ(x, t; y, σ )

}
�

u,ρ,1
ν−1 (y, σ ; ξ, τ )dydσ

+
∫ t

τ

∫

Rn

n∑

ρ=1

Q̄v,l,ρ(x, t; y, σ )

{
�

u,ρ,1
ν−1 (y, σ ; ξ, τ ) − �

v,ρ,1
ν−1 (y, σ ; ξ, τ )

}
dydσ

=: J1 + J2.

We can estimate the difference Q̄u,l,ρ − Q̄v,l,ρ in amanner very similar to our previous
calculations, and combining this estimate with (3.4) and the first estimate of Part (II),
we find the estimate

|J1| + |J2| ≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

.

This completes the proof of Lemma 4.1. �

5. Nonlinear analysis

Given a function ũ(x, t), let Gũ(x, t; ξ, τ ) denote the Green’s function associated
with (3.1), as constructed in Sect. 3. Fix some function uτ ∈ Cγ (Rn) and define the
nonlinear map (dropping the tilde for notational brevity)

T u :=
∫

Rn
Gu(x, t; ξ, τ )uτ (ξ)dξ. (5.1)

Our goal in this section is to verify that T is an invariant contraction map on the metric
space S defined in (4.1).

We note at the outset that if the coefficients of (3.1) are defined by u ∈ S, then by
virtue of (W1)–(W2)we can conclude (A1)–(A2)will hold. In this way,we can employ
all the lemmas established in Sect. 3. In particular, the Hölder constants associated
with the coefficients of (3.1) will depend on K .

5.1. Invariance

We begin by showing that u ∈ S ⇒ T u ∈ S. First, we see from Lemma 3.6 that
by continuously extending T u in the limit as t → τ+, we have (T u)(x, τ ) = uτ (x).

In order to see that ‖T u‖
C

γ,
γ
2p

< K , we need to consider the three summands of

(4.2) applied to T u. First,

T u(x, t) :=
∫

Rn
Gu(x, t; ξ, τ )uτ (x)dξ +

∫

Rn
Gu(x, t; ξ, τ )(uτ (ξ) − uτ (x))dξ.
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Using Lemmas 3.5 and 3.6, we find that for t − τ sufficiently small

|T (x, t)| ≤ |uτ (x)| + C(t − τ)
γ
2p ,

for some constant C . By taking K sufficiently large, we can ensure

sup
x∈Rn

t∈[τ,T̃ ]

|(T u)(x, t)| <
K

3
.

Next, we have directly from Lemma 3.7 Part (II) that

|(T u)(x1, t) − (T u)(x2, t)| ≤ C̃ |x1 − x2|γ ,

where C̃ does not depend on the Hölder constant associated with the coefficients in
(3.1) and consequently does not depend on K . Accordingly, we can choose K large
enough so that

sup
x1,x2∈Rn ,x1 �=x2

t∈[τ,T̃ ]

|(T u)(x1, t) − (T u)(x2, t)|
|x1 − x2|γ <

K

3
.

Finally, using Lemma 3.7 Part (IV), we find that K can be chosen sufficiently large
so that

sup
x∈Rn

t1,t2∈[τ,T̃ ],t1 �=t2

|(T u)(x, t1) − (T u)(x, t2)|
|t1 − t2|

γ
2p

<
K

3
.

Combining these inequalities, we clearly have

‖T u‖
C

γ,
γ
2p

< K ,

and so T u ∈ S.

5.2. Contraction

The contraction argument consists of establishing three inequalities, associatedwith

the summands in our Cγ,
γ
2p norm. We carry these out in the next three subsections.

5.2.1. Supremum inequality

In this section, we verify that there exists a value 0 < θ < 1 so that

‖T u − T v‖
C

γ,
γ
2p

< θ‖u − v‖
C

γ,
γ
2p

, (5.2)

for all u, v ∈ S.
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We begin by writing, for u, v ∈ S,

T u − T v =
∫

Rn

(
Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ )

)
uτ (ξ)dξ

=
∫

Rn

(
Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ )

)
uτ (x)dξ

+
∫

Rn

(
Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ )

)
(uτ (ξ) − uτ (x))dξ =: I1 + I2.

Using (3.26), we find that

I1 = uτ (x)
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

{
Zu
xρ

(x − y, t; y, σ )�u,ρ,0(y, σ ; ξ, τ )

−Zv
xρ

(x − y, t; y, σ )�v,ρ,0(y, σ ; ξ, τ )

}
dydσdξ

= uτ (x)
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

�Zxρ (u, v)�u,ρ,0(y, σ ; ξ, τ )dydσdξ

+uτ (x)
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

Zv
xρ

(x − y, t; y, σ )��ρ,0(u, v)dydσdξ =: J1 + J2,

where

�Zxρ (u, v) := Zu
xρ

(x − y, t; y, σ ) − Zv
xρ

(x − y, t; y, σ )

��ρ,0(u, v) := �u,ρ,0(y, σ ; ξ, τ ) − �v,ρ,0(y, σ ; ξ, τ ). (5.3)

Using (3.29) and Part (I) of Lemma 4.1, we compute

|J1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t

τ

∫

Rn
(t − σ)

γ−n−1
2p (σ − τ)

− n
2p

×e−c1(
|x−y|2p
t−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p

∫

Rn

∫ t

τ

(t − σ)
γ−1
2p e−c2(

|x−ξ |2p
t−τ

)1/(2p−1)
dσdξ

≤ C3‖u − v‖
C

γ,
γ
2p

(t − τ)
1+ γ−1

2p .

Likewise, for J2 we combine (3.1) with the first estimate in Part (II) of Lemma 4.1 to
obtain precisely the same estimate we found for J1.
For I2, we write

Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ ) = Zu(x − ξ, t; ξ, τ ) − Zv(x − ξ, t; ξ, τ )

+
∫ t

τ

∫

Rn

n∑

ρ=1

{
Zu
xρ

(x − y, t; y, σ )�u,ρ(y, σ ; ξ, τ )

−Zv
xρ

(x − y, t; y, σ )�v,ρ(y, σ ; ξ, τ )

}
dydσ.
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Rearranging terms similarly as in our analysis of I1 and using Lemma 4.1, we can
verify the estimate

∣∣∣∣G
u(x, t; ξ, τ ) − Gv(x, t; ξ, τ )

∣∣∣∣

≤ C‖u − v‖
C

γ,
γ
2p

(t − τ)
γ−n
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

. (5.4)

Integrating, we find

|I2| ≤ C(t − τ)
γ
p ‖u − v‖

C
γ,

γ
2p

.

This establishes the first part of (5.2)

sup
x∈Rn

t∈[τ,T̃ ]

|T u − T v| ≤ θ‖u − v‖
C

γ,
γ
2p

, (5.5)

for T̃ sufficiently small.

REMARK 5.1. We observe for future reference that we have established here that
for any f ∈ Cγ (Rn) (and for t − τ sufficiently small), we have the estimate

∣∣∣∣
∫

Rn

(
Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ )

)
f (ξ)dξ

∣∣∣∣ ≤ C(t − τ)
γ
2p ‖u − v‖

C
γ,

γ
2p

.

5.2.2. �x Inequality

Next, we establish the inequality

sup
x1,x2∈Rn ,x1 �=x2

t∈[τ,T̃ ]

∣∣∣∣

(
T u(x1, t)−T v(x1, t)

)
−

(
T u(x2, t)−T v(x2, t)

)∣∣∣∣

|x1−x2|γ ≤θ‖u−v‖
C

γ,
γ
2p

.

(5.6)

We divide this analysis into two cases, |x1 − x2| ≤ (t − τ)1/(2p) (denoted Case X1)
and |x1 − x2| > (t − τ)1/(2p) (denoted Case X2).
Case X1. |x1 − x2| ≤ (t − τ)1/(2p). We begin by writing

(
T u(x1, t) − T v(x1, t)

)
−

(
T u(x2, t) − T v(x2, t)

)

=
∫

Rn

{(
Gu(x1, t; ξ, τ ) − Gv(x1, t; ξ, τ )

)

−
(
Gu(x2, t; ξ, τ ) − Gv(x2, t; ξ, τ )

)}
uτ (ξ)dξ
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=
∫

Rn

{(
Gu(x1, t; ξ, τ ) − Gv(x1, t; ξ, τ )

)

−
(
Gu(x2, t; ξ, τ ) − Gv(x2, t; ξ, τ )

)}
uτ (x2)dξ

+
∫

Rn

{(
Gu(x1, t; ξ, τ ) − Gv(x1, t; ξ, τ )

)

−
(
Gu(x2, t; ξ, τ ) − Gv(x2, t; ξ, τ )

)}(
uτ (ξ) − uτ (x2)

)
dξ =: I1 + I2.

(5.7)

For I1, we can use (3.26) to see that

I1=uτ (x2)
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

(
�Zxρ �

ρ,0(x1; u, v)−�Zxρ �
ρ,0(x2; u, v)

)
dydσdξ,

(5.8)

where

�Zxρ �
ρ,0(x; u, v) := Zu

xρ
(x − y, t; y, σ )�u,ρ,0(y, σ ; ξ, τ )

−Zv
xρ

(x − y, t; y, σ )�v,ρ,0(y, σ ; ξ, τ ). (5.9)

In the current case (i.e., for |x1 − x2| ≤ (t − τ)1/(2p)), we can divide the interval
[τ, t] into a union of two subintervals [τ, t − 1

2 |x2 − x1|2p] and [t − 1
2 |x2 − x1|2p, t].

We have

I1 = uτ (x2)
∫

Rn

∫ t− 1
2 |x2−x1|2p

τ

∫

Rn

n∑

ρ=1

(
�Zxρ �

ρ,0(x1; u, v)

−�Zxρ �
ρ,0(x2; u, v)

)
dydσdξ

+uτ (x2)
∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn

n∑

ρ=1

(
�Zxρ �

ρ,0(x1; u, v)

−�Zxρ �
ρ,0(x2; u, v)

)
dydσdξ

=: J1 + J2.

For J1, there is no problem applying the Mean Value Theorem to each summand in
the integrand. We obtain expressions of the form

{
�Zxρ �

ρ,0(x1; u, v) − �Zxρ �
ρ,0(x2; u, v)

}

i j

= Dx

{
�Zxρ �

ρ,0(x∗; u, v)

}

i j

· (x1 − x2), (5.10)
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for some vector x∗ = x∗
i j (x1, x2, t, y, σ, ξ, τ ) (depending also on i and j) on the line

between x1 and x2. Proceeding now as in previous calculations, we write

{
�Zxρ �

ρ,0(x∗; u, v)

}

i j

=
{(

Dx Z
u
xρ (x

∗ − y, t; y, σ ) − Dx Z
v
xρ (x

∗ − y, t; y, σ )

)
�u,ρ,0(y, σ ; ξ, τ )

}

i j

+
{
Dx Z

v
xρ (x

∗ − y, t; y, σ )

(
�u,ρ,0(y, σ ; ξ, τ ) − �

v,ρ,0
q j (y, σ ; ξ, τ )

)}

i j

=: K ∗
1 + K ∗

2 . (5.11)

For K ∗
1 , we observe from Lemma 4.1 and using (3.29)

|K ∗
1 | ≤ C1‖u − v‖

C
γ,

γ
2p

(t − σ)
− n+2−γ

2p (σ − τ)
− n

2p

×e−c1(
|x∗−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

. (5.12)

Likewise, for K2 we have

|K ∗
2 | ≤ C1‖u − v‖

C
γ,

γ
2p

(t − σ)
− n+2

2p (σ − τ)
− n−γ

2p

×e−c1(
|x∗−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

. (5.13)

Each of these terms corresponds with a summand in J1, and we denote the full expres-
sion for J1 as J1 = K1 + K2, where K1 comprises terms like K ∗

1 and K2 comprises
terms like K ∗

2 .
Using the argument following (3.31), we find

|K1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t− 1
2 |x2−x1|2p

τ

∫

Rn
(t − σ)

− n+2−γ
2p (σ − τ)

− n
2p

×e−c1(
|x∗−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |x2 − x1|dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p

×
∫

Rn

∫ t− 1
2 |x2−x1|2p

τ

(t − σ)
− 2−γ

2p |x2 − x1|e−c2(
|x2−ξ |2p

t−τ
)1/(2p−1)

dσdξ.

In this case |x2 − x1| ≤ [ 12 (t − σ)] 1
2p , and we obtain the estimate

|K1| ≤ C3|x2 − x1|γ ‖u − v‖
C

γ,
γ
2p

(t − τ)
1− 1

2p ,

which for t − τ small is much better than we require.
A similar argument leads to the same estimate on K2.
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For J2, we cannot apply the Mean Value Theorem, because the associated higher-
order derivatives are not integrable up to t . Instead, we proceed directly, writing J2 =
K1 + K2, where

K1 =
∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn

n∑

ρ=1

(
Zu
xρ

(x1 − y, t; y, σ )�u,ρ,0(y, σ ; ξ, τ )

−Zv
xρ

(x1 − y, t; y, σ )�v,ρ,0(y, σ ; ξ, τ )

)
dyσdξ. (5.14)

We rearrange the summands in the integrand into two terms
(
Zu
xρ

(x1 − y, t; y, σ ) − Zv
xρ

(x1 − y, t; y, σ )

)
�v,ρ,0(y, σ ; ξ, τ )

+Zv
xρ

(x1 − y, t; y, σ )

(
�u,ρ,0(y, σ ; ξ, τ ) − �v,ρ,0(y, σ ; ξ, τ )

)
=: L1 + L2.

(5.15)

Employing now (3.29) and Lemma 4.1, we compute

|L1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn
(t − σ)

− n+1−γ
2p (σ − τ)

− n
2p

×e−c1(
|x1−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p

×
∫

Rn

∫ t

t− 1
2 |x2−x1|2p

(t − σ)
− 1−γ

2p e−c2(
|x1−ξ |2p

t−τ
)1/(2p−1)

dσdξ.

Bearing in mind the limits of σ integration, we obtain the estimate

|L1| ≤ C3‖u − v‖
C

γ,
γ
2p

|x1 − x2|2p−(1−γ ) ≤ C4‖u − v‖
C

γ,
γ
2p

(t − τ)
1− 1

2p |x1 − x2|γ ,

where in obtaining this last inequality, we have used the inequality defining the current

case (|x2 − x1| ≤ (1− τ)
1
2p ). The quantity denoted L2 can be analyzed similarly, and

this completes the analysis of K1. Likewise, we can analyze K2 similarly as K1, since
all that changes is that x1 is replaced by x2. This complete the analysis of J2 and hence
of I1 [from (5.7)].
Turning now to I2, we have

I2 =
∫

Rn

{
�Z(x1; u, v) − �Z(x2; u, v)

}
(uτ (ξ) − uτ (x2))dξ

+
∫

Rn

∫ t

τ

∫

Rn

n∑

ρ=1

{
�Zxρ �

ρ(x1; u, v) − �Zxρ �
ρ(x2; u, v)

}
dydσdξ

=: J1 + J2,
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where �Z and �Zxρ �
ρ are defined similarly as in (5.9).

For J1, we can apply the Mean Value Theorem similarly as in (5.10) to obtain an
estimate of the form

|J1| ≤ C1‖u − v‖
C

γ,
γ
2p

|x2 − x1|
∫

Rn
(t − τ)

− n+1−γ
2p e−c1(

|x∗−ξ |2p
t−τ

)1/(2p−1) |ξ − x2|γ dξ

≤ C2‖u − v‖
C

γ,
γ
2p

|x2 − x1|(t − τ)
− 1−2γ

2p

≤ C3‖u − v‖
C

γ,
γ
2p

|x2 − x1|γ (t − τ)
γ
2p .

For J2, we write

J2 =
∫

Rn

∫ t− 1
2 |x2−x1|2p

τ

∫

Rn

{
�Zxρ �

ρ(x1; u, v) − �Zxρ �
ρ(x2; u, v)

}

×(uτ (ξ) − uτ (x2))dydσdξ

+
∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn

{
�Zxρ �

ρ(x1; u, v) − �Zxρ �
ρ(x2; u, v)

}

×(uτ (ξ) − uτ (x2))dydσdξ

=: K1 + K2.

For K1, we apply the Mean Value Theorem precisely as in (5.10) and (5.11), except
with �u,ρ,0 and �v,ρ,0, respectively, replaced by �u,ρ and �v,ρ . We express the
rearrangement of (5.11) as K1 = L1 + L2, and from Lemmas 4.1 and 3.4, and using
the argument following (3.31) to accommodate the value of x∗, we obtain the estimate

|L1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn
(t − σ)

− n+2−γ
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x1−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |x1 − x2||ξ − x2|γ dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

(t − σ)
− 2−γ

2p (σ − τ)
−1+ 1+γ

2p

×e−c2(
|x2−ξ |2p

t−τ
)1/(2p−1) |x1 − x2||ξ − x2|γ dσdξ.

On this interval |x1 − x2| ≤ [2(t − σ)] 1
2p , and we can write

|L1| ≤ C3‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p |x1 − x2|γ

×
∫

Rn

∫ t

t− 1
2 |x2−x1|2p

(t−σ)
− 1

2p (σ −τ)
−1+ 1+γ

2p e−c2(
|x2−ξ |2p

t−τ
)1/(2p−1) |ξ − x2|dσdξ

≤ C4‖u − v‖
C

γ,
γ
2p

(t − τ)
− n−γ

2p |x1 − x2|γ
∫

Rn
e−c2(

|x2−ξ |2p
σ−τ

)1/(2p−1) |ξ − x2|dξ

≤ C5‖u − v‖
C

γ,
γ
2p

(t − τ)
γ
p |x1 − x2|γ .
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The analysis of L2 is almost identical to that of L1 and gives the same estimate.
This completes the analysis of K1, and we turn to K2, for which we avoid the Mean
Value Theorem. We rearrange terms similarly as in our expressions J1 = K1 + K2

leading into (5.14) and express the right-hand side as K2 = L1(x1)+ L2(x2). We then
further separate these terms as in (5.15), starting with L1 = M1 + M2. For M1, we
employ the estimates of Lemmas 4.1 and 3.4 to obtain the estimate

|M1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

∫

Rn
(t − σ)

− n+1−γ
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x1−y|2p

t−σ
)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |ξ − x2|γ dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t − τ)
− n

2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

(t − σ)
− 1−γ

2p (σ − τ)
−1+ 1+γ

2p

×e−c2(
|x1−ξ |2p

t−τ
)1/(2p−1) |ξ − x2|γ dσdξ.

Over this interval, σ − τ > 1
2 (t − τ), and so, we can compute

|M1| ≤ C3‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ 1+γ−n

2p

∫

Rn

∫ t

t− 1
2 |x2−x1|2p

(t − σ)
− 1−γ

2p

×e−c3(
|x1−ξ |2p

t−τ
)1/(2p−1) |ξ − x2|γ dσdξ

≤ C4‖u − v‖
C

γ,
γ
2p

(t − τ)
−1+ 1+γ−n

2p

∫

Rn
|x1 − x2|2p−1+γ

×e−c4(
|x1−ξ |2p

t−τ
)1/(2p−1) |ξ − x2|γ dξ.

At this point, we use the triangle inequality |ξ − x2| ≤ |ξ − x1| + |x1 − x2|. For the
summand |ξ − x1|, we obtain an estimate by

C5‖u−v‖
C

γ,
γ
2p

(t−τ)
−1+ 1+2γ

2p |x1−x2|2p−1+γ ≤ C6‖u−v‖
C

γ,
γ
2p

(t−τ)
γ
p |x1−x2|γ .

The summand |x1−x2| in our triangle inequality leads to the same estimate, completing
the analysis ofM1. The analysis ofM2 is similar, leading to the same estimate, and this
concludes the analysis of L1. The analysis of L2 is similar to that of L1, concluding
the analysis of K2, which in turn concludes the analysis of J2. Finally, this concludes
the analysis of I2 [from (5.7)], and we have concluded the result for Case X1.
Case X2. |x1 − x2| > (t − τ)1/(2p). In this case, we use the simple inequality

∣∣∣∣

(
T u(x1, t) − T v(x1, t)

)
−

(
T u(x2, t) − T v(x2, t)

)∣∣∣∣

≤
∣∣∣∣T u(x1, t) − T v(x1, t)

∣∣∣∣ +
∣∣∣∣T u(x2, t) − T v(x2, t)

∣∣∣∣

=: I1 + I2.
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According to Remark 5.1,

|I1| ≤ C(t − τ)
γ
p ‖u − v‖

C
γ,

γ
2p

.

In this case (t − τ)
γ
2p ≤ |x1 − x2|γ , and we immediately obtain the inequality

|I1| ≤ C(t − τ)
γ
2p |x1 − x2|γ ‖u − v‖

C
γ,

γ
2p

.

Clearly, I2 can be analyzed similarly, and this completes the analysis of X2. Com-
bining cases X1 and X2, we have established the claimed inequality (5.6).

5.2.3. �t Inequality

Finally, we establish the inequality

sup
t1,t2∈[τ,T̃ ],t1 �=t2

x∈Rn

∣∣∣∣

(
T u(x, t1)−T v(x, t1)

)
−

(
T u(x, t2)−T v(x, t2)

)∣∣∣∣

|t1−t2|
γ
2p

≤θ‖u−v‖
C

γ,
γ
2p

,

(5.16)

for some T̃ sufficiently small and some 0 < θ < 1. Without loss of generality, we
will take t1 ≤ t2.
Case T1. t2 − t1 < t1 − τ . We begin by writing

(
T u(x, t1) − T v(x, t1)

)
−

(
T u(x, t2) − T v(x, t2)

)

=
∫

Rn

{
�G(t1; u, v) − �G(t2; u, v)

}
uτ (x)dξ

+
∫

Rn

{
�G(t1; u, v) − �G(t2; u, v)

}
(uτ (ξ) − uτ (x))dξ

=: I1 + I2, (5.17)

where

�G(t; u, v) := Gu(x, t; ξ, τ ) − Gv(x, t; ξ, τ ). (5.18)

Beginning with I1, we conclude from (3.26)

I1 =
∫

Rn

{ ∫ t1

τ

∫

Rn

n∑

ρ=1

�Zxρ �
ρ,0(t1; u, v)dydσ

−
∫ t2

τ

∫

Rn

n∑

ρ=1

�Zxρ �
ρ,0(t2; u, v)dydσ

}
uτ (ξ)dξ
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=
∫

Rn

{ ∫ t1

τ

∫

Rn

n∑

ρ=1

�Zxρ �
ρ,0(t1; u, v)−�Zxρ �

ρ,0(t2; u, v)

]
dydσ

}
uτ (x)dξ

−
∫

Rn

{ ∫ t2

t1

∫

Rn

n∑

ρ=1

�Zxρ �
ρ,0(t2; u, v)dydσ

}
uτ (ξ)dξ =: J1 + J2, (5.19)

where

�Zxρ �
ρ,0(t; u, v) := Zu

xρ
(x − y, t; y, σ )�u,ρ,0(y, σ ; ξ, τ )

−Zv
xρ

(x − y, t; y, σ )�v,ρ,0(y, σ ; ξ, τ ).

For J1, we write

J1 =
∫

Rn

{ ∫ t1− 1
2 (t2−t1)

τ

∫

Rn

n∑

ρ=1

[
�Zxρ �

ρ,0(t1; u, v)

−�Zxρ �
ρ,0(t2; u, v)

]
dydσ

}
uτ (x)dξ

+
∫

Rn

{∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

[
�Zxρ �

ρ,0(t1; u, v)

−�Zxρ �
ρ,0(t2; u, v)

]
dydσ

}
uτ (x)dξ

=: K1 + K2.

For K1, we can apply the Mean Value Theorem in t to the difference

�Zxρ �
ρ,0(t1; u, v) − �Zxρ �

ρ,0(t2; u, v).

More precisely, similarly as in (5.10), we can express the i j entry of this matrix as

{
Zu

txρ (x − y, t∗; y, σ )�u,ρ,0(y, σ ; ξ, τ )

−Zv
t xρ (x − y, t∗; y, σ )�v,ρ,0(y, σ ; ξ, τ )

}

i j

(t1 − t2), (5.20)

for some value t∗ = t∗(t1, t2, x, y, ξ, σ, τ ) (also depending on i and j) between t1
and t2. As usual, we now rearrange this last expression into convenient differences

{(
Zu

txρ (x − y, t∗; y, σ ) − Zv
t xρ (x − y, t∗; y, σ )

)
�u,ρ,0(y, σ ; ξ, τ )

}

i j

(t1 − t2)

+
{
Zv

t xρ (x − y, t∗; y, σ )

(
�v,ρ,0(y, σ ; ξ, τ ) − �u,ρ,0(y, σ ; ξ, τ )

)}

i j

(t1 − t2).

(5.21)
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We respectively associate these last two summands with termswewill denote L1+L2.
Using Lemma 4.1 and the estimate (3.29), we find (suppressing dependence of t∗ on
q)

|L1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn
(t∗ − σ)

−1− n+1−γ
2p (σ − τ)

− n
2p

×e−c1(
|x1−y|2p
t∗−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
(t2 − t1)dydσdξ.

Over this interval of integration t∗ − σ ≥ 1
2 (t2 − t1), and so we have the inequality

(t∗ − σ)
−1− n+1−γ

2p (t2 − t1) ≤ (t∗ − σ)
− n+1

2p (t2 − t1)
γ
2p .

At the same time,

t1 − σ ≤ t∗ − σ ≤ 3(t1 − σ),

so in all appearances t∗−σ canbe replacedwith t1−σ (with newconstants).Combining
these observations and carrying out the integration over y, we obtain the inequality

|L1| ≤ C2(t2 − t1)
γ
2p ‖u − v‖

C
γ,

γ
2p

(t1 − τ)
− n

2p

×
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

(t1 − σ)
− 1

2p e
−c2(

|x1−ξ |2p
t1−σ

)1/(2p−1)

dσdξ

≤ C3‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p (t1 − τ)

1− 1
2p ,

which is much smaller than our claim. The analysis of L2 is similar, leading to the
same estimate, and this completes the analysis of K1.

For K2, we avoid the Mean Value Theorem, analyzing instead each expression

�Zxρ �
ρ,0(t; u, v)

individually. We express the resulting expression as K2 = L1 + L2, and in both cases,
we use the rearrangement

(
Zu
xρ

(x − y, t j ; y, σ ) − Zv
xρ

(x − y, t j ; y, σ )

)
�u,ρ,0(y, σ ; ξ, τ )

+Zv
xρ

(x − y, t j ; y, σ )

(
�u,ρ,0(y, σ ; ξ, τ ) − �v,ρ,0(y, σ ; ξ, τ )

)
. (5.22)
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For L1, we express the associated integrals as L1 = M1 + M2, and for M1, we obtain
the inequality

|M1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn
(t1 − σ)

− n+1−γ
2p (σ − τ)

− n
2p

×e
−c1(

|x1−y|2p
t1−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1)

dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t1 − τ)
− n

2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

(t1 − σ)
− 1−γ

2p

×e
−c2(

|x1−ξ |2p
t1−τ

)1/(2p−1)

dσdξ.

Carrying out the integration over σ , we obtain the estimate

|M1| ≤ C3‖u − v‖
C

γ,
γ
2p

(t1 − τ)
− n

2p

∫

Rn
(t2 − t1)

1− 1−γ
2p e

−c2(
|x1−ξ |2p

t1−τ
)1/(2p−1)

dξ

≤ C3‖u − v‖
C

γ,
γ
2p

(t2 − t1)
1− 1−γ

2p ≤ C4‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p (t1 − τ)

1− 1
2p ,

where in obtaining this last inequalitywe have observed that we are in the case t2−t1 <

t1 − τ .
The analysis of M2 is similar and leads to the same estimate, and this completes the

analysis of L1. For L2, the only difference is that t1 is replaced by t2, but in this case

t1 − τ ≤ t2 − τ ≤ 2(t1 − τ),

and so we obtain the same estimate with different constants. This completes the analy-
sis of K2, which in turn completes the analysis of J1 [from (5.19)].
For J2, we use (5.22) (with t2) for the integrand and express the resulting summands

as J2 = K1 + K2. Proceeding similarly as in the analysis of M1 just above, we obtain
the same estimate as there. At this point, we have verified

|I1| ≤ C4‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p (t1 − τ)

1− 1
2p .

For I2, we write

I2 =
∫

Rn

(
�Z(t1; u, v) − �Z(t2; u, v)

)
(uτ (ξ) − uτ (x))dξ

+
∫

Rn

∫ t1

τ

∫

Rn

n∑

ρ=1

�Zxρ �
ρ(t1; u, v)(uτ (ξ) − uτ (x))dydσdξ

−
∫

Rn

∫ t2

τ

∫

Rn

n∑

ρ=1

�Zxρ �
ρ(t2; u, v)(uτ (ξ) − uτ (x))dydσdξ

=: J1 + J2. (5.23)
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For J1, we apply the Mean Value Theorem in the form
(

�Z(t1; u, v) − �Z(t2; u, v)

)

i j

=
{
Zu

t (x − y, t∗; ξ, τ ) − Zv
t (x − y, t∗; ξ, τ )

}

i j

(t1 − t2),

for t∗ = t∗(t1, t2, x, y, ξ, τ ) (depending also on i and j) between t1 and t2. Using
Lemma 4.1, we estimate

|J ∗
1 | ≤ C1(t2 − t1)‖u − v‖

C
γ,

γ
2p

∫

Rn
(t∗ − τ)

−1− n−γ
2p e−c1(

|x−y|2p
t∗−τ

)1/(2p−1) |x − ξ |γ dξ,

where J1 comprises terms of the form J ∗
1 . Keeping in mind that we are in the Case

T 1, we have the inequality

t1 − τ ≤ t∗ − τ ≤ 2(t1 − τ),

which allows us to replace t∗ − τ with t1 − τ up to a constant. Upon making this
substitution and integrating, we obtain

|J ∗
1 |≤C2(t2−t1)(t1−τ)

−1+2 γ
2p ‖u−v‖

C
γ,

γ
2p

≤C3(t2−t1)
γ
2p (t1−τ)

γ
2p ‖u−v‖

C
γ,

γ
2p

,

where in obtaining this last inequality, we have used the inequality defining Case T 1.
This completes the analysis of J1 [from (5.23)].
For J2, it is useful to write

J2 =
∫

Rn

∫ t1

τ

∫

Rn

n∑

ρ=1

{
�Zxρ �

ρ(t1; u, v) − �Zxρ �
ρ(t2; u, v)

}

×(uτ (ξ) − uτ (x))dydσdξ

−
∫

Rn

∫ t2

t1

∫

Rn

n∑

ρ=1

�Zxρ (t2; u, v)�ρ(uτ (ξ) − uτ (x))dydσdξ

=: K1 + K2. (5.24)

For K1, we further subdivide the intervals of integration, writing

K1 =
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn

n∑

ρ=1

{
�Zxρ �

ρ

×(t1; u, v) − �Zxρ �
ρ(t2; u, v)

}
(uτ (ξ) − uτ (x))dydσdξ

+
∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

{
�Zxρ �

ρ(t1; u, v) − �Zxρ �
ρ(t2; u, v)

}

×(uτ (ξ) − uτ (x))dydσdξ

=: L1 + L2. (5.25)
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For L1, we apply the Mean Value Theorem as in (5.20), and rearrange the result as
in (5.21) into L1 = M1 + M2. For the resulting M1, we obtain terms of the form

|M∗
1 | ≤ C1‖u − v‖

C
γ,

γ
2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

∫

Rn
(t∗ − σ)

−1− n+1−γ
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x−y|2p
t∗−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
(t2 − t1)|ξ − x |γ dydσdξ.

In this case, we have the inequality

t1 − σ ≤ t∗ − σ ≤ 3(t1 − σ),

so that t∗ − σ is interchangeable with t1 − σ up to a change of constants. In addition,
t2 − t1 ≤ 2(t1 − σ), and we can write

|M∗
1 | ≤ C2‖u − v‖

C
γ,

γ
2p

(t2 − t1)
γ
2p

∫

Rn

∫ t1− 1
2 (t2−t1)

τ

×
∫

Rn
(t1 − σ)

− n+1
2p (σ − τ)

−1− n−1−γ
2p

×e
−c2(

|x−y|2p
t1−σ

)1/(2p−1)

e−c2(
|y−ξ |2p

σ−τ
)1/(2p−1) |ξ − x |γ dydσdξ

≤ C3‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p (t1 − τ)

− n
2p

×
∫

Rn

∫ t1− 1
2 (t2−t1)

τ

(t1 − σ)
− 1

2p (σ − τ)
−1+ 1+γ

2p

×e
−c3(

|x−ξ |2p
t1−σ

)1/(2p−1) |ξ − x |γ dσdξ.

Integrating in both σ and ξ , we conclude

|L∗
1| ≤ C4‖u − v‖

C
γ,

γ
2p

(t2 − t1)
γ
2p (t1 − τ)

γ
2p .

Since M1 comprises terms of form M∗
1 , this completes the analysis of M1. The

analysis of M2 is similar, and so, we have concluded the estimate for L1 [from (5.25)].
For L2, we avoid the Mean Value Theorem, proceeding instead by writing

L2 =
∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

�Zxρ �
ρ(t1; u, v)(uτ (ξ) − uτ (x))dydσdξ

−
∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn

n∑

ρ=1

�Zxρ �
ρ(t2; u, v)(uτ (ξ) − uτ (x))dydσdξ

=: M1 + M2.

For M1, we rearrange �Zxρ �
ρ as

�Zxρ �
ρ(t1; u, v) :=

{
Zu
xρ

(x − ξ, t1; ξ, τ ) − Zv
xρ

(x − ξ, t1; ξ, τ )

}
�u,ρ(y, σ ; ξ, τ )

+Zv
xρ

(x − ξ, t1; ξ, τ )

{
�u,ρ(y, σ ; ξ, τ ) − �v,ρ(y, σ ; ξ, τ )

}
,
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and we use this arrangement to write M1 = N1 + N2.
For N1, we employ the estimates of Lemmas 3.4 and 4.1 to obtain an estimate by

|N1| ≤ C1‖u − v‖
C

γ,
γ
2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

∫

Rn
(t1 − σ)

− n+1−γ
2p (σ − τ)

−1− n−1−γ
2p

×e
−c1(

|x−y|2p
t1−σ

)1/(2p−1)

e−c1(
|y−ξ |2p

σ−τ
)1/(2p−1) |ξ − x |γ dydσdξ

≤ C2‖u − v‖
C

γ,
γ
2p

(t1 − τ)
− n

2p

∫

Rn

∫ t1

t1− 1
2 (t2−t1)

(t1 − σ)
− 1−γ

2p (σ − τ)
−1+ 1+γ

2p

×e
−c2(

|x−ξ |2p
t1−σ

)1/(2p−1) |ξ − x |γ dσdξ.

Over this interval of integration in σ , we have the inequality σ − τ ≥ 1
2 (t1 − τ), and

consequently, the term (σ − τ)
−1− n−1−γ

2p can be replaced with (t1 − τ)
−1− n−1−γ

2p (with
a change of constant). Upon making this replacement and integrating in both σ and ξ ,
we obtain the estimate

|N1| ≤ C3‖u − v‖
C

γ,
γ
2p

(t2 − t1)
1− 1−γ

2p (t1 − τ)
−1+ 1+γ

2p

≤ C4‖u − v‖
C

γ,
γ
2p

(t2 − t1)
γ
2p (t1 − τ)

γ
2p ,

where in obtaining this last inequality, we have used the inequality defining case T 1.
This completes the analysis of N1. The analysis of N2 is similar, and this completes the
analysis of M1. The analysis of M2 is similar to the analysis of M1 (with t2 replacing
t1), and we obtain the same estimate (keeping in mind t2 − τ ≤ 2(t1 − τ) in this case).
This completes the analysis of L2, which in turn completes the analysis of K1 [from
(5.24)].
For K2, we can proceed almost exactly as we did with M1 and M2, except that the

limits on the integration over σ change. We obtain the same estimate we found above
for M1. This concludes the analysis of K2, which concludes the analysis for J2 and in
turn I2 [from (5.17)]. This finishes Case T 1.
Case T2. (t2 − t1) > (t1 − τ). For this case, we will not need to apply the Mean Value
Theorem, and the analysis will be much easier. In particular, we simply estimate

∣∣∣∣

(
T u(x, t1) − T v(x, t1)

)
−

(
T u(x, t2) − T v(x, t2)

)∣∣∣∣

≤
∣∣∣∣T u(x, t1) − T v(x, t1)

∣∣∣∣ +
∣∣∣∣T u(x, t2) − T v(x, t2)

∣∣∣∣ =: |I1| + |I2|.

We now analyze each of these summands on the right-hand side by the general
method we used in the strand (I2-J2-K1-L2) of Case T 1. We obtain the estimates

|I j | ≤ C‖u − v‖
C

γ,
γ
2p

(t j − τ)
γ
p .

In this case t1 − τ ≤ (t2 − t1), and likewise t2 − τ ≤ 2(t2 − t1), and this immediately
gives the claimed estimate (5.16) for T̃ − τ sufficiently small.
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5.3. Regularity

Our estimates from Sects. 5.1 and 5.2 are sufficient by virtue of the Contraction
Mapping Theorem to ensure the existence of a unique solution to the weak formulation
of (1.1). We stress that this construction has been carried out in the context of our
weak assumptions (W1)–(W2), along of course with uniform parabolicity (P). We
summarize our work so far in the following theorem.

THEOREM 5.1. Suppose (1.1) is uniformly parabolic in the sense of (P) that
(W1)–(W2) hold and that for some value τ ∈ [0, T ), uτ (·) ∈ Cγ (R) for some Hölder
index 0 < γ < 1. Then, there exists a value T̃ ∈ (τ, T ), with T̃ − τ possibly small,
so that for any σ ∈ (τ, T̃ ) there exists a weak solution to (1.1)

u ∈ Cγ,
γ
2p (Rn × [0, T̃ ]) ∩ C2p−1+γ,

γ
2p (Rn × [σ, T̃ ]).

Moreover, u is the unique weak solution of (1.1) in Cγ,
γ
2p (Rn × [0, T̃ ]).

In this section, we verify that under the stronger conditions (S1) and (S2), u is
actually a classical solution to (1.1).

We recall that by construction, we can write our weak solution as

u(x, t) =
∫

Rn
G(x, t; ξ, τ )uτ (ξ)dξ, (5.26)

for a function G (previously denoted Gu) that can be expressed as

G(x, t; ξ, τ )= Z(x−ξ, t; ξ, τ )+
∫ t

τ

∫

Rn

n∑

ρ=1

Zxρ (x−y, t; y, σ )�ρ(y, σ ; ξ, τ )dydσ.

Using the estimates of Lemmas 3.1 and 3.4, we readily verify thatG is 2p−1 times
differentiable in x with estimate

|Dα
x G(x, t; ξ, τ )| ≤ C(t − τ)

− n+|α|
2p e−c( |x−ξ |2p

t−τ
)1/(2p−1)

,

for all |α| ≤ 2p − 1. The difficulty arises when we try to put a 2p x derivatives or
one t derivative on G, in which case we must take considerable care with integrability
over [τ, t].

Under assumptions (S1) and (S2), we can differentiate Z with respect to y, and in
particular, we can express the useful relation

d

dyρ
Z(x − y, t; y, σ ) = −Zxρ (x − y, t; y, σ ) + Zyρ (x − y, t; y, σ ), (5.27)

where Zyρ denotes differentiation with respect to yρ only as it appears in the third
place holder. This allows us to express G (after integrating by parts) as

G(x, t; ξ, τ ) = Z(x−ξ, t; ξ, τ )+
∫ t

τ

∫

Rn

n∑

ρ=1

Zyρ (x − y, t; y, σ )�ρ(y, σ ; ξ, τ )dydσ

+
∫ t

τ

∫

Rn

n∑

ρ=1

Z(x − y, t; y, σ )�ρ
yρ (y, σ ; ξ, τ )dydσ. (5.28)
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Of these three summands, Z is already understood, and the third summand is effec-
tively the same term that arises in Friedman’s strong analysis. More precisely, our�ρ

yρ
blows up at the same rate in σ − τ as Friedman’s � (cf (9.4.7) on p. 252 of [1]). We
focus, then, on the second integrand, which we denote as V (x, t; ξ, τ ). In addition,
we write

J (x, t, σ ; ξ, τ ) :=
∫

Rn

n∑

ρ=1

Zyρ (x − y, t; y, σ )�ρ(y, σ ; ξ, τ )dy,

so that

V (x, t; ξ, τ ) =
∫ t

τ

J (x, t, σ ; ξ, τ )dσ.

We begin by verifying that V is 2p times differentiable in x . To begin, we observe
that for t > σ , we can write

Dα
x J (x, t, σ ; ξ, τ ) =

∫

Rn

n∑

ρ=1

Dα
x Zyρ (x − y, t; y, σ )�ρ(y, σ ; ξ, τ )dy.

According to (9.3.11) on p. 249 of [1], we have, for any multi-index α, the estimate

|Dα
x Zyρ (x − y, t; y, σ )| ≤ C(t − σ)

− n+|α|
2p e−c( |x−y|2p

t−σ
)1/(2p−1)

, (5.29)

where we note in particular that the y-differentiation (for y only in the third position)
does not increase the blow-up as t approaches σ . In this way, we can start with the
naive estimate

|Dα
x J (x, t, σ ; ξ, τ )| ≤ C1

∫

Rn
(t − σ)

− n+|α|
2p (σ − τ)

−1− n−1−γ
2p

×e−c1(
|x−y|2p
t−σ

)1/(2p−1)
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1)
dy

≤ C2(t − τ)
− n

2p (t − σ)
− |α|

2p (σ − τ)
−1+ 1+γ

2p

×e−c2(
|x−ξ |2p
t−τ

)1/(2p−1)
. (5.30)

Here, we can pause to observe the fundamental problem that for |α| = 2p, this
estimate is not integrable in σ up to σ = t . In order to remedy this, we obtain an
alternative estimate by writing

Dα
x J (x, t, σ ; ξ, τ ) =

∫

Rn

n∑

ρ=1

Dα
x Zyρ (x − y, t; y, σ )�ρ(x, σ ; ξ, τ )dy

+
∫

Rn

n∑

ρ=1

Dα
x Zyρ (x−y, t; y, σ )

{
�ρ(x, σ ; ξ, τ )−�ρ(y, σ ; ξ, τ )

}
dy = I1+ I2.
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Beginning with I1, we note that, for each summand, �ρ can be pulled out of the
integration. We recall that for any fixed z ∈ R

n , the function Z(x − y, t; z, σ ) is a
Green’s function for the PDE

∂Zik

∂t
(x − ξ, t; z, τ ) =

n∑

l=1

N∑

j=1

∑

|α|=2p−1

Ãi j
α,l(z, t)D

α
x
∂Z jk

∂xl
(x − ξ, t; z, τ ). (5.31)

Since constant vectors in R
n are clearly solutions to this system, we must have the

identities
∫

Rn
Z(x − y, t; z, σ )dy ≡ I ⇒

∫

Rn
Zzρ (x − y, t; z, σ )dy ≡ 0. (5.32)

In this way, we can write
∫

Rn
Dα
x Zzρ (x − y, t; y, σ )dy

=
∫

Rn
Dα
x

(
Zzρ (x − y, t; y, σ ) − Dα

x Zzρ (x − y, t; x, σ )

)
dy,

bearing in mind that the differentiation Dα
x is only with respect to x as it appears in

the first placeholder. According to Lemma 9.3.4 of [1], we have
∣∣∣∣D

α
x Zyρ (x − y, t; y, σ ) − Dα

x Zyρ (x − y, t; x, σ )

∣∣∣∣

≤ C(t − σ)
− n+|α|

2p |y − x |γ e−c( |x−y|2p
t−σ

)1/(2p−1)
,

for some positive constants c and C . We see that
∣∣∣∣
∫

Rn
Dα
x Zzρ (x − y, t; y, σ )dy

∣∣∣∣ ≤ C1(t − σ)
γ−|α|
2p .

In this way,

|I1| ≤ C2(t − σ)
γ−|α|
2p (σ − τ)

−1− n−1−γ
2p e−c2(

|x−ξ |2p
σ−τ

)1/(2p−1)
, (5.33)

for some positive constants c2 and C2.
For I2, we observe that precisely the same analysis that leads to (9.4.17) on p. 255

of [1] leads to the inequality
∣∣∣∣�

ρ(y, σ ; ξ, τ ) − �ρ(x, σ ; ξ, τ )

∣∣∣∣

≤ C1|x − y|β(σ − τ)
−1− n+β−1−γ

2p

{
e−c1(

|y−ξ |2p
σ−τ

)1/(2p−1) + e−c1(
|x−ξ |2p

σ−τ
)1/(2p−1)

}
,

for any 0 < β < γ and some positive constants c1 and C1. Upon integrating, we
immediately see that

|I2| ≤ C2(t − τ)
− n

2p (t − σ)
−1+ β

2p (σ − τ)
−1+ γ+1−β

2p e−c2(
|x−ξ |2p

σ−τ
)1/(2p−1)

, (5.34)
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for some constants c2 and C2.
Now, we evaluate

∫ t

τ

∣∣∣∣D
α
x J (x, t, σ ; ξ, τ )

∣∣∣∣dσ =
∫ τ+t

2

τ

∣∣∣∣D
α
x J (x, t, σ ; ξ, τ )

∣∣∣∣dσ

+
∫ t

τ+t
2

∣∣∣∣D
α
x J (x, t, σ ; ξ, τ )

∣∣∣∣dσ.

For the integration on [τ, τ+t
2 ], we use (5.30), while for integration over [ τ+t

2 , t], we
use (5.33) and (5.34). We find

∫ t

τ

∣∣∣∣D
α
x J (x, t, σ ; ξ, τ )

∣∣∣∣dσ ≤ C(t − τ)
−1− n−1−γ

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
,

for some positive constants c and C .
We have verified that the second summand of G(x, t; ξ, τ ) [in (5.28)] is 2p times

differentiable in x . By analyzing the third summand in a similar way, we conclude
that for each multi-index |α| ≤ 2p, we have the estimate

|Dα
x G(x, t; ξ, τ )| ≤ Cα(t − τ)

− n+|α|
2p e−cα(

|x−ξ |2p
t−τ

)1/(2p−1)
,

for some positive constants cα and Cα . (We note for clarity that the estimates on G are
ultimately determined by those on Z ). This is precisely the same estimate we found
in Lemma 3.5, extended to the broader range |α| ≤ 2p.

Turning now to differentiation with respect to t , we begin by writing (for h > 0
small)

V (x, t + h; ξ, τ ) − V (x, t; ξ, τ ) =
∫ t+h

t
J (x, t + h, σ ; ξ, τ )dσ

+
∫ t

τ

(
J (x, t + h, σ ; ξ, τ ) − J (x, t, σ ; ξ, τ )

)
dσ =: I1 + I2.

For I1, we can analyze J (x, t + h, σ ; ξ, τ ) similarly as we did Dα
x J (in fact, with

less effort), and we find

|J (x, t, t−; ξ, τ )| ≤ C(t − τ)
−1− n−1−γ

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
,

where by J (x, t, t−; ξ, τ ) we mean

lim
σ→t−

J (x, t, σ ; ξ, τ ).

For I2, we use the Mean Value Theorem to write

I2 = h
∫ t

τ

∂ J

∂t
(x, t∗, σ ; ξ, τ )dσ,
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for some t∗ = t∗(t, h, x, ξ, σ, τ ) between t and t + h. We observe from the definition
of J and the observation from (3.11) that time derivatives of Z can be exchanged
for 2p space derivatives that this integrand can be estimated as in our analysis of Dα

x
differentiation. We find

lim
h→0+ | I2

h
| ≤ C(t − τ)

−1− n−1−γ
2p .

Noting that a very similar argument works for h < 0, we conclude the estimate

|Gt (x, t; ξ, τ )| ≤ C(t − τ)
−1− n

2p e−c( |x−ξ |2p
t−τ

)1/(2p−1)
,

for some positive constants c and C .
We can now differentiate u in (5.26) directly (bringing derivatives under the integral

sign), and we see that u ∈ C2p,1(Rn × [σ, T̃ ] for any σ ∈ (τ, T̃ ]. We conclude that u
is in fact a strong solution of our original equation (1.1).

Finally, we obtain the additional Hölder regularity C2p+γ,1+ γ
2p (Rn × [σ, T̃ ] for all

τ < σ ≤ T̃ by an argument similar to the proof of Lemma 4.1, augmented by the
observations used in this section to obtain higher-order regularity.
This concludes the proof of Theorem 1.1. �
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