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Abstract

Working with a general class of linear Hamiltonian systems on intervals with at least

one singular endpoint which can be limit-point, limit-circle, or limit-intermediate, we

show that renormalized oscillation results can be obtained in a natural way through

consideration of the Maslov index associated with appropriately chosen paths of La-

grangian subspaces of C2n
. In the first part of the analysis we associate our linear

Hamiltonian systems with families of well-defined self-adjoint operators, and in the

latter part we employ the renormalized oscillation approach to count the number of

eigenvalues these operators have on fixed intervals (�1,�2) whose closures do not in-

tersect the essential spectrum of the operators. We conclude the analysis with two

illustrative examples, indicating how the theory can be implemented in practice. This

extends previous work by the authors for regular linear Hamiltonian systems.

1 Introduction

We consider linear Hamiltonian systems

Jy
0 = (B0(x) + �B1(x))y; y(x;�) 2 C2n

, n 2 N, (1.1)

where J denotes the standard symplectic matrix

J =

✓
0n �In

In 0n

◆
.

We specify (1.1) on intervals (a, b), with �1  a < b  +1, and we assume throughout
that B0, B1 2 L

1
loc((a, b),C2n⇥2n), and additionally that B0(x) and B1(x) are both self-adjoint

for a.e. x 2 (a, b), with also B1(x) non-negative for a.e. x 2 (a, b). For convenient reference,
we refer to these assumptions as Assumptions (A). In addition, we make the following
Atkinson-type positivity assumption.

(B) If y(·;�) 2 ACloc((a, b),C2n) is any non-trivial solution of (1.1), then

Z d

c

(B1(x)y(x;�), y(x;�))dx > 0,
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for all [c, d] ⇢ (a, b). (Here, ACloc denotes local absolute continuity, and (·, ·) denotes the
usual inner product on C2n.)

Our goal is to associate (1.1) with one or more self-adjoint operators L (see Lemma
1.1 below), and to use renormalized oscillation theory to count the number of eigenvalues
N ([�1,�2)) that each such operator has on a given interval [�1,�2) ⇢ R for which the closure
[�1,�2] has empty intersection with the essential spectrum of the operator. We will formulate
our results for two cases: (1) when x = a is a regular boundary point for (1.1); and (2) when
x = a is a singular boundary point for (1.1). (We take (1.1) to be singular at x = b in both
cases; the case in which (1.1) is regular at both endpoints has been analyzed in [24].) The
case in which (1.1) is regular at x = a corresponds with the following additional assumption.

(A)0 The value a is finite, and for any c 2 (a, b), we have B0, B1 2 L
1((a, c),C2n⇥2n).

Our starting point will be to specify an appropriate Hilbert space to work in, and for this
we follow [31]. We denote by L̃

2
B1
((a, b),C2n) the set of all Lebesgue measureable functions

f defined on (a, b) so that

kfkB1 :=
⇣Z b

a

(B1(x)f(x), f(x))dx
⌘1/2

< 1.

Correspondingly, we denote by ZB1 the subset of L̃2
B1
((a, b),C2n) comprising elements f 2

L̃
2
B1
((a, b),C2n) so that kfkB1 = 0. Our Hilbert space will be the quotient space,

L
2
B1
((a, b),C2n) := L̃

2
B1
((a, b),C2n)/ZB1 .

I.e., two functions f, g 2 L
2
B1
((a, b),C2n) are equivalent if and only if kf � gkB1 = 0. With

this specification, k · kB1 is a norm on L
2
B1
((a, b),C2n). We equip L

2
B1
((a, b),C2n) with the

inner product

hf, giB1 :=

Z b

a

(B1(x)f(x), g(x))dx.

In all of these specifications, we emphasize that B1(x) need not be an invertible matrix.
We now introduce a maximal operator associated with (1.1).

Definition 1.1. (i) We denote by DM the collection of all

y 2 ACloc((a, b),C2n) \ L
2
B1
((a, b),C2n)

for which there exists some f 2 L
2
B1
((a, b),C2n) so that

Jy
0
� B0(x)y = B1(x)f,

for a.e. x 2 (a, b). We will refer to DM as the maximal domain, and we note that f is
uniquely determined in L

2
B1
((a, b),C2n). (If f and g are two functions associated with the

same y 2 DM , then B1(x)(f � g) = 0 for a.e. x 2 (a, b), so that f = g in L
2
B1
((a, b),C2n).)

(ii) We define the maximal operator LM : L2
B1
((a, b),C2n) ! L

2
B1
((a, b),C2n) as the op-

erator with domain DM taking a given y 2 DM to the unique f 2 L
2
B1
((a, b),C2n) guaranteed

by the definition of DM . We note particularly that y(·;�) 2 DM solves (1.1) i↵ and only if
LMy = �y a.e. in (a, b).
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The following terminology will be convenient for the discussion.

Definition 1.2. We say that a solution y(·;�) 2 ACloc((a, b),C2n) of (1.1) lies left in (a, b)
if for any c 2 (a, b), the restriction of y(·;�) to (a, c) is in L

2
B1
((a, c),C2n). Likewise, we say

that a solution y(·;�) 2 ACloc((a, b),C2n) of (1.1) lies right in (a, b) if for any c 2 (a, b),
the restriction of y(·;�) to (c, b) is in L

2
B1
((c, b),C2n). For each fixed � 2 C we will denote

by ma(�) the dimension of the space of solutions to (1.1) that lie left in (a, b), and we will
denote by mb(�) the dimension of the space of solutions to (1.1) that lie right in (a, b).

We will show in Section 2 that if Assumptions (A) and (B) hold, then for any � 2 C\R,
(1.1) admits at least n solutions that lie left in (a, b) and at least n solutions that lie right in
(a, b). According to Theorem V.2.2 in [31], ma(�) and mb(�) are both constant for all � with
Im� > 0, and the same statement is true for Im� < 0. In the event that B0(x) and B1(x)
have real-valued entries for a.e. x 2 (a, b), it is furthermore the case that ma(�) and mb(�)
are both constant for all � 2 C\R. (See our Remark 2.1.) We will allow B0(x) and B1(x) to
have complex-valued entries, but we will make the following consistency assumption:

(C) The values ma(�) and mb(�) are both constant for all � 2 C\R. We denote these
common values ma and mb.

In the event that Assumption (A)0 also holds, it’s clear that ma(�) = 2n for all � 2 C.
In the terminology of our next definition, this means that under Assumption (A)0, (1.1) is
in the limit circle case at x = a. In this case, Assumption (C) holds immediately for x = a,
with ma = 2n.

Definition 1.3. If ma = n, we say that (1.1) is in the limit point case at x = a, and if
ma = 2n, we say that (1.1) is in the limit circle case at x = a. If ma 2 (n, 2n), we say that
(1.1) is in the limit-ma case at x = a. Analogous specifications are made at x = b.

Under Assumptions (A), (B), and (C), and for some fixed �0 2 C\R we will show that
by taking an appropriate selection of solutions that lie left in (a, b), {ua

j (x;�0)}
n
j=1, and an

appropriate selection of solutions that lie right in (a, b), {ub
j(x;�0)}

n
j=1, we can specify the

domain of a self-adjoint restriction of LM , which we will denote L. For the purposes of this
introduction, we will sum this development up in the following lemma, for which we denote
by U

a(x;�0) the matrix comprising the vector functions {ua
j (x;�0)}

n
j=1 as its columns, and

by U
b(x;�0) the matrix comprising the vector functions {ub

j(x;�0)}
n
j=1 as its columns. The

selection process is described in detail in Section 2; see especially the summary in Remark
2.4.

Lemma 1.1. (i) Let Assumptions (A), (B), and (C) hold, and let �0 2 C\R be fixed. Then
there exists a selection of solutions {ua

j (x;�0)}
n
j=1 to (1.1) (with � = �0) that lie left in (a, b),

along with a selection of solutions {ub
j(x;�0)}

n
j=1 to (1.1) (with � = �0) that lie right in (a, b)

so that the restriction of LM to the domain

D := {y 2 DM : lim
x!a+

U
a(x;�0)

⇤
Jy(x) = 0, lim

x!b�
U

b(x;�0)
⇤
Jy(x) = 0}

is a self-adjoint operator. We will denote this operator L.
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(ii) Let Assumptions (A), (A)0, (B), and (C) hold, and let �0 2 C\R be fixed. In
addition, let ↵ 2 Cn⇥2n denote any fixed matrix satisfying rank↵ = n and ↵J↵⇤ = 0. Then
there exists a selection of solutions {u

b
j(x;�0)}

n
j=1 to (1.1) (with � = �0) that lie right in

(a, b) so that the restriction of LM to the domain

D
↵ := {y 2 DM : ↵y(a) = 0, lim

x!b�
U

b(x;�0)
⇤
Jy(x) = 0}

is a self-adjoint operator. We will denote this operator L
↵.

In order to set some notation and terminology for this discussion, we make the following
standard definitions.

Definition 1.4. We denote by ⇢(L) the usual resolvent set

⇢(L) := {� 2 C : (L� �I)�1 : L2
B1
((a, b),Cn) ! L

2
B1
((a, b),Cn)

is a bounded linear operator},

and we denote by �(L) the spectrum of L, �(L) := C\⇢(L). In addition, we define the point
spectrum of L to the be collection of eigenvalues,

�p(L) := {� 2 C : Ly = �y for some y 2 D\{0}},

and we define the essential spectrum of L, denoted �ess(L) to be the collection of all � 2 C
so that � /2 ⇢(L) and � is not an isolated eigenvalue of L with finite multiplicity. Finally,
we define the discrete spectrum of L to be �discrete(L) = �(L)\�ess(L). We will use precisely
the same definitions for L

↵, with D replaced by D
↵.

Our primary tool for this analysis will be the Maslov index, and as a starting point for
a discussion of this object, we define what we will mean by a Lagrangian subspace of C2n.

Definition 1.5. We say ` ⇢ C2n is a Lagrangian subspace of C2n if ` has dimension n and

(Ju, v) = 0, (1.2)

for all u, v 2 `. In addition, we denote by ⇤(n) the collection of all Lagrangian subspaces of
C2n, and we will refer to this as the Lagrangian Grassmannian.

Remark 1.1. Following the convention of Arnol’d’s foundational paper [3], the notation
⇤(n) is often used to denote the Lagrangian Grassmannian associated with R2n. Our expec-
tation is that it can be used in the current setting of C2n without confusion. We note that the
Lagrangian Grassmannian associated with C2n has been considered by a number of authors,
including (ordered by publication date) Bott [10], Kostrykin and Schrader [28], Arnol’d [4],
and Schulz-Baldes [43, 44]. It is shown in all of these references that ⇤(n) is homeomorphic
to the set of n ⇥ n unitary matrices U(n), and in [43, 44] the relationship is shown to be
di↵eomorphic. It is also shown in [43] that the fundamental group of ⇤(n) is isomorphic to
the integers Z.
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Any Lagrangian subspace of C2n can be spanned by a choice of n linearly independent
vectors in C2n. We will generally find it convenient to collect these n vectors as the columns
of a 2n ⇥ n matrix X, which we will refer to as a frame for `. Moreover, we will often
coordinatize our frames as X =

�
X
Y

�
, where X and Y are n⇥ n matrices. Following [17] (p.

274), we specify a metric on ⇤(n) in terms of appropriate orthogonal projections. Precisely,
let Pi denote the orthogonal projection matrix onto `i 2 ⇤(n) for i = 1, 2. I.e., if Xi denotes
a frame for `i, then Pi = Xi(X⇤

iXi)�1X⇤
i . We take our metric d on ⇤(n) to be defined by

d(`1, `2) := kP1 � P2k,

where k · k can denote any matrix norm. We will say that a path of Lagrangian subspaces
` : I ! ⇤(n) is continuous provided it is continuous under the metric d.

Suppose `1(·), `2(·) denote continuous paths of Lagrangian subspaces `i : I ! ⇤(n),
i = 1, 2, for some parameter interval I (not necessarily closed and bounded). The Maslov
index associated with these paths, which we will denote Mas(`1, `2; I), is a count of the
number of times the paths `1(·) and `2(·) intersect, counted with both multiplicity and
direction. (In this setting, if we let t⇤ denote the point of intersection (often referred to
as a crossing point), then multiplicity corresponds with the dimension of the intersection
`1(t⇤)\ `2(t⇤); a precise definition of what we mean in this context by direction will be given
in Section 3.)

In order to formulate our results for the case in which (1.1) is regular at x = a, we
introduce the 2n⇥ n matrix solution X↵(x;�) to the initial value problem

JX0
↵ = (B0(x) + �B1(x))X↵

X↵(a;�) = J↵
⇤
.

(1.3)

Under our assumptions (A), (A)0, we can conclude that for each � 2 C, X↵(·;�) 2

ACloc([a, b),C2n⇥n). In addition, X↵ 2 C([a, b) ⇥ C,C2n⇥n), and X↵(x; ·) is analytic in
�. (See, for example, [53].) As shown in [21], for each pair (x,�) 2 [a, b) ⇥ R, X↵(x;�)
is the frame for a Lagrangian subspace of C2n, which we will denote `↵(x;�). (In [21], the
authors make slightly stronger assumptions on B0(x) and B1(x), but their proof carries over
immediately into our setting.)

For the frame associated with the right endpoint, we let [�1,�2], �1 < �2, be such that
[�1,�2] \ �ess(L↵) = ;. In Section 2, we will show that for each � 2 [�1,�2], there exists a
2n⇥ n matrix solution Xb(x;�) to the ODE

JX0
b =(B0(x) + �B1(x))Xb

lim
x!b�

U
b(x;�0)

⇤
JXb(x;�) = 0,

(1.4)

where the matrix U
b(x;�0) is described in Lemma 1.1 (and the paragraph leading into that

lemma). In addition, we will check that for each pair (x,�) 2 [a, b) ⇥ [�1,�2], Xb(x;�) is
the frame for a Lagrangian subspace of C2n, which we will denote `b(x;�), and we will also
check that `b 2 C([a, b)⇥ [�1,�2],⇤(n)).

In Section 4, we will establish the following theorem.
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Theorem 1.1. Let Assumptions (A), (A)0, (B), and (C) hold, and assume that for some
pair �1,�2 2 R, �1 < �2, we have �ess(L↵) \ [�1,�2] = ;. If `↵(·;�1) and `b(·;�2) denote
the paths of Lagrangian subspaces of C2n constructed just above, and N

↵([�1,�2)) denotes a
count of the number of eigenvalues L

↵ has on the interval [�1,�2), then

N
↵([�1,�2)) � Mas(`↵(·;�1), `b(·;�2); [a, b)). (1.5)

If additionally �1,�2 /2 �p(L↵), then we have equality in (1.5).

Remark 1.2. In Theorem 1.1,

Mas(`↵(·;�1), `b(·;�2); [a, b)) := lim
c!b�

Mas(`↵(·;�1), `b(·;�2); [a, c]),

and part of the assertion is that this limit exists.

In the case that (A)0 doesn’t hold, so that (1.1) is singular at x = a, we let [�1,�2],
�1 < �2, be such that [�1,�2] \ �ess(L) = ;. We will show in Section 2 that for each
� 2 [�1,�2] there exists a 2n⇥ n matrix solution Xa(x;�) to the ODE

JX0
a =(B0(x) + �B1(x))Xa

lim
x!a+

U
a(x;�0)

⇤
JXa(x;�) = 0, (1.6)

where the matrix U
a(x;�0) is described in Lemma 1.1 (and the paragraph leading into that

lemma). In addition, we will check that for each pair (x,�) 2 (a, b) ⇥ [�1,�2], Xa(x;�)
is the frame for a Lagrangian subspace of C2n, which we will denote `a(x;�), and that
`a 2 C((a, b)⇥ [�1,�2],⇤(n)).

In Section 4, we will establish the following theorem.

Theorem 1.2. Let Assumptions (A), (B), and (C) hold, and assume that for some pair
�1,�2 2 R, �1 < �2, we have �ess(L) \ [�1,�2] = ;. If `a(·;�1) and `b(·;�2) denote the paths
of Lagrangian subspaces of C2n constructed just above, and N ([�1,�2)) denotes a count of
the number of eigenvalues L has on the interval [�1,�2), then

N ([�1,�2)) � Mas(`a(·;�1), `b(·;�2); (a, b)). (1.7)

If additionally �1,�2 /2 �p(L), then we have equality in (1.7).

Remark 1.3. In Theorem 1.2, Mas(`a(·;�1), `b(·;�2); (a, b)) is computed by taking a limit
in Mas(`a(·;�1), `b(·;�2); [c1, c2]) as c1 ! a

+ and c2 ! b
�, and part of the assertion is that

this double limit exists.

In order to relate our results to previous work on renormalized oscillation theory, we
observe that in some cases the Maslov index can be expressed as a sum of nullities for certain
evolving matrix Wronskians. To understand this, we first specify the following terminology:
for two paths of Lagrangian subspaces `1, `2 : I ! ⇤(n), we say that the evolution of the pair
`1, `2 is monotonic provided all intersections occur in the same direction. If the intersections
all correspond with the positive direction, then we can compute

Mas(`1, `2; I) =
X

t2I

dim(`1(t) \ `2(t)).
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Suppose X1(t) =
�
X1(t)
Y1(t)

�
and X2(t) =

�
X2(t)
Y2(t)

�
respectively denote frames for Lagrangian

subspaces of C2n, `1(t) and `2(t). Then we can express this last relation as

Mas(`1, `2; I) =
X

t2I

dimker(X1(t)
⇤
JX2(t)).

(See Lemma 2.2 of [24].)
In the current setting, the necessary monotonicity follows similarly as in the proof of

Theorem 1.1 in [24]. With this observation, we obtain the following theorem.

Theorem 1.3. Under the assumptions of Theorem 1.1 (without the requirement �1,�2 /2

�p(L↵)), we can write

Mas(`↵(·;�1), `b(·;�2); [a, b)) =
X

x2[a,b)

dimkerX↵(x;�1)
⇤
JXb(x;�2),

and under the assumptions of Theorem 1.2 (without the requirement �1,�2 /2 �p(L)), we can
write

Mas(`a(·;�1), `b(·;�2); (a, b)) =
X

x2(a,b)

dimkerXa(x;�1)
⇤
JXb(x;�2).

In the remainder of this section, we briefly review the origins of renormalized oscillation
theory, placing our result in the broader context, and we also set out a plan for the paper
and summarize our notational conventions. For the first, renormalized oscillation theory was
introduced in [19] in the context of single Sturm-Liouville equations, and was subsequently
developed in [50, 51] for Jacobi operators and Dirac operators. (See [45] for an expository
discussion of these early developments.) More recently, Gesztesy and Zinchenko have ex-
tended these early results to the setting of (1.1) in the limit point case [20], though with a
set-up and approach substantially di↵erent from the ones employed in the current analysis.
In [24], the authors of the current analysis showed in the context of regular linear Hamil-
tonian systems that renormalized oscillation results can be established in a natural way via
the Maslov index. (See also [15] for a related analysis that employs the notion of oscilla-
tion numbers and [16] for a study of the connection between oscillation numbers and the
Maslov index.) The current analysis seems to be the first e↵ort to extend the renormalized
oscillation approach to the limit circle and limit intermediate cases.

In order to understand the motivation behind this approach, we can contrast it with
standard oscillation theory, exemplified by Sturm’s oscillation theorem for Sturm-Liouville
operators [46]. As a specific point of comparison, we will use a (standard) oscillation result
that the authors have obtained for Sturm-Liouville equations on the half-line, (a, b) = (0,1),
where x = 0 is a regular boundary point (see [25]). If we focus on the case of Dirichlet
boundary conditions at x = 0 (i.e., ↵ = (I 0)), then Theorem 1.1 of [25] asserts (under
fairly strong assumptions on the coe�cient matrices associated with the Sturm-Liouville
operator), that the number of eigenvalues that the Sturm-Liouville operator has below some
�⇤ 2 R can be expressed as

Mor(L;�⇤) =
X

x>0

dimkerXb(x;�⇤), (1.8)
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where Xb denotes the first n⇥ n coordinate in the frame Xb. We see immediately, that the
number of eigenvalues between �1 and �2 can be computed in this case as

N ([�1,�2)) =
X

x>0

dimkerXb(x;�2)�
X

x>0

dimkerXb(x;�1). (1.9)

The di�culty with this approach is twofold. First, for conditions other than Dirichlet,
the right-hand side of (1.8) becomes a count of signed intersections between `b(x;�⇤) and
`↵(0;�⇤), and so cannot be expressed as a sum of nullities; and second, if the strong coe�-
cient conditions of [25] are dropped, the right-hand side of (1.8) can become infinite, even
in the Dirichlet case. Consequently, (1.9) can take the form 1�1, even in cases for which
N ([�1,�2)) is finite. Indeed, this latter observation seems to have been the primary motiva-
tion for the approach [19, 45]. (See Section 5 for a specific implementation of our theory in
this setting.)

Plan of the paper. In Section 2, we prove Lemma 1.1, establishing the existence and
nature of the family of self-adjoint operators L and L

↵ that will be the objects of our study.
In Section 3, we provide some background on the Maslov index, along with some results
we’ll need for the subsequent analysis. In Section 4, we prove Theorems 1.1 and 1.2, and in
Section 5 we conclude with two specific illustrative applications.

Notational conventions. Throughout the analysis, we will use the notation k · kB1 and
h·, ·iB1 respectively for our weighted norm and inner product. In the case that (1.1) is regular
at x = a, we will denote the associated map of Lagrangian subspaces by `↵, and we will
denote by X↵ a specific corresponding map of frames. Likewise, if (1.1) is singular at x = a,
we will use `a and Xa, and for x = b (always assumed singular), we will use `b and Xb. In
order to accommodate limits associated with our bilinear form, we will adopt the notation

(Jy, z)a := lim
x!a+

(Jy(x), z(x)); (Jy, z)b := lim
x!b�

(Jy(x), z(x)),

along with
(Jy, z)ba := (Jy, z)b � (Jy, z)a.

Here and throughout, we use (·, ·) to denote the usual inner product in C2n.

2 The Self-Adjoint Operators L and L
↵

In this section, we adapt the approach of [34, 35, 36] (as developed in Chapter VI of [31]) to
the setting of (1.1).

2.1 Niessen Subspaces

We begin by fixing some c 2 (a, b), and letting �(x;�) denote the fundamental matrix
specified by

J�0 = (B0(x) + �B1(x))�; �(c;�) = I2n. (2.1)

For pairs (x,�) 2 (a, b)⇥ C\R we define the 2n⇥ 2n matrix

A(x;�) :=
1

2Im�
�(x;�)⇤(J/i)�(x;�),
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observing that for each fixed � 2 C\R, we have A(·;�) 2 ACloc((a, b),C2n⇥2n), with A(x;�)
self-adjoint for all (x,�) 2 (a, b) ⇥ C\R. It follows that the eigenvalues {µj(x;�)}2nj=1 of
A(x;�) can be ordered so that µj(x;�)  µj+1(x;�) for all j 2 {1, 2, . . . , 2n� 1}.

Since A(c;�) = 1
2Im�(J/i), we see that A(c;�) has an eigenvalue with multiplicity n at

�
1

2|Im�| and an eigenvalue with multiplicity n at + 1
2|Im�| . According to Theorem II.5.4 in [27],

we can understand the motion of the eigenvalues {µj(x;�)}2nj=1 as x increases (or decreases)
by evaluating the matrix A

0(x;�), where prime denotes di↵erentiation with respect to x. To
this end, we find by direct calculation that

A
0(x;�) = �(x;�)⇤B1(x)�(x;�) (2.2)

for all (x,�) 2 (a, b) ⇥ C\R. We can conclude from Assumption (B) that each eigenvalue
µj(x;�) must be continuous and non-decreasing as a function of x. In addition, since the
fundamental matrix �(x;�) is invertible for all (x,�) 2 (a, b)⇥ C\R, we see that A(x;�) is
likewise invertible, and so none of its eigenvalues can cross 0 for any x 2 (a, b). We conclude
that for all (x,�) 2 (a, b)⇥ C\R, we have the ordering

µ1(x;�)  µ2(x;�)  · · ·  µn(x;�) < 0 < µn+1(x;�)  µn+2(x;�)  ...  µ2n(x;�). (2.3)

As x decreases toward x = a, these eigenvalues are all non-increasing, and so in particular
the limits

µ
a
j (�) := lim

x!a+
µj(x;�)

exist for each j 2 {n + 1, n + 2, . . . , 2n}. Moreover, for each j 2 {1, 2, . . . , n}, these same
limits either exist or diverge to �1. Likewise, as x increases toward x = b, the eigenvalues
{µj(x;�)}2nj=1 are all non-decreasing, and so in particular the limits

µ
b
j(�) := lim

x!b�
µj(x;�)

exist for each j 2 {1, 2, . . . , n}. Moreover, for each j 2 {n + 1, n + 2, . . . , 2n}, these same
limits either exist or diverge to +1.

Lemma 2.1. Let Assumptions (A) and (B) hold, and let � 2 C\R be fixed. Then the
dimension ma(�) of the subspace of solutions to (1.1) that lie left in (a, b) is precisely the
number of eigenvalues µj(x;�) 2 �(A(x;�)) that approach a finite limit as x ! a

+. Likewise,
the dimension mb(�) of the subspace of solutions to (1.1) that lie right in (a, b) is precisely
the number of eigenvalues µj(x;�) 2 �(A(x;�)) that approach a finite limit as x ! b

�.

Proof. We will carry out the proof for mb(�); the proof for ma(�) is similar. Integrating
(2.2), we see that A(x;�) can alternatively be expressed as

A(x;�) =
1

2Im�
(J/i) +

Z x

c

�(⇠;�)⇤B1(⇠)�(⇠;�)d⇠. (2.4)

We temporarily let m̃b(�) denote the number of eigenvalues of A(x;�) that have a finite

limit as x ! b
�; precisely, this will be the set {µj(x;�)}

m̃b(�)
j=1 . Let {vj(x;�)}

m̃b(�)
j=1 denote

an orthonormal basis of eigenvectors associated with these eigenvalues, noting that these

9



elements may not be continuous in x. We can take any element vj(x;�) from this collection
and multiply (2.4) on the left by vj(x;�)⇤ and on the right by vj(x;�) to obtain

vj(x;�)
⇤
{A(x;�)�

1

2Im�
(J/i)}vj(x;�) =

Z x

c

vj(x;�)
⇤�(⇠;�)⇤B1(⇠)�(⇠;�)vj(x;�)d⇠. (2.5)

The left-hand side of this last relation is

µj(x;�)�
1

2iIm�
vj(x;�)

⇤
Jvj(x;�),

and so is bounded above for all x 2 (c, b). Now, consider any sequence of values {xk}
1
k=1 so

that xk increases to b as k ! 1. The corresponding sequence {vj(xk;�)}1k=1 lies on the unit
sphere in C2n (a compact set), so there exists a subsequence {xki}

1
i=1 so that {vj(xki ;�)}

1
i=1

converges to some vbj(�) on the unit sphere in C2n. We claim that it follows that the functions

{�(x;�)vbj(�)}
m̃b(�)
j=1 lie right in (a, b). To see this, we assume to the contrary that for some

j 2 {1, 2, . . . , m̃b(�)},

Z b

c

v
b
j(�)

⇤�(⇠;�)⇤B1(⇠)�(⇠;�)v
b
j(�)d⇠ = 1.

In this case, if we are given any constant K > 0, we can take b
0
2 (c, b) su�ciently close to

b (su�ciently large if b = 1) so that

Z b0

c

v
b
j(�)

⇤�(⇠;�)⇤B1(⇠)�(⇠;�)v
b
j(�)d⇠ > K. (2.6)

By a straightforward calculation, we can check that by taking xki su�ciently close to b

(su�ciently large if b = 1), we can make

Z b0

c

vj(xki ;�)
⇤�(⇠;�)⇤B1(⇠)�(⇠;�)vj(xki ;�)d⇠

as close as we like to the integral in (2.6). In particular, we can find a positive integer N

su�ciently large so that for all i � N , we have

Z b0

c

vj(xki ;�)
⇤�(⇠;�)⇤B1(⇠)�(⇠;�)vj(xki ;�)d⇠ � K.

Possibly by taking N even larger, we can ensure that xki > b
0, and it follows from our

Assumption (B) that
Z xki

c

vj(xki ;�)
⇤�(⇠;�)⇤B1(⇠)�(⇠;�)vj(xki ;�)d⇠

>

Z b0

c

vj(xki ;�)
⇤�(⇠;�)⇤B1(⇠)�(⇠;�)vj(xki ;�)d⇠ � K.

Since K can be taken as large as we like, this contradicts the boundedness ensured by (2.5).

We conclude that indeed the functions {�(x;�)vbj(�)}
m̃b(�)
j=1 lie right in (a, b), and since the set

10



{v
b
j(�)}

m̃b(�)
j=1 retains orthonormality in the limit, we see that the functions {�(x;�)vbj(�)}

m̃b(�)
j=1

are linearly independent as solutions of (1.1).
On the other hand, if we allow {vj(x;�)}2nj=m̃b(�)+1 to denote an orthonormal basis of

eigenvectors associated with the eigenvalues of A(x;�) that do not have finite limits as
x ! b

�, then we find that the functions {�(x;�)vbj(�)}
2n
m̃b(�)+1 form a basis for a (2n�m̃b(�))-

dimensional subspace of solutions of (1.1) that do not lie right in (a, b).

Combining these observations, we conclude that {�(x;�)vbj(�)}
m̃b(�)
j=1 comprises a basis for

the subspace of all solutions to (1.1) that lie right in (a, b), and so in particular, m̃b(�) =
mb(�).

Lemma 2.1 suggests that we need to better understand the nature of the eigenvalues of
A(x;�). As a starting point, we observe the relation

�(x; �̄)⇤(J/i)�(x;�) = (J/i), (2.7)

for all x 2 (a, b), which can be verified by showing that the quantity on the left is independent
of x (its derivative is zero) and evaluating at x = c, where �(c;�) = I2n. (Although we are
currently working with the case Im � 6= 0, (2.7) holds for � 2 R as well.) Since (J/i) is
self-adjoint, we likewise have (by taking an adjoint on both sides of (2.7))

�(x;�)⇤(J/i)�(x; �̄) = (J/i), (2.8)

and this relation allows us to write

�(x; �̄) = (J/i)(�(x;�)⇤)�1(J/i).

In this way, we see that we can write

A(x; �̄) = �
1

2Im�
�(x; �̄)⇤(J/i)�(x; �̄)

= �
1

2Im�
(J/i)(�(x;�))�1(J/i)(J/i)(J/i)(�(x;�)⇤)�1(J/i)

= �
1

(2Im�)2
(J/i)A(x;�)�1(J/i).

Upon subtracting a term ⇢I from both sides of this last relation (for any ⇢ 2 R), we obtain
the relation

A(x; �̄)� ⇢I = �⇢(J/i)A(x;�)�1
{A(x;�) +

1

⇢(2Im�)2
I}(J/i). (2.9)

These considerations allow us to conclude the following lemma, adapted from Theorem
VI.2.1 of [31].

Lemma 2.2. Let Assumption (A) hold (not necessarily Assumption (B)). For any � 2 C\R,
a value ⇢ 2 R is an eigenvalue of A(x; �̄) if and only if the value �

1
⇢(2Im�)2 is an eigenvalue
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of A(x;�). It follows immediately that if we order the eigenvalues of A(x;�) according to
(2.3), and order the eigenvalues of A(x; �̄) similarly, then we have

µj(x; �̄) = �
1

(2Im�)2µn+j(x;�)
; j = 1, 2, . . . , n;

µj(x; �̄) = �
1

(2Im�)2µj�n(x;�)
; j = n+ 1, n+ 2, . . . , 2n.

Moreover, for j = 1, 2, . . . , n, if vj(x; �̄) is an eigenvector of A(x; �̄) associated with eigen-
value µj(x; �̄), then

vn+j(x;�) = (J/i)vj(x; �̄)

is an eigenvector of A(x;�) associated with eigenvalue µn+j(x;�). Likewise, for j = n +
1, n + 2, . . . , 2n, if vj(x; �̄) is an eigenvector of A(x; �̄) associated with eigenvalue µj(x; �̄),
then

vj�n(x;�) = (J/i)vj(x; �̄)

is an eigenvector of A(x;�) associated with eigenvalue µj�n(x;�).

Similarly as in the proof of Lemma 2.1, we can use compactness of the unit sphere in
C2n to associate limiting vectors {vbj(�)}

2n
j=1 and {v

b
j(�̄)}

2n
j=1 respectively with the eigenvectors

{vj(x;�)}2nj=1 and {vj(x; �̄)}2nj=1. These limiting vectors naturally inherit both orthonormality
and the relations of Lemma 2.2,

v
b
n+j(�) = (J/i)vbj(�̄); j = 1, 2, . . . , n

v
b
j�n(�) = (J/i)vbj(�̄); j = n+ 1, n+ 2, . . . , 2n,

(2.10)

with precisely the same statements holding for the limit x ! a
+ with the superscript b

replaced by the superscript a.
We note for later use that for any indices j 2 {1, 2, . . . , n}, k 2 {1, 2, . . . , 2n}, we can use

(2.10) to see that

v
b
j(�̄)

⇤
Jv

b
k(�) = ((J/i)vbn+j(�))

⇤
Jv

b
k(�) = v

b
n+j(�)

⇤(J/i)Jvbk(�)

= iv
b
n+j(�)

⇤
v
b
k(�) = i�

k
n+j,

(2.11)

where �kn+j is a Kroenecker delta function, and the final equivalence is due to orthonormality.
Likewise, for any indices j 2 {n + 1, n + 2, . . . , 2n}, k 2 {1, 2, . . . , 2n}, we see from (2.10)
that

v
b
j(�̄)

⇤
Jv

b
k(�) = ((J/i)vbn+j(�))

⇤
Jv

b
k(�) = v

b
j�n(�)

⇤(J/i)Jvbk(�)

= iv
b
j�n(�)

⇤
v
b
k(�) = i�

k
j�n.

(2.12)

For j = 1, 2, . . . , n, we set

y
b
j(x;�) = �(x;�)v

b
j(�)

z
b
j(x;�) = �(x;�)v

b
n+j(�).

(2.13)

It’s clear from our construction that y
b
j(·;�) lies right in (a, b) for each j 2 {1, 2, . . . , n},

while z
b
j(·;�) lies right in (a, b) if and only if µb

n+j(�) is finite. We have seen that the total
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number of the values {µb
j(�)}

2n
j=1 that are finite is mb(�), and we will also find it convenient

to introduce the value rb(�) := mb(�)� n. Following [34, 35, 36], for each j 2 {1, 2, . . . , n},
we define the two-dimensional space

N
b
j (�) := Span{ybj(·;�), z

b
j(·;�)}, (2.14)

and following [31] we refer to the collection {N
b
j (�)}

n
j=1 as the Niessen subspaces at b. Ac-

cording to our labeling convention, the Niessen subspaces {N b
j (�)}

rb(�)
j=1 all satisfy dimN

b
j (�)\

L
2
B1
((c, b),C2n) = 2, while the remaining Niessen subspaces {N b

j (�)}
n
rb(�)+1 satisfy dimN

b
j (�)\

L
2
B1
((c, b),C2n) = 1. (Here, c continues to be any value c 2 (a, b).)
We see from Lemma 2.2 that as x increases to b, we will have µj(x; �̄) ! +1 if and

only if µj�n(x;�) ! 0. In this way, the values mb(�) and mb(�̄) are both determined by
the eigenvalues of A(x;�) as x ! b

�. A similar statement holds at x = a. We emphasize,
however, that the values mb(�) and mb(�̄) do not necessarily agree. This is precisely why
we need our consistency Assumption (C). As noted in the Introduction, under Assumption
(C) we will denote the mutual value of mb(�) and mb(�̄) by mb, and we will also denote the
mutual value of rb(�) and rb(�̄) by rb.

Remark 2.1. We note that if the matrices B0(x) and B1(x) have real-valued entries so that
B0(x) + �B1(x) = B0(x)+ �̄B1(x), then we will have �(x;�) = �(x; �̄), and correspondingly
A(x;�) = A(x; �̄). In this case, for each j 2 {1, 2, . . . , 2n},

µj(x;�) = µj(x;�) = µj(x; �̄). (2.15)

In particular, ma(�) = ma(�̄) and mb(�) = mb(�̄), and so our Assumption (C) will hold.

In the next part of our development, the ratios {µj(x;�)/µn+j(x;�)}nj=1 will have an
important role, and we emphasize that Assumption (C) becomes crucial at this point. To
see this, we first observe from Lemma 2.2 the relation

µj(x; �̄)

µn+j(x; �̄)
= �

1
(2Im�)2µn+j(x;�)

1
(2Im�)2µj(x;�)

=
µj(x;�)

µn+j(x;�)
. (2.16)

For j = rb(�) + 1, . . . , n, we have

lim
x!b�

µn+j(x;�) = 1; =) lim
x!b�

µj(x; �̄) = 0,

and so both sides of (2.16) approach 0 as x ! b
�. On the other hand, for j = 1, . . . , rb(�),

we have
lim
x!b�

µn+j(x;�) = µ
b
n+j(�); =) lim

x!b�
µj(x; �̄) = µ

b
j(�̄),

where the values µ
b
n+j(�) and µ

b
j(�̄) are both non-zero real numbers, and so do not fully

determine the limits of (2.16) as x ! b
�. In particular, in order to determine these limits,

we require either the limit of µn+j(x; �̄) or the limit of µj(x; b) as x ! b
�. Precisely the

same statements hold with � replaced by �̄, so for j = 1, . . . , rb(�̄), we have

lim
x!b�

µn+j(x; �̄) = µ
b
n+j(�̄); =) lim

x!b�
µj(x;�) = µ

b
j(�),
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where the values µb
n+j(�̄) and µ

b
j(�) are both non-zero real numbers. We can conclude that

if rb(�) = rb(�̄), then the ratios {µj(x;�)/µn+j(x;�)}
rb(�)
j=1 will all have real non-zero limits

as x ! b
�.

Working now under Assumption (C), we choose n solutions of (1.1) that lie right in (a, b),
taking precisely one from each Niessen subspace N

b
j (�) in the following way. First, for each

j 2 {1, 2, . . . , rb}, we let �j(�) be any complex number on the circle

|�
b
j (�)| =

q
�µ

b
j(�)/µ

b
n+j(�),

where as described just above, these ratios cannot be 0, and we set

u
b
j(x;�) = y

b
j(x;�) + �

b
j (�)z

b
j(x;�).

Next, for each j 2 {rb + 1, rb + 2, . . . , n}, we set

u
b
j(x;�) = y

b
j(x;�).

Correspondingly, we will denote by {r
b
j(�)}

n
j=1 the vectors specified so that u

b
j(x;�) =

�(x;�)rbj(�) for each j 2 {1, 2, . . . , n}. Precisely, this means that

r
b
j(�) = v

b
j(�) + �

b
j (�)v

b
n+j(�), j 2 {1, 2, . . . , rb},

r
b
j(�) = v

b
j(�), j 2 {rb + 1, rb + 2, . . . , n}.

We can now collect the vectors {rbj(�)}
n
j=1 into a frame

Rb(�) =
�
r
b
1(�) r

b
2(�) . . . r

b
n(�)

�
. (2.17)

In addition to the above specifications, for the Niessen subspaces {N
b
j (�)}

rb
j=1, it will

be useful to introduce notation for elements linearly independent to the {u
b
j(x;�)}

rb
j=1. For

each j 2 {1, 2, . . . , rb}, we take any complex number �j(�) so that |�j(�)| = |�j(�)| but
�j(�) 6= �j(�), and we define the Niessen complement to u

b
j(x;�) to be

v
b
j(x;�) = y

b
j(x;�) + �

b
j(�)z

b
j(x;�). (2.18)

With this notation in place, we can adapt Theorem VI.3.1 from [31] to the current setting.

Lemma 2.3. Let Assumptions (A), (B) and (C) hold, and let the Niessen elements {ub
j(x;�)}

n
j=1

and the Niessen complements {v
b
j(x;�)}

rb
j=1 be specified as above. Then the following hold:

(i) For each j, k 2 {1, 2, . . . , n},

(Jub
j(·;�), u

b
k(·;�))b = 0.

(ii) For each j 2 {1, 2, . . . , n}, k 2 {1, 2, . . . , rb},

(Jub
j(·;�), v

b
k(·;�))b =

(
0 j 6= k


b
j = 2iIm�(µb

j(�) + �
b
j(�)�

b
j (�)µ

b
n+j(�)) 6= 0 j = k.
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Proof. See Theorem VI.3.1 in [31]. We note here only two key points: (1) We require
Assumption (C) in order to ensure that bj 6= 0; and (2) in anticipation of Lemma 2.4, we
are introducing the notation

(Ju, v)b := lim
x!b�

(Ju(x), v(x)).

Claim 2.1. Let Assumptions (A), (B), and (C) hold, and suppose the Niessen elements
for (1.1) are chosen to be

u
b
j(x;�) = �(x;�)(v

b
j(�) + �

b
j (�)v

b
n+j(�)), j 2 {1, 2, . . . , rb}

v
b
j(x;�) = �(x;�)(v

b
j(�) + �

b
j(�)v

b
n+j(�)), j 2 {1, 2, . . . , rb}

u
b
j(x;�) = �(x;�)v

b
j(�), j 2 {rb + 1, rb + 2, . . . , n},

with �
b
j (�) and �

b
j(�) specified just above (in particular, as well-defined non-zero values).

Then the Niessen elements for (1.1) with � replaced by �̄ can be chosen to be

u
b
j(x; �̄) = �(x; �̄)(v

b
j(�̄) + �

b
j (�̄)v

b
n+j(�̄)), j 2 {1, 2, . . . , rb}

v
b
j(x; �̄) = �(x; �̄)(v

b
j(�̄) + �

b
j(�̄)v

b
n+j(�̄)), j 2 {1, 2, . . . , rb}

u
b
j(x; �̄) = �(x; �̄)v

b
j(�̄), j 2 {rb + 1, rb + 2, . . . , n},

with �b
j (�̄) = ��

b
j (�) and �

b
j(�̄) = ��

b
j(�) for all j 2 {1, 2, . . . rb}.

Proof. This statement follows almost entirely from our labeling conventions, and the only
part that we will explicitly check is the final assertion that we can take �b

j (�̄) = ��
b
j (�) and

�
b
j(�̄) = ��

b
j(�). For this, we observe from (2.16) that

µ
b
j(�̄)

µ
b
n+j(�̄)

= �

1
(2Im�)2µb

n+j(�)

1
(2Im�)2µb

j(�)

=
µ
b
j(�)

µ
b
n+j(�)

,

and consequently

|�
b
j (�̄)| =

q
�µ

b
j(�̄)/µ

b
n+j(�̄) = |�

b
j (�)|.

Since we can take �b
j (�̄) to be any complex number with this modulus, we can set �b

j (�̄) =

��
b
j (�), and subsequently we are justified in choosing �bj(�̄) = ��

b
j(�).

Claim 2.2. Let the Assumptions and notation of Claim 2.1 hold, and let Rb(�) denote the
matrix defined in (2.17). If Rb(�̄) denotes the matrix defined in (2.17) with � replaced by �̄
and the Niessen elements described in Claim 2.1, then

Rb(�̄)⇤JRb(�) = 0.
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Proof. First, for j, k 2 {1, 2, . . . , rb}, we have

r
b
j(�̄)

⇤
Jr

b
k(�) = (vbj(�̄)

⇤ + �
b
j (�̄)v

b
n+j(�̄)

⇤)J(vbk(�) + �
b
k(�)v

b
n+k(�))

= v
b
j(�̄)

⇤
Jv

b
k(�) + �

b
k(�)v

b
j(�̄)

⇤
Jv

b
n+k(�)

+ �
b
j (�̄)v

b
n+j(�̄)

⇤
Jv

b
k(�) + �

b
j (�̄)�

b
k(�)v

b
n+j(�̄)

⇤
v
b
n+k(�)

=

(
0 j 6= k

i(�b
k(�) + �

b
k(�̄)) j = k,

where in obtaining the final inequality we’ve used the relations (2.11) and (2.12). Recalling
our convention from Claim 2.1, we see that we in fact have

r
b
j(�̄)

⇤
Jr

b
k(�) = 0, 8 j, k 2 {1, 2, . . . , rb}.

Next, for j 2 {1, 2, . . . , rb}, k 2 {rb + 1, rb + 2, . . . , n}, we have

r
b
j(�̄)

⇤
Jr

b
k(�) = (vbj(�̄)

⇤ + �
b
j (�̄)v

b
n+j(�̄)

⇤)Jvbk(�) = 0

where again we’ve used the relations (2.11) and (2.12). The cases j 2 {rb +1, rb +2, . . . , n},
k 2 {1, 2, . . . , rb} and j, k 2 {rb + 1, rb + 2, . . . , n} can be handled similarly.

With appropriate labeling, statements analogous to Lemma 2.3 and Claims 2.1 and 2.2
can be established with b replaced by a.

2.2 Properties of L and L
↵

Turning now to consideration of the operators L and L
↵, we will take as our starting point

the following formulation of Green’s identity for our maximal operator LM .

Lemma 2.4 (Green’s Identity). Let Assumptions (A) hold, and let LM be the maximal
operator specified in Definition 1.1. Then for any y, z 2 DM , we have

hLMy, ziB1 � hy,LMziB1 = (Jy, z)ba, (2.19)

where
(Jy, z)ba = (Jy, z)b � (Jy, z)a,

with
(Jy, z)a := lim

x!a+
(Jy(x), z(x)),

(Jy, z)b := lim
x!b�

(Jy(x), z(x))

(for which the limits are well-defined). In particular, if y and z satisfy LMy = �y and
LMz = �z then

2iIm�hy, ziB1 = (Jy, z)ba. (2.20)
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Proof. To begin, we take any y, z 2 DM , and we let f, g 2 L
2
B1
((a, b),C2n) respectively

denote the uniquely defined functions so that LMy = f and LMz = g. By definition of DM ,
this means that we have the relations

Jy
0
� B0(x)y = B1(x)f

Jz
0
� B0(x)z = B1(x)g,

for a.e. x 2 (a, b). We compute the C2n inner product

(B1LMy, z) = (B1f, z) = (Jy0 � B0y, z) = (Jy0, z)� (y, B0z), a.e. x 2 (a, b),

where in obtaining the final equality we have used our assumption that B0(x) is self-adjoint
for a.e. x 2 (a, b). Likewise,

(B1y,LMz) = (B1y, g) = (y, B1g) = (y, Jz0 � B0z) = (y, Jz0)� (y, B0z), a.e. x 2 (a, b).

Subtracting the latter of these relations from the former, we see that

d

dx
(Jy, z) = (B1LMy, z)� (B1y,LMz).

For any c, d 2 (a, b), c < d, we can integrate this last relation to see that

(Jy(d), z(d))� (Jy(c), z(c)) =

Z d

c

(B1(x)LMy(x), z(x))dx�

Z d

c

(B1(x)y(x),LMz(x))dx.

If we allow d to remain fixed, then since y, z 2 L
2
B1
((a, b),C2n) we see that the limit

(Jy, z)a := lim
c!a+

(Jy(c), z(c))

is well-defined. In particular, we can write

(Jy(d), z(d))� (Jy, z)a =

Z d

a

(B1(x)LMy(x), z(x))dx�

Z d

a

(B1(x)y(x),LMz(x))dx.

If we now take d ! b
�, we obtain precisely (2.19). Relation (2.20) is an immediate conse-

quence of (2.19).

We turn next to the identification of appropriate domains D and D
↵ on which the re-

spective restrictions of LM are self-adjoint. This development is adapted from Chapter 6 in
[38], and we begin by making some preliminary definitions. We set

Dc := {y 2 DM : y has compact support in (a, b)},

and we denote by Lc the restriction of LM to Dc. We can show, as in Theorem 3.9 of [53]
that L⇤

c = LM , and from Theorem 3.7 of that same reference (adapted to the current setting)
we know that Dc is dense in L

2
B1
((a, b),C2n).
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Remark 2.2. The minimal operator L0 associated with LM is the closure of Lc. We know
from Theorem 8.6 in [52] that Lc has a self-adjoint extension if and only if its defect indices
�±(Lc) agree, where

�±(Lc) := dim ran(Lc ⌥ iI)? = dimker(LM ± iI).

In addition, we know from Theorem 7.1 of [53] that

dimker(LM ± iI) = ma(⌥i) +mb(⌥i)� 2n.

Our Assumption (C) assures us that ma(i) = ma(�i) and mb(i) = mb(�i) so that ��(Lc) =
�+(Lc). I.e., under Assumption (C) the defect indices agree, so Lc has a self-adjoint exten-
sion.

For any � 2 C\R, we let {ub
j(x;�)}

n
j=1 denote a selection of Niessen elements as described

in Claim 2.1, and we denote by U b(x;�) the 2n⇥nmatrix comprising the vectors {ub
j(x;�)}

n
j=1

as its columns. Likewise we let {u
a
j (x;�)}

n
j=1 denote a collection of Niessen elements that

can similarly be specified in association with x = a, and we denote by U
a(x;�) the 2n ⇥ n

matrix comprising the vectors {u
a
j (x;�)}

n
j=1 as its columns. Next, we verify that we can

construct functions {ũ
a
j (x;�)}

n
j=1 and {ũ

b
j(x;�)}

n
j=1 so that for each j 2 {1, 2, . . . , n} we

have ũ
a
j (·;�), ũ

b
j(·;�) 2 DM , and moreover

ũ
a
j (x;�) =

(
u
a
j (x;�) near x = a

0 near x = b
; ũ

b
j(x;�) =

(
0 near x = a

u
b
j(x;�) near x = b.

(2.21)

To this end, we use the following lemma from [48], which is proven (with minor changes) as
Lemma 3.1 in [49].

Lemma 2.5 (Lemma 3.1 in [48]). For any [a1, b1] ⇢ (a, b), a1 < b1, let Da1,b1,M denote
the maximal domain as specified in Definition 1.1, except with (a, b) replaced by (a1, b1) and
ACloc((a, b),C2n) replaced by AC([a1, b1],C2n). Then for every given pair v1, v2 2 C2n, there
exists y 2 Da1,b1,M so that y(a1) = v1 and y(b1) = v2.

In order to construct ũ
a
j (x;�), we fix any [a1, b1] ⇢ (a, b), a1 < b1, and use Lemma 2.5

to find y 2 Da1,b1,M so that y(a1) = u
a
j (a1;�) and y(b1) = 0. By definition of Da1,b1,M ,

there exists a corresponding f 2 L
2
B1
((a1, b1),C2n) so that Jy

0
� B0(x)y = B1(x)f for a.e.

x 2 (a1, b1). Then we can set

ũ
a
j (x;�) :=

8
><

>:

u
a
j (x;�) x 2 (a, a1]

y(x;�) x 2 (a1, b1)

0 x 2 [b1, b).

Since u
a
j (x;�) lies left in (a, b), ua

j (·;�) 2 ACloc((a, b),C2n), and y(·;�) 2 AC([a1, b1],C2n),
we see that

ũ
a
j (·;�) 2 L

2
B1
((a, b),C2n) \ ACloc((a, b),C2n).
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In addition, if we set

f̃(x;�) :=

8
><

>:

�u
a
j (x;�) x 2 (a, a1)

f(x;�) x 2 (a1, b1)

0 x 2 (b1, b),

then f̃(·;�) 2 L
2
B1
((a, b),C2n) and Jũ

a 0
j � B0(x)ũa

j = B1(x)f̃ for a.e. x 2 (a, b), so ũ
a
j (·;�) 2

DM . We can proceed similarly for the elements {ũb
j(x;�)}

n
j=1.

For some fixed �0 2 C\R, we now specify the domain

D�0 := Dc + Span
n
{ũ

a
j (·;�0)}

n
j=1, {ũ

b
j(·;�0)}

n
j=1

o
, (2.22)

and we denote by L�0 the restriction of LM to D�0 .

Theorem 2.1. Let Assumptions (A), (B) and (C) hold. Then the operator L�0 is essen-
tially self-adjoint, and so in particular, L := L�0 = L

⇤
�0

is self-adjoint. The domain D of L
is

D = {y 2 DM : lim
x!a+

U
a(x;�0)

⇤
Jy(x) = 0, lim

x!b�
U

b(x;�0)
⇤
Jy(x) = 0}. (2.23)

Remark 2.3. The identification of self-adjoint extensions of Lc is taken up more fully in the
papers and book by Krall [29, 30, 31], and in the series of papers by Sun and Shi [47, 48, 49].
Nonetheless, our formulation of Theorem 2.1 takes a di↵erent form, tailored to our analysis,
than the associated theorems in these references. In addition, our proof of Theorem 2.1
will serve to set up some notation and relations that we will find useful in the subsequent
discussion.

Proof of Theorem 2.1. First, we check that L�0 is symmetric. Using (2.19), we immediately
see that for any y, z 2 Dc we have

hL�0y, ziB1 � hy,L�0ziB1 = (Jy, z)ba = 0.

and we can similarly use (2.19) along with the identities (for y 2 Dc)

(Jy, ũa
j )

b
a = 0, (Jy, ũb

j)
b
a = 0, (Jũa

j , ũ
b
k)

b
a = 0,

for all j, k 2 {1, 2, . . . , n} (following from support of the elements in all cases). It remains to
show that

(Jũa
j , ũ

a
k)

b
a = 0 and (Jũb

j, ũ
b
k)

b
a = 0, (2.24)

but these identities are immediate from Lemma 2.3 (along with the analogous statement
associated with x = a), so symmetry is established.

Next, we’ll show that L�0 is essentially self-adjoint. According to Theorem 5.21 in [54],
it su�ces to show that for some (and hence for all) � 2 C\R,

ran(L�0 � �I) = L
2
B1
((a, b),C2n), and ran(L�0 � �̄I) = L

2
B1
((a, b),C2n). (2.25)

Since we can proceed with any � 2 C\R, we can take �0 from (2.22) as our choice. This is
what we’ll do, though for notational convenience we will denote this value by � for the rest
of this proof.
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We will show that

ran(L�0 � �I)? = {0}, and ran(L�0 � �̄I)? = {0}, (2.26)

from which (2.25) is clear, since

L
2
B1
((a, b),C2n) = ran(L�0 � �I)? � ran(L�0 � �I), (2.27)

and likewise with � replaced by �̄.
Starting with the second relation in (2.26), we suppose that for some u 2 L

2
B1
((a, b),C2n),

h(L�0 � �̄I) , uiB1 = 0 for all  2 D�0 , and our goal is to show that this implies that u = 0.
First, if we restrict to  2 Dc, then we have

h(Lc � �̄I) , uiB1 = 0, 8 2 Dc. (2.28)

This relation implies that u 2 dom((Lc � �̄I)⇤) (= DM), so we’re justified in writing

h , (LM � �I)uiB1 = 0, 8 2 Dc. (2.29)

Since Dc is dense in L
2
B1
((a, b),C2n), we can conclude that u must satisfy (LM � �I)u = 0.

Next, we also have the relation

h(L�0 � �̄I) , uiB1 = 0, 8 2 Span
n
{ũ

a
j}

n
j=1, {ũ

b
j}

n
j=1

o
. (2.30)

For each j 2 {1, 2, . . . , n}, ũb
j 2 DM , and we’ve already established that u 2 DM , so we can

apply Green’s identity (2.19) to see that

h(L�0 � �̄I)ũb
j, uiB1 = hũ

b
j, (LM � �I)uiB1 + (Jũb

j, u)
b
a. (2.31)

Since (LM � �I)u = 0, we see that (Jũb
j, u)

b
a = 0. In addition, since ũ

b
j is zero near x = a,

we have (Jũb
j, u)a = 0, and consequently we can conclude (Jũb

j, u)b = 0. That is,

lim
x!b�

u(x)⇤Jũb
j(x;�) = 0.

If we take the adjoint of this relation, and recall that ũb
j is identical to u

b
j for x near b, then

we can express this limit in our preferred form

lim
x!b�

u
b
j(x;�)

⇤
Ju(x) = 0.

This last relation is true for all j 2 {1, 2, . . . , n}, and a similar relation holds near x = a.
We can summarize these observations with the following limits

lim
x!a+

U
a(x;�)⇤Ju(x) = 0,

lim
x!b�

U
b(x;�)⇤Ju(x) = 0.

(2.32)

We would like to show the following: the first of these relations ensures that u can be
expressed as a linear combination of the columns of Ua(·;�), while the second ensures that
u can be expressed as a linear combination of the columns of U b(·;�).
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Here, u 2 DM and LMu = �u, so u must be a linear combination of the Niessen elements
that lie left in (a, b), and at the same time, u must be a linear combination of the Niessen
elements that lie right in (a, b). If we focus on the case x = b, our labeling scheme sets
{N

b
j (�)}

rb
j=1 to be the Niessen subspaces satisfying dimN

b
j (�) \ L

2
B1
((c, b),C2n) = 2 and sets

{N
b
j (�)}

n
j=rb+1 to be the Niessen subspaces satisfying dimN

b
j (�)\L

2
B1
((c, b),C2n) = 1. Here,

we recall that rb = mb�n, where mb denotes the dimension of the space of solutions to (1.1)
that lie right in (a, b).

The elements {ub
j(x;�)}

rb
j=1 and {v

b
j(x;�)}

rb
j=1 are as described in Claim 2.1, and by con-

struction, the collection {{u
b
j(x;�)}

n
j=1, {v

b
j(x;�)}

rb
j=1} is a basis for the space of solutions to

(1.1) that lie right in (a, b), so we can write

u(x) =
nX

j=1

cj(�)u
b
j(x;�) +

rbX

j=1

dj(�)v
b
j(x;�),

for some appropriate scalar functions (of �) {cj(�)}nj=1, {dj(�)}
rb
j=1. The boundary operator

Bb(�)u := lim
x!b�

U
b(x;�)⇤Ju(x)

annihilates the elements {ub
j(x;�)}

n
j=1, so we immediately see that

Bb(�)u =
rbX

j=1

dj(�)Bb(�)v
b
j(·;�).

According to Lemma 2.3, we have

(Bb(�)v
b
j(·;�))i =

(
0 i 6= j


b
j 6= 0 i = j.

In this way, we see that

Bb(�)u = (d1(�)1 . . . drb(�)rb 0 0 . . . 0)T ,

and this can only be identically 0 if dj(�) = 0 for all j 2 {1, 2, . . . , rb}. We conclude that
there exists a ⇣b(�) 2 Cn so that u(x) = U

b(x;�)⇣b(�) for all x 2 (a, b), and similarly we can
check that there exists a ⇣a(�) 2 Cn so that u(x) = U

a(x;�)⇣a(�) for all x 2 (a, b). This
allows us to compute, using (2.20),

2iIm �kuk
2
B1

= (Ju, u)ba = (Ju, u)b � (Ju, u)a

= (JU b
⇣
b
, U

b
⇣
b)b � (JUa

⇣
a
, U

a
⇣
a)a = 0.

We conclude from Atkinson positivity (i.e., Assumption (B)) that u = 0 in L
2
B1
((a, b),C2n),

and this establishes the second relation in (2.26).
We now turn to the first relation in (2.26). For this, we suppose that for some u 2

L
2
B1
((a, b),C2n), h(L�0 � �I) , uiB1 = 0 for all  2 D�0 , and our goal is to show that this
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implies that u = 0. First, precisely as in the previous case, we can conclude that we must
have u 2 DM , and LMu = �̄u, and continuing as with the previous case, we next find that

lim
x!a+

U
a(x;�)⇤Ju(x) = 0,

lim
x!b�

U
b(x;�)⇤Ju(x) = 0.

(2.33)

In this case, u solves the ODE system

Ju
0 = (B0(x) + �̄B1(x))u, (2.34)

so in particular there exists some vector ⇣(�̄) 2 C2n so that

u(x) = �(x; �̄)⇣(�̄),

where �(x; �̄) denotes a fundamental matrix solution for (2.34) with �(c; �̄) = I2n. Recalling
that U b(x;�) = �(x;�)Rb(�), this allows us to compute

U
b(x;�)⇤Ju(x) = Rb(�)⇤�(x;�)⇤J�(x; �̄)⇣(�̄) = Rb(�)⇤J⇣(�̄),

where we’ve used (from (2.7)) the relation

�(x;�)⇤J�(x; �̄) = J.

In this way, we see that we can only have

lim
x!b�

U
b(x;�)⇤Ju(x) = 0

if
Rb(�)⇤J⇣(�̄) = 0. (2.35)

The n ⇥ 2n matrix Rb(�)⇤ has rank n, with corresponding nullity n, and we know from
Claim 2.2 that the kernel of Rb(�)⇤ is spanned by the columns of JRb(�̄). We see that (2.35)
can only hold if ⇣(�̄) 2 colspanRb(�̄), and in this case there exists a vector ⇣b(�̄) 2 Cn so
that ⇣(�̄) = Rb(�̄)⇣b(�̄), and consequently u(x) = �(x; �̄)⇣(�̄) = U

b(x; �̄)⇣b(�̄). Likewise, we
must have u(x) = U

a(x; �̄)⇣a(�̄) for some ⇣a(�̄) 2 Cn. Since u 2 DM satisfies LMu = �̄u,
(2.20) becomes

�2iIm �kuk
2
B1

= (Ju, u)ba
= (JU b(·; �̄)⇣b(�̄), U b(·; �̄)⇣b(�̄))b � (JUa(·; �̄)⇣a(�̄), Ua(·; �̄)⇣a(�̄))a.

(2.36)

By construction, the columns of Ua(x; �̄) are Niessen elements for (1.1) with � replaced by
�̄, and similarly for U b(x; �̄), so we can conclude from Lemma 2.3 (applied with � replaced
by �̄) that the two quantities on the right-hand side of (2.36) are both 0. In this way, we
see that kukB1 = 0 and so u = 0 in L

2
B1
((a, b),C2n). This establishes the second identity in

(2.26).
Next, we characterize the operator L, along with its domain D = dom(L). First, we have

Lc ⇢ L�0 =) L
⇤
�0

⇢ L
⇤
c ,
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and since L
⇤
�0

= L and L
⇤
c = LM , we see that L ⇢ LM . This leaves only the question of

what additional restrictions we have on D (in addition to the requirements of DM). Here,

D = {u 2 DM : there exists v 2 L
2
B1
((a, b),C2n)

so that hL�0 , uiB1 = h , viB1 for all  2 D�0}.

Let u 2 DM . For all  2 Dc, we can immediately write

hL�0 , uiB1 = hLc , uiB1 = h ,LMuiB1 = h , viB1 , (v = LMu),

so in particular there are no additional restrictions on D. On the other hand, for any
j 2 {1, 2, . . . , n}, we have Green’s Identity

hL�0ũ
a
j , uiB1 = hũ

a
j ,LMuiB1 � (Jũa

j , u)a, (2.37)

where we’ve recalled that ũa
j is 0 near x = b. We require (Jũa

j , u)a = 0, and since this must
be true for all j 2 {1, 2, . . . , n}, we obtain the additional condition

lim
x!a+

U
a(x;�)⇤Ju(x) = 0.

(Here, we’re using the fact that D ⇢ DM to ensure that LMu is the only candidate for v.)
Proceeding similarly for x = b, we obtain additionally

lim
x!b�

U
b(x;�)⇤Ju(x) = 0.

We’ve now exhausted the elements from D�0 , so these are the only possible additional con-
straints imposed on D. This completes the proof.

By essentially identical considerations, we can establish a similar theorem for L↵. In this
case, we introduce solutions {u↵

j (x;�)}
n
j=1 to (1.1) initialized so that if U↵(x;�) denotes the

2n ⇥ n matrix comprising the elements {u↵
j (x;�)}

n
j=1 as its columns, then U

↵(a;�) = J↵
⇤.

We now fix some �0 2 C\R, and specify the domain

D
↵
�0

:= Dc + Span
n
{ũ

↵
j (·;�0)}

n
j=1, {ũ

b
j(·;�0)}

n
j=1

o
. (2.38)

We denote by L
↵
�0

the restriction of LM to D
↵
�0
.

Theorem 2.2. Let Assumptions (A), (A)0, (B), and (C) hold. Then the operator L
↵
�0

is
essentially self-adjoint, and so in particular, L↵ := L

↵
�0

= (L↵
�0
)⇤ is self-adjoint. The domain

D
↵ of L↵ is

D
↵ = {y 2 DM : ↵y(a) = 0, lim

x!b�
U

b(x;�0)
⇤
Jy(x) = 0}. (2.39)

Remark 2.4. In conjunction with Lemma 1.1, we summarize the developments of Sections
2.1 and 2.2. In order to specify the operator L, we make a selection of Niessen elements
{u

a
j (x;�)}

n
j=1 and {u

b
j(x;�)}

n
j=1 as described in Claim 2.1, and we denote by U

a(x;�) the
matrix comprising the vector functions {u

a
j (x;�)}

n
j=1 as its columns, and by U

b(x;�) the
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matrix comprising the vector functions {u
b
j(x;�)}

n
j=1 as its columns. Then L is obtained

from the maximal operator LM by imposing the boundary conditions

lim
x!a+

U
a(x;�)⇤Jy(x) = 0; and lim

x!b�
U

b(x;�)⇤Jy(x) = 0,

and L
↵ is obtained from the maximal operator L

↵
M by imposing the boundary conditions

↵y(a) = 0; and lim
x!b�

U
b(x;�)⇤Jy(x) = 0.

We conclude this subsection with some additional observations about the nature of the
self-adjoint operator L, beginning with a remark about the boundary conditions specified in
our definition of D in Theorem 2.1. On the surface, there appear to be n conditions at each
of x = a and x = b, which we could specify as

lim
x!a+

u
a
k(x;�0)

⇤
Jy(x) = 0; lim

x!b�
u
b
k(x;�0)

⇤
Jy(x) = 0, 8 k 2 {1, 2, . . . , n}.

We check, however, in the following claim that for any y 2 DM , the first condition holds
automatically for all k 2 {ra+1, . . . , n}, while the second holds automatically for all k 2 {rb+
1, . . . , n}. This means that in specifying D, we only genuinely impose ra conditions at x = a

and rb conditions at x = b. Moreover, the conditions imposed at x = a correspond precisely
with the Niessen elements {u

a
k(x;�0)}

ra
k=1 corresponding with respective Niessen subspaces

{N
a
k (�0)}

ra
k=1 for which dimN

a
k (�0)\L

2
B1
((a, c),C2n) = 2, and likewise the conditions imposed

at x = b correspond precisely with the Niessen elements {ub
k(x;�0)}

rb
k=1 corresponding with

respective Niessen subspaces {N
b
k(�0)}

rb
k=1 for which dimN

b
k(�0) \ L

2
B1
((c, b),C2n) = 2. It

follows that we can equivalently specify the domain D from Theorem 2.1 as

D =
n
y 2 DM : lim

x!a+
u
a
k(x;�0)

⇤
Jy(x) = 0, 8 k 2 {1, 2, . . . , ra},

lim
x!b�

u
b
k(x;�0)

⇤
Jy(x) = 0, 8 k 2 {1, 2, . . . , rb}

o
.

Claim 2.3. Suppose Assumptions (A), (B), and (C) hold, and fix any �0 2 C\R. If
{u

b
k(x;�0)}

n
k=rb+1 is a choice of Niessen elements as specified in Claim 2.1, and y is any

element of the maximal domain DM , then

lim
x!b�

u
b
k(x;�0)

⇤
Jy(x) = 0, 8 k 2 {rb + 1, . . . , n}.

Likewise, if {ua
k(x;�0)}

n
k=ra+1 is a choice of Niessen elements specified similarly as in Claim

2.1, and y is any element of the maximal domain DM , then

lim
x!a+

u
a
k(x;�0)

⇤
Jy(x) = 0, 8 k 2 {ra + 1, . . . , n}.

Proof. Since y 2 DM , we have that there exists f 2 L
2
B1
((a, b),C2n) so that LMy = f , which

we can express as
(LM � �0I)y = f � �0y.

We can view this as an inhomogeneous equation for y (i.e., with inhomogeneity f � �0y),
and express the solution in the usual way as the sum of some particular solution to the
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inhomogeneous problem and a linear combination of solutions to the associated homogeneous
problem.

For the particular solution yp, we note that �0 /2 �(L), and so we can solve

(L� �0I)yp = f � �0y,

with
yp = (L� �0I)

�1(f � �0y) 2 D.

Since yp 2 D, we have the relations

lim
x!a+

U
a(x;�0)

⇤
Jyp(x) = 0, lim

x!b�
U

b(x;�0)
⇤
Jyp(x) = 0,

and so in particular

lim
x!b�

u
b
k(x;�0)

⇤
Jyp(x) = 0, 8 k 2 {1, 2, . . . , n}.

The homogeneous solutions yh satisfy (LM � �0I)yh = 0, and since y lies right in
(a, b), any such yh must be a linear combination of the Niessen elements {ub

j(x;�0)}
n
j=1 and

{v
b
j(x;�0)}

rb
j=1 (once again, as specified in Claim 2.1). I.e., there exist constants {cj(�0)}nj=1

and {dj(�0)}
rb
j=1 so that

yh(x) =
nX

j=1

cj(�0)u
b
j(x;�0) +

rbX

j=1

dj(�0)v
b
j(x;�0), a.e. x 2 (a, b).

Here, we emphasize that the elements {ub
j(x;�0)}

n
j=1 and {v

b
j(x;�0)}

rb
j=1 are not generally in

DM (they may not lie left in (a, b)), but they nonetheless comprise a basis for the space of
solutions of (1.1) (with � = �0) that lie right in (a, b). According to Lemma 2.3, we have

lim
x!b�

U
b(x;�0)

⇤
Ju

b
j(x) = 0, 8 j 2 {1, 2, . . . , n},

so

lim
x!b�

U
b(x;�0)

⇤
Jyh(x) = lim

x!b�
U

b(x;�0)
⇤
J

rbX

j=1

dj(�0)v
b
j(x;�0)

=
rbX

j=1

dj(�0)
⇣

lim
x!b�

U
b(x;�0)

⇤
Jv

b
j(x;�0)

⌘
.

In particular,

lim
x!b�

u
b
k(x;�0)

⇤
Jyh(x) =

rbX

j=1

dj(�0)
⇣

lim
x!b�

u
b
k(x;�0)

⇤
Jv

b
j(x;�0)

⌘
, 8 k 2 {1, 2, . . . , n}.

Writing y = yh + yp, we see that

lim
x!b�

u
b
k(x;�0)

⇤
Jy(x) =

rbX

j=1

dj(�0)
⇣

lim
x!b�

u
b
k(x;�0)

⇤
Jv

b
j(x;�0)

⌘
, 8 k 2 {1, 2, . . . , n}. (2.40)

25



Last, we recall from Lemma 2.3 that for any k 2 {1, 2, . . . , n} and j 2 {1, 2, . . . , rb}

lim
x!b�

u
b
k(x;�0)

⇤
Jv

b
j(x;�0) = 0, 8 j 6= k,

so in particular the set {vbj(x;�0)}
rb
j=1 is annihilated under this limit by the set {ub

k(x;�0)}
n
k=rb+1.

The claim now follows immediately from (2.40) for the case of {ub
k(x;�0)}

n
k=rb+1, and the case

of {ua
k(x;�0)}

n
k=ra+1 follows similarly.

Remark 2.5. According to Theorem 3.11 in [53] (slightly adapted to our setting), if u 2 DM

and
(Jv, u)ba = 0 8 v 2 DM ,

then u is in the domain of the minimal operator L0 (see Remark 2.2). According to Claim
2.3, we have that for each of the Niessen elements {ub

k(x;�0)}
n
k=rb+1, (Jv, u

b
k(·;�0))b = 0 for

all v 2 DM . If we modify the Niessen elements to {ũ
b
k(x;�0)}

n
k=rb+1 ⇢ DM as described in

(2.21), we see that for each k 2 {1, 2, . . . , rb}

(Jv, ũb
k(·;�0))

b
a = 0 8 v 2 DM .

We can conclude that these elements {ũ
b
k(x;�0)}

n
k=rb+1 reside in the domain of the minimal

operator D0. Notably for comparison with [53], this means that these elements are zero
elements of the quotient space DM/D0 (cf. Theorem 4.6 in [53]).

Turning to our second observation about L, we note that it’s clear from the specification
of D that L appears to depend on �0 through the boundary conditions. Let’s temporarily
recognize this possible dependence by writing L as L(�0), and with this notation in place,
we ask the following question: is it the case, as one might expect, that L(�0)⇤ = L(�̄0)?
In order to answer this, we first observe that when we write L(�̄0), we mean the closure
L�̄0

, where L�̄0
denotes the restriction of the maximal operator LM (which certainly has no

dependence on �0) to the domain

D�̄0
:= Dc + Span

n
{ũ

a
j (·; �̄0)}

n
j=1, {ũ

b
j(·; �̄0)}

n
j=1

o
, (2.41)

where the elements {ũa
j (·; �̄0)}

n
j=1 and {ũ

b
j(·; �̄0)}

n
j=1 are modifications as described following

Lemma 2.5 of the Niessen elements {u
a
j (·; �̄0)}

n
j=1 and {u

b
j(·; �̄0)}

n
j=1 described in the sec-

ond part of Claim 2.1 (details only given for {u
b
j(·; �̄0)}

n
j=1). By construction, Ua(x;�0) =

�(x;�0)Ra(�0), U b(x;�0) = �(x;�0)Rb(�0), Ua(x; �̄0) = �(x; �̄0)Ra(�̄0), and U
b(x; �̄0) =

�(x; �̄0)Rb(�̄0), where Rb(�0) and Rb(�̄0) are described in Claim 2.2, and Ra(�0) and Ra(�̄0)
are similar. It follows that

U
a(x;�0)

⇤
JU

a(x; �̄0) = Ra(�0)
⇤�(x;�0)

⇤
J�(x; �̄0)R

a(�̄0) = Ra(�0)
⇤
JRa(�̄0),

where in obtaining the second inequality we have used (2.7). From the proof of Claim 2.2
we have Ra(�0)⇤JRa(�̄0) = 0, so we can conclude that U

a(x;�0)⇤JUa(x; �̄0) = 0 for all
x 2 (a, b), yielding trivially

lim
x!a+

U
a(x;�0)

⇤
Jũ

a
j (x; �̄0) = 0
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for all j 2 {1, 2, . . . , n}. On the other hand, from the support of the modified elements
{ũ

a
j (x; �̄0)}

n
j=1 we trivially have

lim
x!b�

U
b(x;�0)

⇤
Jũ

a
j (x; �̄0) = 0,

so that {ũ
a
j (x; �̄0)}

n
j=1 ⇢ D. Likewise, {ũb

j(x; �̄0)}
n
j=1 ⇢ D, and in this way we see that

D�̄0
⇢ D. As in the proof of Theorem 2.1, we can check that L�̄0

is essentially self-adjoint,
so that L�̄0

is a self-adjoint operator, and since D�̄0
⇢ D, we must have dom(L�̄0

) = D, so
that L�̄0

= L(�0). But L�̄0
= L(�̄0), so we have

L(�0)
⇤ = L(�0) = L(�̄0).

As a final observation about L, we note that during the proof of Claim 2.3 we see that
any y 2 DM can be decomposed as y = yp+yh, where yp 2 D and yh is an appropriate linear
combination of Niessen elements that lie right in (a, b) (or, alternatively, an appropriate
linear combination of Niessen elements that lie left in (a, b)). Since yp necessarily satisfies
the limits

lim
x!a+

U
a(x;�0)

⇤
Jyp(x) = 0; lim

x!b�
U

b(x;�0)
⇤
Jyp(x) = 0,

and similar limits exist (though are not necessarily 0) for all Niessen elements appearing in
yh, we can conclude that for any y 2 DM the limits

lim
x!a+

U
a(x;�0)

⇤
Jy(x); lim

x!b�
U

b(x;�0)
⇤
Jy(x),

certainly exist. The boundary conditions specified in D then just eliminate elements y 2 DM

for which one or both of these (well-defined) limits is non-zero.

2.3 Continuation to R
In the preceding considerations, we fixed some �0 2 C\R and used this value to specify the
self-adjoint operators L and L

↵. With these operators in hand, we would next like to fix
values � 2 R and construct solutions u

a(x;�) to Ly = �y that lie left in (a, b), along with
solutions ub(x;�) to Ly = �y that lie right in (a, b) (and similarly for L↵). One di�culty we
face is that the matrix A(x;�) from Section 2.1 is not defined for � 2 R, and so we cannot
directly extend Niessen’s development to this setting. (Though see Section 5 for a calculation
along these lines.) Instead of extending Niessen’s development directly, we’ll take advantage
of our assumption that [�1,�2] does not intersect the essential spectrum of our operator of
interest, along with a standard theorem from [53] about self-adjoint operators.

As a starting point, we fix some c 2 (a, b) and consider (1.1) on (c, b) with boundary
conditions

�y(c) = 0, (2.42)

and
lim
x!b�

U
b(x;�0)

⇤
Jy(x) = 0, (2.43)

where the boundary matrix � 2 Cn⇥2n must satisfy

rank � = n, and �J�
⇤ = 0, (2.44)
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but otherwise will be chosen as needed during the analysis.
Similarly as in Section 2.2, we can associate (1.1)-(2.42)-(2.43) with a self-adjoint operator

L
�
c,b, with domain

D
�
c,b := {y 2 Dc,b,M : �y(c) = 0, lim

x!b�
U

b(x;�0)Jy(x) = 0}.

Here, Dc,b,M denotes the domain of the maximal operator associated with (1.1) on (c, b).
We start with a lemma.

Lemma 2.6. Let Assumptions (A), (B), and (C) hold. For any fixed � 2 C, suppose
u
b(x;�) and v

b(x;�) denote any two solutions of (1.1) (if such solutions exist) that lie right
in (a, b) and satisfy (2.43). Then

(Jub(·;�), vb(·;�))b = 0.

Proof. First, with c as specified prior to the lemma, we can use Lemma 2.5 to construct
functions ũb(·;�), ṽb(·;�) 2 Dc,b,M so that

ũ
b(x;�) =

(
0 near x = c

u
b(x;�) near x = b,

ṽ
b(x;�) =

(
0 near x = c

u
b(x;�) near x = b.

Since ũb(x;�) and ṽ
b(x;�) lie right in (c, b) and satisfy (2.43), it’s clear that ũb(x;�), ṽb(x;�)

are contained in D
�
c,b. Using self-adjointness of L�

c,b, we can write

0 = hL
�
c,bũ

b(·;�), ṽb(·;�)iB1 � hũ
b(·;�),L�

c,bṽ
b(·;�)iB1

= (Jũb(·;�), ṽb(·;�))bc = (Jũb(·;�), ṽb(·;�))b.

Since ũb(x;�), ṽb(x;�) are identical to u
b(x;�), vb(x;�) for x near b, this gives the claim.

Lemma 2.7. Let Assumptions (A), (B), and (C) hold. Then for any fixed � 2 R, the space
of solutions of (1.1) (if such solutions exist) that lie right in (a, b) and satisfy (2.43) has
dimension at most n. In the event that the dimension of this space is n, we let {ub

j(x;�)}
n
j=1

denote a choice of basis. Then for each x 2 (a, b) the vectors {u
b
j(x;�)}

n
j=1 comprise the

basis for a Lagrangian subspace of C2n.

Proof. Let d denote the dimension of the space of solutions of (1.1) that lie right in (a, b)
and satisfy (2.43), and suppose d � n. Let {ub

j(x;�)}
d
j=1 denote a basis for this space, and

notice that for any j, k 2 {1, 2, . . . , d} (and with 0 denoting di↵erentiation with respect to
x),

(ub
j(x;�)

⇤
Ju

b
k(x;�))

0 = u
b 0
j (x;�)

⇤
Ju

b
k(x;�) + u

b
j(x;�)

⇤
Ju

b 0
k (x;�)

= �(Jub 0
j (x;�))

⇤
u
b
k(x;�) + uj(x;�)

⇤
Ju

b 0
k (x;�)

= �((B0(x) + �B1(x))u
b
j(x;�))

⇤
u
b
k(x;�) + u

b
j(x;�)

⇤((B0(x) + �B1(x))u
b
k(x;�)

= �u
b
j(x;�)

⇤((B0(x) + �B1(x))u
b
k(x;�) + u

b
j(x;�)

⇤((B0(x) + �B1(x))u
b
k(x;�) = 0.
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We see that ub
j(x;�)

⇤
Ju

b
k(x;�) is constant for all x 2 (a, b). In addition, according to Lemma

2.6, we have
lim
x!b�

u
b
j(x;�)

⇤
Ju

b
k(x;�) = 0.

We conclude that ub
j(x;�)

⇤
Ju

b
k(x;�) = 0 for all x 2 (a, b).

We see immediately that the first n elements {ub
j(x;�)}

n
j=1 (or any other n elements taken

from {u
b
j(x;�)}

d
j=1) form the basis for a Lagrangian subspace of C2n for all x 2 (a, b). If

d > n, we get a contradiction to the maximality of Lagrangian subspaces, and so we can
conclude that d = n (recalling that this is under the assumption that d � n). This, of course,
leaves open the possibility that the dimension of the space of solutions of (1.1) that lie right
in (a, b) and satisfy (2.43) is less than n.

Lemma 2.8. Let Assumptions (A), (B), and (C) hold. Then for any fixed � 2 R, there
exists a matrix � 2 Cn⇥2n satisfying (2.44) so that � is not an eigenvalue of L�

c,b.

Proof. First, we recall that � is an eigenvalue of L�
c,b if and only if there exists a solution

y(·;�) 2 ACloc([c, b),C2n) \ L
2
B1
((c, b),C2n)

to (1.1) so that (2.42) and (2.43) are both satisfied. Also, according to Lemma 2.7, the space
of solutions of (1.1) that lie right in (c, b) and satisfy (2.43) has dimension at most n. We
begin by assuming that this space of solutions has dimension n, and we denote a basis for
the space by {u

b
j(x;�)}

n
j=1.

As usual, we let �(x;�) denote a fundamental matrix for (1.1), initialized by �(c;�) = I2n.
If U b(x;�) denotes the matrix comprising {u

b
j(x;�)}

n
j=1 as its columns, then there exists a

2n⇥ n matrix Rb(�) =
�Rb(�)
Sb(�)

�
so that

U
b(x;�) = �(x;�)Rb(�),

for all x 2 [c, b). Recalling the identity

�(x;�)⇤J�(x;�) = J

(i.e., (2.7) with � 2 R), we can compute

U
b(x;�)⇤JU b(x;�) = Rb(�)⇤�(x;�)⇤J�(x;�)Rb(�) = Rb(�)⇤JRb(�).

We know from Lemma 2.7 that U b(x;�) is a frame for a Lagrangian subspace of C2n, and it
follows immediately that the same is true for Rb(�).

A value � 2 R will be an eigenvalue of L�
c,b if and only if there exists a vector v 2 Cn so

that y(x;�) = �(x;�)Rb(�)v satisfies

�y(c;�) = 0,

which we can express (since �(c;�) = I2n) as �Rb(�)v = 0. This relation will hold for a
vector v 6= 0 if and only if the Lagrangian subspaces with frames J�⇤ and Rb(�) intersect.
We choose � = Rb(�)⇤, noting that in this case

�J�
⇤ = Rb(�)⇤JRb(�) = 0
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(i.e., this is a valid choice for �, satisfying (2.44)) but �Rb(�) = Rb(�)⇤Rb(�) is certainly
non-singular, so � is not an eigenvalue of L�

c,b.
In the event that the space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43)

has dimension less than n, the matrix Rb(�) (as constructed just above) will have fewer than
n columns, but we can add columns (which don’t correspond with solutions of (1.1) that lie
right in (c, b) and satisfy (2.43)) to create the basis for a Lagrangian subspace of C2n. We can
then proceed precisely as before, and we conclude that the Lagrangian subspace with frame
J�

⇤ does not intersect the Lagrangian subspace with frame Rb(�), certainly including the
elements that correspond with solutions of (1.1) that lie right in (c, b) and satisfy (2.43).

Remark 2.6. It’s clear from the proof of Lemma 2.8 that the boundary matrix � generally
depends on the value �. In cases for which this dependence is especially important to the
discussion, we will write �(�) for clarity.

Lemma 2.9. Let Assumptions (A), (B), and (C) hold. In addition, let �1,�2 2 R, �1 < �2,
and suppose �ess(L)\ [�1,�2] = ;. Then for each � 2 [�1,�2], the space of solutions of (1.1)
that lie right in (a, b) and satisfy (2.43) has dimension n. If we let {ub

j(x;�)}
n
j=1 denote a

basis for this space, then for each x 2 (a, b), the vectors {ub
j(x;�)}

n
j=1 comprise a basis for a

Lagrangian subspace of C2n.

Proof. We fix any � 2 [�1,�2], and observe from Lemma 2.8 that we can select �(�) 2 Cn⇥2n

satisfying (2.44) so that � is not an eigenvalue of L�(�)
c,b . In addition, we know from Theorem

11.5 in [53], appropriately adapted to our setting, that �ess(L
�(�)
c,b ) ⇢ �ess(L), so we can

conclude (using our assumption �ess(L) \ [�1,�2] = ;) that, in fact, � 2 ⇢(L�(�)
c,b ). This last

inclusion allows us to apply Theorem 7.1 in [53], which asserts (among other things) that the
space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43) has the same dimension

for each � 2 ⇢(L�(�)
c,b ). We know by construction that for �0 this dimension is precisely n,

and so we can conclude that it must be n for our fixed value � 2 [�1,�2] as well. We can now
conclude from Lemma 2.7 that this space must be a Lagrangian subspace of C2n for each
x 2 (c, b). Finally, we note that the elements {ub

j(x;�)}
n
j=1 extend by linear continuation to

(a, b) and lie right in (a, b) if and only if they lie right in (c, b).

Lemma 2.10. Let Assumptions (A), (B), and (C) hold, and suppose that for some fixed
�⇤ 2 R there is an open interval I containing �⇤ so that �ess(L) \ I = ;. Let {ub

j(x;�⇤)}
n
j=1

denote a basis for the n-dimensional space of solutions of (1.1) that lie right in (a, b) and
satisfy (2.43) (guaranteed to exist by Lemma 2.9). Then there exists a boundary matrix �⇤ =
�(�⇤) and a constant r > 0, depending on �⇤ and L

�⇤
c,b, so that the elements {u

b
j(x;�⇤)}

n
j=1

can be analytically extended in � to the ball B(�⇤; r). The analytic extensions {u
b
j(x;�)}

n
j=1

comprise a basis for the space of solutions of (1.1) that lie right in (a, b) and satisfy (2.43),
and moreover they satisfy the relations

J(@�u
b
j)

0(x;�) = B1(x)u
b
j(x;�) + (B0(x) + �B1(x))@�u

b
j(x;�), (2.45)

for all (x,�) 2 (a, b)⇥ B(�⇤; r), and

lim
x!b�

u
b
j(x;�⇤)

⇤
J@�u

b
k(x;�⇤) = 0, 8 j, k 2 {1, 2, . . . , n}. (2.46)
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Proof. Let �⇤ 2 [�1,�2] be fixed, and use Lemma 2.8 to find a boundary matrix �⇤ so that
�⇤ 2 ⇢(L�⇤

c,b). Our extensions {ub
j(x;�)}

n
j=1 will satisfy the equation

J(ub
j)

0 = (B0(x) + �B1(x))u
b
j, (2.47)

which we can re-write as

J(ub
j)

0
� (B0(x) + �⇤B1(x))u

b
j = (�� �⇤)B1(x)u

b
j. (2.48)

If a solution to (2.48) exists and is contained in D
�⇤
c,b, then we can express it as

F
b
j (x;�⇤,�) = (�� �⇤)(L

�⇤
c,b � �⇤I)

�1
u
b
j(·;�).

Here, the resolvent
R(L�⇤

c,b;�⇤) := (L�⇤
c,b � �⇤I)

�1

maps elements of L2
B1
((c, b),C2n) into D

�⇤
c,b, so in particular F b

j (x;�⇤,�) lies right in (c, b) and
satisfies (2.43).

Clearly, F b
j (x;�⇤,�⇤) = 0, so in order to identify an analytic extension of ub

j(x;�⇤), we
look for solutions of (2.47) of the form

u
b
j(x;�) = u

b
j(x;�⇤) + (�� �⇤)R(L�⇤

c,b;�⇤)u
b
j(·;�). (2.49)

Rearranging terms, we can express this relation as

(I � (�� �⇤)R(L�⇤
c,b;�⇤))u

b
j(·;�) = u

b
j(·;�⇤). (2.50)

By the standard theory of Neumann series (for example, the discussion of Example 4.9 on
p. 32 of [27]), if

k(�� �⇤)R(L�⇤
c,b;�⇤)k < 1, (2.51)

then we can solve (2.50) with

u
b
j(·;�) = (I � (�� �⇤)R(L�⇤

c,b;�⇤))
�1
u
b
j(·;�⇤). (2.52)

Here, the map � 7! u
b
j(·;�) 2 L

2
B1
((a, b),C2n) is analytic in �.

Since �⇤ 2 ⇢(L�⇤
c,b), there exists a constant C > 0, depending on �⇤ and L

�⇤
c,b so that

kR(L�⇤
c,b;�⇤)k  C.

In this way, we see that we can use (2.52) so long as |�� �⇤| < r := 1/C. We conclude that
(2.49) has a unique solution u

b
j(·;�) 2 L

2
B1
((a, b),C2n). We’ve already noted that F b

j (x;�⇤,�)
is contained in D

�⇤
c,b, and we also have that u

b
j(·;�⇤) lies right in (c, b) and satisfies (2.43).

We can conclude that u
b
j(x;�) is a solution of (2.47) that lies right in (c, b) and satisfies

(2.43). Proceeding similarly for each j 2 {1, 2, . . . , n}, we obtain a collection of extensions
{u

b
j(x;�)}

n
j=1.

In addition, by virtue of (2.50)-(2.52), we see that {ub
j(x;�)}

n
j=1 inherits linear indepen-

dence from the set {ub
j(x;�⇤)}

n
j=1. We conclude from Lemma 2.7 that the set {ub

j(x;�)}
n
j=1

comprises a basis for the space of solutions of (1.1) that lie right in (c, b) and satisfy (2.43),
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and additionally that for each x 2 (c, b) the vectors {ub
j(x;�)}

n
j=1 comprise the basis of a La-

grangian subspace of C2n. As in the proof of Lemma 2.9, the elements {ub
j(x;�)}

n
j=1 extend

by continuation to (a, b) and lie right in (a, b) if and only if they lie right in (c, b).
We emphasize that in the preceding discussion the analyticity refers to analyticity of the

map � 7! u
b
j(·;�) taking elements � 2 B(�⇤; r) to elements u

b
j(·;�) 2 L

2
B1
((c, b),C2n). To

conclude our proof, we additionally verify that for each fixed x 2 [c, b) the map � 7! u
b
j(x;�)

is analytic as a map from B(�⇤; r) to C2n. For this, we will use the Green’s function for L�⇤
c,b�

�⇤I, which is constructed in detail in our appendix (with no use of the current extensions).
Denoting this Green’s function G

�⇤
c,b(x, ⇠;�⇤), we can write, for any f 2 L

2
B1
((c, b),C2n),

R(L�⇤
c,b;�⇤)f =

Z b

c

G
�⇤
c,b(x, ⇠;�⇤)B1(⇠)f(⇠)d⇠.

In Section A.1, we will show that G�⇤
c,b(x, ⇠;�⇤) can be expressed as

G
�⇤(x, ⇠;�⇤) =

8
<

:
��(x;�⇤)

⇣
0 Rb(�⇤)

⌘
M(�⇤)

⇣
J(�⇤)⇤ 0

⌘⇤
�(⇠;�⇤)⇤ c < ⇠ < x < b

�(x;�⇤)
⇣
J(�⇤)⇤ 0

⌘
M(�⇤)

⇣
0 Rb(�⇤)

⌘⇤
�(⇠;�⇤)⇤ c < x < ⇠ < b,

where M(�⇤) is a fixed 2n⇥ 2n matrix as specified in Section A.1, �(x;�⇤) is a fundamen-
tal matrix for (1.1) initiated with �(c;�⇤) = I2n, and the matrix U

b(x;�⇤), with columns
{u

b
j(x;�⇤)}

n
j=1, has been expressed as U b(x;�⇤) = �(x;�⇤)Rb(�⇤).

Fixing x 2 [c, b), we observe that �(·;�⇤)(J(�⇤)⇤ 0) 2 L
2
B1
((c, b),C2n) (by continuity on a

bounded interval), and �(·;�⇤)(0 Rb(�⇤)) 2 L
2
B1
((x, b),C2n) (since �(·;�⇤)Rb(�⇤) lies right

in (c, b)). If follows readily that there exists a value C(x;�⇤) so that

���(R(L�⇤
c,b;�⇤)f)(x)

���  C(x;�⇤)kfkL2
B1

((c,b),C2n),

for all f 2 L
2
B1
((c, b),C2n). Using, in addition, the boundedness of R(L�⇤

c,b;�⇤), we can write

���(R(L�⇤
c,b;�⇤)

k
u
b
j(·;�⇤))(x)

���  C(x;�⇤)kR(L�⇤
c,b;�⇤)

k�1
u
b
j(·;�⇤)kL2

B1
((c,b),C2n)

 C(x;�⇤)kR(L�⇤
c,b;�⇤)k

k�1
ku

b
j(·;�⇤)kL2

B1
((c,b),C2n).

Based on the right-hand side of (2.52), we can consider the sum

((I � (�� �⇤)R(L�⇤
c,b;�⇤))

�1
u
b
j(·;�⇤))(x) =

1X

k=0

(�� �⇤)
k(R(L�⇤

c,b;�⇤)
k
u
b
j(·;�⇤))(x). (2.53)

The summands are bounded by

|���⇤|
k
���(R(L�⇤

c,b;�⇤)
k
u
b
j(·;�⇤))(x)

���  |���⇤|
k
C(x;�⇤)kR(L�⇤

c,b;�⇤)k
k�1

ku
b
j(·;�⇤)kL2

B1
((c,b),C2n),

(2.54)
so that as long as (2.51) holds, the sum (2.53) converges absolutely, and so necessarily to an
analytic function of �.
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To understand (2.45), we first observe from (2.53) and (2.54) that for any d 2 (c, b) there
exists a value K0, depending only on c, d, �⇤, and r, so that

|u
b
j(x;�)|  K0 8 (x,�) 2 [c, d]⇥ B(�⇤; r).

(Here, we are using the fact that C(x;�⇤) is bounded on compact subsets [c, d] ⇢ [c, b).)
Next, upon term-by-term di↵erentiation of the series on the right-hand side of (2.53), we see
that

@�u
b
j(x;�) =

1X

k=1

k(�� �⇤)
k�1(R(L�⇤

c,b;�⇤)
k
u
b
j(·;�⇤))(x), (2.55)

from which we can estimate

|@�u
b
j(x;�)|  C(x;�⇤)ku

b
j(·;�⇤)kL2

B1
((c,b),C2n)

1X

k=1

k|�� �⇤|
k�1

kR(L�⇤
c,b;�⇤k

k�1
.

We can conclude similarly as for u
b
j(x;�) that for any d 2 (c, b) there exists a value K1,

depending only on c, d, �⇤, and r, so that

|@�u
b
j(x;�)|  K1 8 (x,�) 2 [c, d]⇥ B(�⇤; r).

Starting now from the relation (2.47), we can integrate to write

Ju
b
j(x;�) = Ju

b
j(c;�) +

Z x

c

(B0(⇠) + �B1(⇠))u
b
j(⇠;�)d⇠.

According to the above estimates the quantity @�((B0(⇠) + �B1(⇠))ub
j(⇠;�)) is dominated

uniformly in � 2 B(�⇤; r) by the integrable (on [c, x]) function

|B1(⇠)|K0 + (|B0(⇠)|+ (|�⇤|+ r)|B1(⇠)|)K1.

These considerations justify the use of the Lebesgue Dominated Convergence Theorem to
di↵erentiate under the integral sign in � to get

J@�u
b
j(x;�) = J@�u

b
j(c;�) +

Z x

c

B1(⇠)u
b
j(⇠;�) + (B0(⇠) + �B1(⇠))@u

b
j(⇠;�)d⇠.

Di↵erentiating subsequently in x, we obtain (2.45).
Turning to (2.46), if we substitute � = �⇤ into (2.55), we obtain the relation

@�u
b
j(x;�⇤) = (R(L�⇤

c,b;�⇤)u
b
j(·;�⇤))(x).

Here, R(L�⇤
c,b;�⇤) maps L

2
B1
((c, b),C2n) into D

�⇤
c,b, and so in particular @�ub

j(x;�⇤) satisfies
(2.43). It follows as in the proof of Lemma 2.6 that

lim
x!b�

u
b
k(x;�⇤)

⇤
J@�u

b
j(x;�⇤) = 0,

for all k 2 {1, 2, . . . , n}, and since this is true for all j 2 {1, 2, . . . , n}, we can conclude
(2.46).
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Lemma 2.11. Let Assumptions (A), (B), and (C) hold, and suppose �1,�2 2 R, �1 < �2

are such that �ess(L)\ [�1,�2] = ;. In addition, for each (x,�) 2 (a, b)⇥ [�1,�2], let `b(x;�)
denote the Lagrangian subspace with basis {u

b
j(x;�)}

n
j=1 constructed in Lemma 2.9. Then

`b : (a, b) ⇥ [�1,�2] ! ⇤(n) is continuous, and moreover, we can choose the basis elements
for `b(x;�) to be piecewise analytic in � in [�1,�2].

Proof. First, for each fixed �⇤ 2 [�1,�2], we can use Lemma 2.10 to obtain a locally analytic
family of bases {ub,�⇤

j (x;�)}nj=1, for all |� � �⇤| < r⇤, where r⇤ > 0 is a constant depending
on �⇤ and L

�⇤
c,b. This process creates an open cover of [�1,�2], comprising the union of all of

these disks. Next, we use compactness of the interval [�1,�2] to extract a finite subcover,
which we denote {B(�j⇤; r

j
⇤)}

N
j=1, where for notational convenience, we can select the values

{�
j
⇤}

N
j=1 so that

�1 =: �1⇤ < �
2
⇤ < · · · < �

N
⇤ := �2,

and where the values rj⇤ > 0 are constants respectively associated with the values �j⇤ in our
construction of the family of disks.

Starting at �1⇤, we can take {u
b
j(x;�

1
⇤)}

n
j=1 to be a basis for the Lagrangian subspace

`b(x;�1⇤). As � increases from �
1
⇤, the analytic extensions {ub,�1

⇤
j (x;�)}nj=1 in B(�1⇤, r

1
⇤) com-

prise bases for the Lagrangian paths `b(x;�). By construction, the set B(�⇤1; r
1
⇤) \ B(�2⇤; r

2
⇤)

must be non-empty. We take any �
1,2
⇤ 2 R in this intersection, and we note that at this

value of � the analytic extensions {ub,�1
⇤

j (x;�1,2⇤ )}nj=1 in B(�1⇤, r
1
⇤) serve as a basis for the same

Lagrangian subspace as the analytic extensions {ub,�2
⇤

j (x;�1,2⇤ )}nj=1 in B(�2⇤, r
2
⇤). This allows

us to continuously switch from the frame {u
b,�1

⇤
j (x;�1,2⇤ )}nj=1 to the frame {u

b,�2
⇤

j (x;�1,2⇤ )}nj=1.

We now allow � to increase from �
1,2
⇤ , and take the elements {ub,�2

⇤
j (x;�)}nj=1 as our choice

of bases for the Lagrangian subspaces `b(x;�). By construction, the set B(�2⇤; r
2
⇤)\B(�3⇤; r

3
⇤)

must be non-empty, and we take any �2,3⇤ 2 R in this intersection, noting that at this value

of � the analytic extensions {u
b,�2

⇤
j (x;�2,3⇤ )}nj=1 in B(�2⇤, r

2
⇤) serve as a basis for the same

Lagrangian subspace as the analytic extensions {u
b,�3

⇤
j (x;�2,3⇤ )}nj=1 in B(�3⇤, r

3
⇤). Continuing

in this way, we see that `b : (c, b)⇥ [�1,�2] ! ⇤(n) is continuous.
Summarising our notation, the interval [�1,�2] has been partitioned into values

�1 =: �0,1⇤ < �
1,2
⇤ < �

2,3
⇤ < · · · < �

N�1,N
⇤ < �

N,N+1
⇤ := �2,

and we use the frame {u
b,�k

⇤
j (x;�)}nj=1 on the interval [�k�1,k

⇤ ,�
k,k+1
⇤ ] for all k = 1, 2, . . . , N .

It’s clear from the construction that for each j 2 {1, 2, . . . , n}, ub,�k
⇤

j (x;�) is analytic in �

on (�k�1,k
⇤ ,�

k,k+1
⇤ ), so the frame obtained by patching these bases together at the points

{�
0,1
⇤ ,�

1,2
⇤ , . . . ,�

N,N+1
⇤ } is piecewise analytic.

With appropriate modifications, Lemmas 2.6–2.11 can be stated with {u
b
j(x;�)}

n
j=1 re-

placed by {u
a
j (x;�)}

n
j=1. In addition, under the assumption (A)0, the analysis of L in this

section can be carried out for L↵, and in particular, Lemmas 2.9, 2.10, and 2.11 hold with
L replaced by L

↵.
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3 The Maslov Index

Our framework for computing the Maslov index is adapted from Section 2 of [24], and we
briefly sketch the main ideas here. Given any pair of Lagrangian subspaces `1 and `2 with
respective frames X1 =

�
X1

Y1

�
and X2 =

�
X2

Y2

�
, we consider the matrix

W̃ := �(X1 + iY1)(X1 � iY1)
�1(X2 � iY2)(X2 + iY2)

�1
. (3.1)

In [24], the authors establish: (1) the inverses appearing in (3.1) exist; (2) W̃ is independent
of the specific frames X1 and X2 (as long as these are indeed frames for `1 and `2); (3) W̃
is unitary; and (4) the identity

dim(`1 \ `2) = dim(ker(W̃ + I)). (3.2)

Given two continuous paths of Lagrangian subspaces `i : [0, 1] ! ⇤(n), i = 1, 2, with
respective frames Xi : [0, 1] ! C2n⇥n, relation (3.2) allows us to compute the Maslov index
Mas(`1, `2; [0, 1]) as a spectral flow through �1 for the path of matrices

W̃ (t) := �(X1(t) + iY1(t))(X1(t)� iY1(t))
�1(X2(t)� iY2(t))(X2(t) + iY2(t))

�1
. (3.3)

In [24], the authors provide a rigorous definition of the Maslov index based on the spectral
flow developed in [37]. Here, rather, we give only an intuitive discussion. As a starting point,
if �1 2 �(W̃ (t⇤)) for some t⇤ 2 [0, 1], then we refer to t⇤ as a crossing point, and its multiplic-
ity is taken to be dim(`1(t⇤)\`2(t⇤)), which by virtue of (3.2) is equivalent to the multiplicity
of �1 as an eigenvalue of W̃ (t⇤). We compute the Maslov index Mas(`1, `2; [0, 1]) by allowing
t to increase from 0 to 1 and incrementing the index whenever an eigenvalue crosses �1 in
the counterclockwise direction, while decrementing the index whenever an eigenvalue crosses
�1 in the clockwise direction. These increments/decrements are counted with multiplicity,
so for example, if a pair of eigenvalues crosses �1 together in the counterclockwise direction,
then a net amount of +2 is added to the index. Regarding behavior at the endpoints, if an
eigenvalue of W̃ rotates away from �1 in the clockwise direction as t increases from 0, then
the Maslov index decrements (according to multiplicity), while if an eigenvalue of W̃ rotates
away from �1 in the counterclockwise direction as t increases from 0, then the Maslov index
does not change. Likewise, if an eigenvalue of W̃ rotates into �1 in the counterclockwise
direction as t increases to 1, then the Maslov index increments (according to multiplicity),
while if an eigenvalue of W̃ rotates into �1 in the clockwise direction as t increases to 1, then
the Maslov index does not change. Finally, it’s possible that an eigenvalue of W̃ will arrive
at �1 for t = t⇤ and remain at �1 as t traverses an interval. In these cases, the Maslov index
only increments/decrements upon arrival or departure, and the increments/decrements are
determined as for the endpoints (departures determined as with t = 0, arrivals determined
as with t = 1).

One of the most important features of the Maslov index is homotopy invariance, for which
we need to consider continuously varying families of Lagrangian paths. To set some notation,
we denote by P(I) the collection of all paths L(t) = (`1(t), `2(t)), where `1, `2 : I ! ⇤(n) are
continuous paths in the Lagrangian–Grassmannian. We say that two paths L,M 2 P(I)
are homotopic provided there exists a family Hs so that H0 = L, H1 = M, and Hs(t) is
continuous as a map from (t, s) 2 I ⇥ [0, 1] into ⇤(n)⇥ ⇤(n).
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The Maslov index has the following properties.

(P1) (Path Additivity) If L 2 P(I) and a, b, c 2 I, with a < b < c, then

Mas(L; [a, c]) = Mas(L; [a, b]) + Mas(L; [b, c]).

(P2) (Homotopy Invariance) If I = [a, b] and L,M 2 P(I) are homotopic with L(a) =
M(a) and L(b) = M(b) (i.e., if L,M are homotopic with fixed endpoints) then

Mas(L; [a, b]) = Mas(M; [a, b]).

Straightforward proofs of these properties appear in [22] for Lagrangian subspaces of R2n,
and proofs in the current setting of Lagrangian subspaces of C2n are essentially identical.

As noted previously, the direction we associate with a crossing point is determined by the
direction in which eigenvalues of W̃ rotate through �1 (counterclockwise is positive, while
clockwise is negative). In order to analyze this direction in specific cases, we will make use
of the following lemma from [24].

Lemma 3.1. Suppose `1, `2 : I ! ⇤(n) denote paths of Lagrangian subspaces of C2n with
respective frames X1 =

�
X1

Y1

�
and X2 =

�
X2

Y2

�
that are di↵erentiable at t0 2 I. If the matrices

�X1(t0)
⇤
JX0

1(t0) = X1(t0)
⇤
Y

0
1(t0)� Y1(t0)

⇤
X

0
1(t0)

and (noting the sign change)

X2(t0)
⇤
JX0

2(t0) = �(X2(t0)
⇤
Y

0
2(t0)� Y2(t0)

⇤
X

0
2(t0))

are both non-negative, and at least one is positive definite, then the eigenvalues of W̃ (t)
rotate in the counterclockwise direction as t increases through t0. Likewise, if both of these
matrices are non-positive, and at least one is negative definite, then the eigenvalues of W̃ (t)
rotate in the clockwise direction as t increases through t0.

4 Proofs of the Main Theorems

In this section, we use our Maslov index framework to prove Theorems 1.1 and 1.2.

4.1 Proof of Theorem 1.1

Fix any pair �1,�2 2 R, �1 < �2, so that �ess(L↵) \ [�1,�2] = ;, and let `↵(x;�) denote the
map of Lagrangian subspaces associated with the frames X↵(x;�) specified in (1.3). Keeping
in mind that �2 is fixed, let `b(x;�2) denote the map of Lagrangian subspaces associated
with the frames Xb(x;�2) specified in (1.4). We emphasize that since �2 is fixed we don’t
yet require Lemma 2.11 to extend the frame Xb(x;�2) to additional values � 2 [�1,�2]. We
will establish Theorem 1.1 by considering the Maslov index for `↵(x;�) and `b(x;�2) along
a path designated as the Maslov box in the next paragraph. As described in Section 3, this
Maslov index is computed as a spectral flow for the matrix

W̃ (x;�) = �(X↵(x;�) + iY↵(x;�))(X↵(x;�)� iY↵(x;�))
�1

⇥ (Xb(x;�2)� iYb(x;�2))(Xb(x;�2) + iYb(x;�2))
�1
.

(4.1)
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By Maslov Box, in this case we mean the following sequence of contours, specified for
some value c 2 (a, b) to be chosen su�ciently close to b during the analysis (su�ciently large
if b = +1): (1) fix x = a and let � increase from �1 to �2 (the bottom shelf); (2) fix � = �2

and let x increase from a to c (the right shelf); (3) fix x = c and let � decrease from �2 to �1
(the top shelf); and (4) fix � = �1 and let x decrease from c to a (the left shelf). (See Figure
4.1.)

x

� �1 �2

c

a

Mas(`↵(a; ·), `b(a;�2); [�1,�2]) M
as
(`

↵
(·
;�

2
),
`
b(
·;
�
2
);
[a
,
c
])

�Mas(`↵(c; ·), `b(c;�2); [�1,�2])

�
M
as
(`

↵
(·
;�

1
),
`
b(
·;
�
2
);
[a
,
c
])

Figure 4.1: The Maslov Box.

Right shelf. We begin our analysis with the right shelf, for which X↵ and Xb are both
evaluated at �2. By construction, `↵(·;�2) will intersect `b(·;�2) at some x (and so for all
x 2 [a, c]) with dimension m if and only if �2 is an eigenvalue of L↵ with multiplicity m. In
the event that �2 is not an eigenvalue of L↵, there will be no crossing points along the right
shelf. On the other hand, if �2 is an eigenvalue of L↵ with multiplicity m, then W̃ (x;�2)
will have �1 as an eigenvalue with multiplicity m for all x 2 [a, c]. In either case,

Mas(`↵(·;�2), `b(·;�2); [a, c]) = 0.

Bottom shelf. For the bottom shelf, `↵(a;�) is fixed, independent of �, so in particular
`↵(a;�) = `↵(a;�2) for all � 2 [�1,�2]. In this way, W̃ (a;�) is actually independent of �,
and so we certainly have

Mas(`↵(a; ·), `b(a;�2); [�1,�2]) = 0.

Moreover, `↵(a;�) will intersect `b(a;�2) with intersection dimension m if and only if �2 is an
eigenvalue of L↵ with multiplicity m. In the event that �2 is not an eigenvalue of L↵, there
will be no crossing points along the bottom shelf. On the other hand, if �2 is an eigenvalue
of L↵ with multiplicity m, then W̃ (a;�) will have �1 as an eigenvalue with multiplicity m

for all � 2 [�1,�2].
Top shelf. For the top shelf, W̃ (c;�) detects intersections between `↵(c;�) and `b(c;�2)

as � decreases from �2 to �1. Such intersections correspond precisely with eigenvalues of the
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finite-interval (or truncated) operator L↵
a,c, with domain

D
↵
a,c := {y 2 Da,c,M : ↵y(a) = 0, Xb(c;�2)

⇤
Jy(c) = 0},

where Da,c,M denotes the domain of the maximal operator specified as in Definition 1.1,
except on (a, c). Similarly as in Section 2, we can check that L↵

a,c is a self-adjoint operator.
(In fact, since L

↵
a,c is posed on a bounded interval (a, c) with B0, B1 2 L

1((a, c),C2n⇥2n),
self-adjointness can be established by more routine considerations.)

We know from Lemma 3.1 that monotonicity in � is determined by�X↵(c;�)⇤J@�X↵(c;�),
and we readily compute

@

@x
X⇤

↵(x;�)J@�X↵(x;�) = X0
↵(x;�)

⇤
J@�X↵(x;�) +X↵(x;�)

⇤
J@�X

0
↵(x;�)

= �X0
↵(x;�)

⇤
J
⇤
@�X↵(x;�) +X↵(x;�)

⇤
@�JX

0
↵(x;�)

= �X↵(x;�)
⇤(B0(x) + �B1(x))@�X↵(x;�) +X↵(x;�)

⇤(B0(x) + �B1(x))@�X↵(x;�)

+X⇤
↵@�(B0(x) + �B1(x))X↵(x;�) = X↵(x;�)

⇤
B1(x)X↵(x;�),

where the di↵erentiation of X↵(x;�) in x and �, including the exchange of order of these
derivatives, is straightforward since the columns of X↵(x;�) are simply solutions to standard
initial value problems. Integrating on [a, x], and noting that @�X↵(a;�) = 0, we see that

X↵(x;�)
⇤
J@�X↵(x;�) =

Z x

a

X↵(y;�)
⇤
B1(y)X↵(y;�)dy.

Monotonicity along the top shelf follows by setting x = c and appealing to Assumption
(B). In this way, we see that Assumption (B) ensures that as � increases the eigenvalues of
W̃ (c;�) will rotate monotonically in the clockwise direction. Since each crossing along the
top shelf corresponds with an eigenvalue of L↵

a,c, we can conclude that

N
↵
a,c([�1,�2)) = �Mas(`↵(c; ·), `b(c;�2); [�1,�2]), (4.2)

where N
↵
a,c([�1,�2)) denotes a count, including multiplicities, of the eigenvalues of L↵

a,c on
[�1,�2). We note that �1 is included in the count, because in the event that (c,�1) is a
crossing point, eigenvalues of W̃ (c;�) will rotate away from �1 in the clockwise direction as
� increases from �1 (thus decrementing the Maslov index). Likewise, �2 is not included in
the count, because in the event that (c,�2) is a crossing point, eigenvalues of W̃ (c;�) will
rotate into �1 in the clockwise direction as � increases to �2 (thus leaving the Maslov index
unchanged).

Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe that
the Maslov index on the left shelf can be expressed as

�Mas(`↵(·;�1), `b(·;�2); [a, c]).

Using path additivity and homotopy invariance, we can sum the Maslov indices on each shelf
of the Maslov Box to arrive at the relation

N
↵
a,c([�1,�2)) = Mas(`↵(·;�1), `b(·;�2); [a, c]). (4.3)
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In order to obtain a statement about N
↵([�1,�2)), we observe that eigenvalues of L↵

correspond precisely with intersections of `↵(c;�) and `b(c;�). (We emphasize that in this
last statement, `b is evaluated at �, not �2, and so we are using Lemma 2.11). Employing a
monotonicity argument similar to the one above for the top shelf, we can conclude that

N
↵([�1,�2)) = �Mas(`↵(c; ·), `b(c; ·); [�1,�2]). (4.4)

Remark 4.1. The monotonicity argument in the case of (4.4) is a bit more subtle than in
the case above for the top shelf, and in order to keep the analysis as complete as possible, we
include the full argument in the appendix.

Our next goal is to relate the Maslov index on the right-hand side of (4.4) to Maslov
indices in which � only varies in one or the other of `↵(c;�) and `b(c;�). For this, we have
the following claim.

Claim 4.1. Under the assumptions of Theorem 1.1 (without the requirement �1,�2 /2 �p(L↵)),
and for any c 2 (a, b),

Mas(`↵(c; ·), `b(c; ·); [�1,�2]) = Mas(`↵(c;�1), `b(c; ·); [�1,�2])

+ Mas(`↵(c; ·), `b(c;�2); [�1,�2]).

Proof. With c 2 (a, b) fixed, we consider `↵(c; ·), `b(c; ·) : [�1,�2] ! ⇤(n) and set

W̃c(�, µ) := �(X↵(c;�) + iY↵(c;�))(X↵(c;�)� iY↵(c;�))
�1

⇥ (Xb(c;µ)� iYb(c;µ))(Xb(c;µ) + iYb(c;µ))
�1
.

We now compute the Maslov index associated with W̃c(�, µ) along the triangular path in
[�1,�2] ⇥ [�1,�2] comprising the following three paths: (1) fix � = �1 and let µ increase
from �1 to �2; (2) fix µ = �2 and let � increase from �1 to �2; and (3) let � and µ decrease
together (i.e., with � = µ) from �2 to �1. (See Figure 4.2.) The claim follows from path
additivity and homotopy invariance.

We can conclude from (4.2), (4.4), and Claim 4.1 that

N
↵([�1,�2)) = N

↵
a,c([�1,�2))�Mas(`↵(c;�1), `b(c; ·); [�1,�2]). (4.5)

By monotonicity,
Mas(`↵(c;�1), `b(c; ·); [�1,�2])  0,

from which we can additionally conclude that

N
↵([�1,�2)) � N

↵
a,c([�1,�2)).

In light of (4.3), this gives

N
↵([�1,�2)) � Mas(`↵(·;�1), `b(·;�2); [a, c]). (4.6)

Here, we emphasize that under our assumption that �ess(L↵) \ [�1,�2] = ;, the count
N

↵([�1,�2)) must be finite.
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Figure 4.2: Triangular path in the (�, µ)-plane for Claim 4.1.

The right-hand side of (4.6) is computed over the compact interval [a, c] on which (1.1)
can be viewed as a regular system, as analyzed in [24]. In [24], the authors show that the
direction of crossing points for such systems (under assumptions more general than those
made here) are all positive as x increases from a to c. (See the statement and proof of
Theorem 1.1 in [24].) It follows that as c ! b

� the values Mas(`↵(·;�1), `b(·;�2); [a, c]) are
monotonically non-decreasing, and since N ↵([�1,�2)) is finite, we can conclude that the limit

lim
c!b�

Mas(`↵(·;�1), `b(·;�2); [a, c]),

must exist, and in fact that it must be the case that this limit is obtained for all c su�ciently
close to b (su�ciently large if b = +1). As noted in Remark 4.2, we denote this limit by
Mas(`↵(·;�1), `b(·;�2); [a, b)). In this way, the first assertion of Theorem 1.1 is obtained by
taking a limit on both sides of (4.6) as c ! b

�.
For the second assertion of Theorem 1.1 we additionally assume that �1,�2 /2 �p(L↵), and

we will closely follow the approach taken in [20]. We emphasize that while we are using almost
precisely the same argument as in [20], formulated under our conventions and notation, our
result is not limited to the limit-point case (as assumed in [20]). Since �2 /2 �(L↵), we are
justified in working with the resolvent operator

R(L↵;�2) := (L↵
� �2I)

�1
,

which we can specify in terms of the Green’s function G
↵(x, ⇠;�2) constructed in the ap-

pendix. In particular, for any f 2 L
2
B1
((a, b),C2n) we can write

R(L↵;�2)f =

Z b

a

G
↵(x, ⇠;�2)B1(⇠)f(⇠)d⇠.

Turning to the operator L
↵
a,c specified above with domain D

↵
a,c, we first note that by

virtue of the appearance of �2 in the boundary condition at x = c, �2 is an eigenvalue of
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L
↵
a,c if and only if it is an eigenvalue of L↵. We are assuming �2 /2 �(L↵), so we can conclude

that �2 /2 �(L↵
a,c), and this allows us to work with the resolvent operator

R(L↵
a,c;�2) := (L↵

a,c � �2I)
�1
,

which we can specify in terms of a Green’s function G
↵
a,c(x, ⇠;�2). In particular, for any

f 2 L
2
B1
((a, c),C2n) we can write

R(L↵
a,c;�2)f =

Z c

a

G
↵
a,c(x, ⇠;�2)B1(⇠)f(⇠)d⇠.

Proceeding with a construction similar to that for G↵(x, ⇠;�2) in Section A.1, we find that
G

↵
a,c(x, ⇠;�2) can be expressed as

G
↵
a,c(x, ⇠;�2) = G

↵(x, ⇠;�2), 8 x, ⇠ 2 (a, c).

According to Lemma 2 in Section 4 of Chapter XIII in [42] (also, Theorem 2.3 in Part
IX of [14]), we can express the spectrum of R(L↵;�2) as

�(R(L↵;�2))\{0} =
n 1

�� �2
: � 2 �(L↵)

o
.

In particular, we see that L↵ has an eigenvalue on the interval (�1,�2) if and only ifR(L↵;�2)
has an eigenvalue on the interval (�1, (�1 � �2)�1), with corresponding algebraic and geo-
metric multiplicities as well. We can express this as

N
↵((�1,�2)) = N

↵,R((�1,
1

�1 � �2
)), (4.7)

where the right-hand side of (4.7) denotes a count, including multiplicities, of the eigenvalues
of R(L↵;�2) on the interval (�1, (�1 � �2)�1). Likewise,

N
↵
a,c((�1,�2)) = N

↵,R
a,c ((�1,

1

�1 � �2
)), (4.8)

where the right-hand side of (4.8) denotes a count, including multiplicities, of the eigenvalues
of R(L↵

a,c;�2) on the interval (�1, (�1 � �2)�1).
For ease of notation, we will denote by ⇧a,c : L

2
B1
((a, b),C2n) ! L

2
B1
((a, c),C2n) the

restriction operator

⇧a,cf = f

���
(a,c)

,

and we will denote by Pa,c : L2
B1
((a, b),C2n) ! L

2
B1
((a, b),C2n) the truncation operator

Pa,cf =

(
f in (a, c)

0 in (c, b).

With this notation, we can write (exploiting our Green’s function associated with L
↵)

R(L↵
a,c;�2)⇧a,cf = ⇧a,cR(L↵;�2)Pa,cf,

41



for all f 2 L
2
B1
((a, b),C2n). If we express L2

B1
((a, b),C2n) as a direct sum

L
2
B1
((a, b),C2n) = ⇧a,cL

2
B1
((a, b),C2n)� (I � ⇧a,c)L

2
B1
((a, b),C2n), (4.9)

then we can write

(R(L↵
a,c;�2)� 0)f =

⇣
R(L↵

a,c;�2)⇧a,cf

⌘
� 0

=
⇣
⇧a,cR(L↵;�2)Pa,cf

⌘
� 0 = Pa,cR(L↵;�2)Pa,cf.

(4.10)

(Cf. Corollary 3.3 in [20].)

Claim 4.2. For each f 2 L
2
B1
((a, b),C2n),

Pa,cR(L↵;�2)Pa,cf
c!b�
�! R(L↵;�2)f,

in L
2
B1
((a, b),C2n). I.e., Pa,cR(L↵;�2)Pa,c converges to R(L↵;�2) in the strong sense as

c ! b
�.

Proof. Writing I = Pa,c + (I � Pa,c), we can compute

kPa,cR(L↵;�2)Pa,cf �R(L↵;�2)fkB1

= kPa,cR(L↵;�2)Pa,cf � Pa,cR(L↵;�2)f � (I � Pa,c)R(L↵;�2)fkB1

 kPa,cR(L↵;�2)Pa,cf � Pa,cR(L↵;�2)fkB1 + k(I � Pa,c)R(L↵;�2)fkB1

= kPa,cR(L↵;�2)(Pa,c � I)fkB1 + k(I � Pa,c)R(L↵;�2)fkB1 .

For the first of these last two summands, we can write

kPa,cR(L↵;�2)(Pa,c � I)fkB1  kPa,cR(L↵;�2)kk(Pa,c � I)fkB1 .

Since �2 2 ⇢(L↵), kPa,cR(L↵;�2)k is bounded. Also,

k(Pa,c � I)fk2B1
=

Z b

c

(B1(x)f(x), f(x))dx.

Here, (B1(·)f(·), f(·)) 2 L
1((a, b),C2n) and we can conclude that

lim
c!b�

k(Pa,c � I)fkB1 = 0.

The summand k(I � Pa,c)R(L↵;�2)fkB1 can be handled similarly with R(L↵;�2)f (which
is in L

2((a, b),C2n)) replacing f .

As noted in [20] (during the proof of Theorem 3.6), we can use a slight restatement of
Lemma 5.2 from [19], along with the strong convergence established in Claim 4.2 just above,
to conclude that

N
↵,R((�1,

1

�1 � �2
))  lim inf

c!b�
N

↵,R
c ((�1,

1

�1 � �2
)), (4.11)

where the count on the right-hand side of (4.11) corresponds with the number of eigenvalues,
counted with multiplicity, that Pa,cR(L↵;�2)Pa,c has on the interval (�1, (�1 � �2)�1).
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Claim 4.3. For each c 2 (a, b),

�(R(L↵
a,c;�2)� 0) = �(R(L↵

a,c;�2)),

and so by virtue of (4.10)

�(Pa,cR(L↵;�2)Pa,c) = �(R(L↵
a,c;�2)).

In particular,

N
↵,R
c ((�1,

1

�1 � �2
)) = N

↵,R
a,c ((�1,

1

�1 � �2
)).

Proof. First, we check that

�p(R(L↵
a,c;�2)� 0) = �p(R(L↵

a,c;�2)).

For this, we observe that
R(L↵

a,c;�2)⇧a,c� = µ⇧a,c� (4.12)

for some � 2 L
2
B1
((a, b),C2n) if and only if

(R(L↵
a,c;�2)� 0)Pa,c� = µPa,c�, (4.13)

from which its clear that ⇧a,c� is an eigenfunction for R(L↵
a,c;�2) with eigenvalue µ if and

only if Pa,c� is an eigenfunction for R(L↵
a,c;�2)� 0 with eigenvalue µ.

Next, since L
↵
a,c is regular at both endpoints, its spectrum is entirely discrete. In par-

ticular, this means that if µ /2 �p(R(L↵
a,c;�2)) [ {0} then µ 2 ⇢(R(L↵

a,c;�2)). (Since L
↵
a,c is

unbounded, 0 2 �(R(L↵
a,c;�2)\�p(R(L↵

a,c;�2)).)
For µ 2 ⇢(R(L↵

a,c;�2)), the operator

R(L↵
a,c;�2)� µIL2

B1
((a,c),C2n)

maps L2
B1
((a, c),C2n) onto L

2
B1
((a, c),C2n). We claim that it follows that

(R(L↵
a,c;�2)� 0)� µIL2

B1
((a,b),C2n)

maps L
2
B1
((a, b),C2n) onto L

2
B1
((a, b),C2n). To see this, we take any f 2 L

2
B1
((a, b),C2n),

and we will identify  2 L
2
B1
((a, b),C2n) so that

⇣
(R(L↵

a,c;�2)� 0)� µIL2
B1

((a,b),C2n)

⌘
 = f. (4.14)

Since R(L↵
a,c;�2) � µIL2

B1
((a,c),C2n) maps L

2
B1
((a, c),C2n) onto L

2
B1
((a, c),C2n), we can find

� 2 L
2
B1
((a, c),C2n) so that

⇣
R(L↵

a,c;�2)� µIL2
B1

((a,c),C2n)

⌘
� = ⇧a,cf.

It follows that

 :=

(
� in (a, c)

�
1
µf in (c, b)

satisfies (4.14). This gives the claim.
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Using (respectively) (4.7), (4.11), Claim 4.3, (4.8), and (4.3) for the first five relations
below, we can now compute as follows:

N
↵((�1,�2)) = N

↵,R((�1,
1

�1 � �2
))

 lim inf
c!b�

N
↵,R
c ((�1,

1

�1 � �2
))

= lim inf
c!b�

N
↵,R
a,c ((�1,

1

�1 � �2
))

= lim inf
c!b�

N
↵
a,c((�1,�2))

= lim inf
c!b�

Mas(`↵(·;�1), `b(·;�2); [a, c])

= Mas(`↵(·;�1), `b(·;�2); [a, b)).

We conclude that
N

↵((�1,�2))  Mas(`↵(·;�1), `b(·;�2); [a, b)),

and this gives the claim of equality in Theorem 1.1. For this final observation, we note that
since �2 /2 �p(L↵), we cannot have a crossing point at x = a (cf. remarks about the bottom
shelf above), and so the interval [a, b) can be replaced by (a, b). ⇤

Remark 4.2. We see from the preceding discussion (especially (4.5)) that we have equality
in Theorem 1.1 if and only if

Mas(`↵(c;�1), `b(c; ·); [�1,�2]) = 0, (4.15)

for all c 2 (a, b) su�ciently close to b (su�ciently large if b = +1). In making this
observation, we’ve used the fact that for each c 2 (a, b), Mas(`↵(c;�1), `b(c; ·); [�1,�2]) is a
non-negative integer, so we can only have

lim
c!b�

Mas(`↵(c;�1), `b(c; ·); [�1,�2]) = 0

if (4.15) holds as described. By monotonicity as � varies, this last relation is true if and
only if

`↵(c;�1) \ `b(c;�) = {0}, 8� 2 [�1,�2), (4.16)

for all c 2 (a, b) su�ciently close to b (su�ciently large if b = +1). Here, the rotation is
clockwise, so �2 is excluded, since a crossing-point arrival as � increases to �2 would not
a↵ect the Maslov index.

4.2 Proof of Theorem 1.2

Similarly as in the proof of Theorem 1.1, we fix any pair �1,�2 2 R, �1 < �2 for which
�ess(L) \ [�1,�2] = ;. For the proof of Theorem 1.2, we let `b(x;�2) be as in the proof of
Theorem 1.1, and we let `a(x;�) denote the map of Lagrangian subspaces associated with
the frames Xa(x;�) constructed as in Lemma 2.11, except with the analysis on (a, c) rather
than (c, b). We will establish Theorem 1.2 by considering the Maslov index for `a(x;�) and
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`b(x;�2) along the Maslov box designated just below. As described in Section 3, this Maslov
index is computed as a spectral flow for the matrix

W̃ (x;�) = �(Xa(x;�) + iYa(x;�))(Xa(x;�)� iYa(x;�))
�1

⇥ (Xb(x;�2)� iYb(x;�2))(Xb(x;�2) + iYb(x;�2))
�1 (4.17)

(re-defined from Section 4.1).
In this case, the Maslov Box will consist of the following sequence of contours, specified

for some values c1, c2 2 (a, b), c1 < c2 to be chosen su�ciently close to a and b (respectively)
during the analysis: (1) fix x = c1 and let � increase from �1 to �2 (the bottom shelf); (2)
fix � = �2 and let x increase from c1 to c2 (the right shelf); (3) fix x = c2 and let � decrease
from �2 to �1 (the top shelf); and (4) fix � = �1 and let x decrease from c2 to c1 (the left
shelf). (The figure is similar to Figure 4.1).

Right shelf. In this case, our calculation along the right shelf detects intersections between
`a(x;�2) and `b(x;�2) as x increases from c1 to c2. By construction, `a(·;�2) will intersect
`b(·;�2) at some value x 2 [c1, c2] with dimension m if and only if �2 is an eigenvalue of L
with multiplicity m. In the event that �2 is not an eigenvalue of L, there will be no crossing
points along the right shelf. On the other hand, if �2 is an eigenvalue of L with multiplicity
m, then W̃ (x;�2) will have �1 as an eigenvalue with multiplicity m for all x 2 [c1, c2]. In
either case,

Mas(`a(·;�2), `b(·;�2); [c1, c2]) = 0. (4.18)

Bottom shelf. For the bottom shelf, we’re looking for intersections between `a(c1;�) and
`b(c1;�2) as � increases from �1 to �2. Since `a(x;�) corresponds with solutions that lie left
in (a, b), this leads to a calculation similar to the calculation of

Mas(`↵(c; ·), `b(c;�2); [�1,�2]),

which arose in our analysis of the top shelf for the proof of Theorem 1.1. For the moment,
the only thing we will note about this quantity is that due to monotonicity in � (following
similarly as in Section A.2), we have the inequality

Mas(`a(c1; ·), `b(c1;�2); [�1,�2])  0. (4.19)

Top shelf. For the top shelf, W̃ (c2;�) detects intersections between `a(c2;�) and `b(c2;�2)
as � decreases from �2 to �1. In this way, intersections correspond precisely with eigenvalues
of the restriction La,c2 of the maximal operator associated with (1.1) on (a, c2) to the domain

Da,c2 := {y 2 Da,c2,M : lim
x!a+

U
a(x;�0)

⇤
Jy(x) = 0, Xb(c2;�2)

⇤
Jy(c2) = 0}.

Similarly as in Section 2, we can check that La,c2 is a self-adjoint operator.
We can verify monotonicity along the top shelf almost precisely as Section A.2, and we

can conclude from this that

Na,c2([�1,�2)) = �Mas(`a(c2; ·), `b(c2;�2); [�1,�2]), (4.20)

where Na,c2([�1,�2)) denotes a count of the number of eigenvalues that La,c2 has on the
interval [�1,�2). (The inclusion of �1 and exclusion of �2 are precisely as discussed in the
proof of Theorem 1.1.)
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Similarly as with Claim 4.1, we obtain the relation

Mas(`a(c2; ·), `b(c2; ·); [�1,�2]) = Mas(`a(c2;�1), `b(c2; ·); [�1,�2])

+ Mas(`a(c2; ·), `b(c2;�2); [�1,�2]).
(4.21)

Recalling that N ([�1,�2)) denotes the number of eigenvalues that L has on the interval
[�1,�2), we can write

N ([�1,�2)) = �Mas(`a(c2; ·), `b(c2; ·); [�1,�2])

= �Mas(`a(c2;�1), `b(c2; ·); [�1,�2])�Mas(`a(c2; ·), `b(c2;�2); [�1,�2])

= Na,c2([�1,�2))�Mas(`a(c2;�1), `b(c2; ·); [�1,�2]).

(4.22)

Left shelf. Our analysis so far leaves only the left shelf to consider, and we observe that
it can be expressed as

�Mas(`a(·;�1), `b(·;�2); [c1, c2]).

Using path additivity and homotopy invariance, we can sum the Maslov indices on each shelf
of the Maslov Box to arrive at the relation

Na,c2([�1,�2)) = Mas(`a(·;�1), `b(·;�2); [c1, c2])�Mas(`a(c1; ·), `b(c1;�2); [�1,�2]). (4.23)

Using (4.22) and (4.23), we can now write

N ([�1,�2)) = Na,c2([�1,�2))�Mas(`a(c2;�1), `b(c2; ·); [�1,�2])

= Mas(`a(·;�1), `b(·;�2); [c1, c2])�Mas(`a(c1; ·), `b(c1;�2); [�1,�2])

�Mas(`a(c2;�1), `b(c2; ·); [�1,�2]).

(4.24)

Recalling the monotonicity relation (4.19), and noting likewise the inequality

Mas(`a(c2;�1), `b(c2; ·); [�1,�2])  0,

we can conclude the inequality

N ([�1,�2)) � Mas(`a(·;�1), `b(·;�2); [c1, c2]). (4.25)

The right-hand side of (4.25) is computed over the compact interval [c1, c2] on which (1.1) can
be viewed as a regular system, as analyzed in [24]. In [24], the authors show that the direction
of crossing points for such systems (under assumptions more general than those made here)
are all positive as x increases from c1 to c2. (See the statement and proof of Theorem 1.1 in
[24].) It follows that as c1 ! a

+ and c2 ! b
� the values Mas(`↵(·;�1), `b(·;�2); [c1, c2]) are

monotonically non-decreasing, and since N ([�1,�2)) is finite, we can conclude that the limit

lim
c1!a+

c2!b�

Mas(`↵(·;�1), `b(·;�2); [c1, c2]),

must exist, and in fact that it must be the case that this limit is obtained for all c1 su�ciently
close to a (su�ciently negative if a = �1) and all c2 su�ciently close to b (su�ciently large
if b = +1). As noted in Remark 1.3, we denote this limit by Mas(`↵(·;�1), `b(·;�2); (a, b)).
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In this way, the first assertion of Theorem 1.2 is obtained by taking a limit on both sides of
(4.25) as c1 ! a

+ and c2 ! b
�.

For the second assertion of Theorem 1.2 we additionally assume that �1,�2 /2 �p(L). Our
goal is to show that

N ((�1,�2))  Mas(`a(·;�1), `b(·;�2); (a, b)), (4.26)

and we note from (4.24) that this is implied if both of the following two conditions hold:

`a(c1;�) \ `b(c1;�2) = {0}, 8� 2 [�1,�2), (4.27)

for all c1 2 (a, b) su�ciently close to a (su�ciently negative if a = �1), and

`a(c2;�1) \ `b(c2;�) = {0}, 8� 2 [�1,�2), (4.28)

for all c2 2 (a, b) su�ciently close to b (su�ciently large if b = +1). (The inclusion of �1 in
the intervals and exclusion of �2 is discussed in Remark 4.2.)

We proceed by dividing the analysis into two half-interval problems. For this, we first
fix any c 2 (a, b), and we introduce a new operator Lc,b as the restriction of Lc,b,M to the
domain

Dc,b := {y 2 Dc,b,M : Xa(c;�1)
⇤
Jy(c) = 0, lim

x!b�
U

b(x;�0)
⇤
Jy(x) = 0}.

We can view Lc,b as a special case of the operator L↵
a,b analyzed in Section 4.1, with a replaced

by c and ↵ replaced by Xa(c;�1)⇤J . It follows that `↵(x;�1) from Section 4.1 is replaced by
`a(x;�1), so that by virtue of Remark 4.2, we can conclude that

`a(c2;�1) \ `b(c2;�)) = {0}, 8� 2 [�1,�2),

for all c2 2 (a, b) su�ciently close to b (su�ciently large if b = +1). This is precisely (4.28).
Likewise, we introduce an operator La,c as the restriction of La,c,M to the domain

Da,c := {y 2 Dc,b,M : lim
x!a+

U
a(x;�0)

⇤
Jy(x) = 0, Xb(c;�2)

⇤
Jy(c) = 0}.

Proceeding similarly as in Section 4.1, we find that in this case

`a(c1;�) \ `b(c1;�2)) = {0}, 8� 2 [�1,�2),

for all c1 2 (a, b) su�ciently close to a (su�ciently negative if a = �1). This is precisely
(4.27).

As already noted, (4.27) and (4.28) together imply (4.26), and this completes the proof
of Theorem 1.2. ⇤

5 Applications

In this section, we will discuss two specific applications of our main results, though we first
need to make one further observation associated with Niessen’s approach. We recall that the
key element in Niessen’s approach is an emphasis on the matrix

A(x;�) =
1

2Im�
�(x;�)⇤(J/i)�(x;�),
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where �(x;�) denotes a fundamental matrix for (1.1), and we clearly require Im� 6= 0. We
saw in Section 2 that if {µj(x;�)}2nj=1 denote the eigenvalues of A(x;�), then the number of
solutions of (1.1) that lie left in (a, b) is precisely the number of these eigenvalues with a
finite limit as x approaches a, while the number of solutions of (1.1) that lie right in (a, b)
is precisely the number of these eigenvalues with a finite limit as x approaches b. Under
Assumption (C), these numbers are constant in � on the set C\R, and so we can categorize
the limit-case (i.e., limit-point, limit-circle, or limit-m) of (1.1) at x = a (resp. x = b) by
fixing some � 2 C\R and computing the values {µj(x;�)}2nj=1 as x tends to a (resp. as x

tends to b). (This is precisely what we will do in our examples below.) Furthermore, we
have additionally seen in Section 2 that for each µj(x;�) (with or without a finite limit),
we can associate a (sub)sequence of eigenvectors {vj(xk;�)}1k=1 that converges, as xk ! a

+,
to some v

a
j (�) that lies on the unit circle in C2n, and similarly for a sequence xk ! b

�. If
µj(x;�) has a finite limit as x ! a

+, then �(x;�)vaj (�) will lie left in (a, b), while if µj(x;�)
has a finite limit as x ! b

�, then �(x;�)vbj(�) will lie right in (a, b).
In practice, we would like to extend these ideas to values � 2 R, and for this, we replace

A(x;�) with
B(x;�) := �(x;�)⇤J@��(x;�). (5.1)

If we di↵erentiate (5.1) with respect to x, we find that

B
0(x;�) = �(x;�)⇤B1(x)�(x;�), (5.2)

and upon integrating we see that we can alternatively express B(x;�) as

B(x;�) =

Z x

c

�(⇠;�)⇤B1(⇠)�(⇠;�)d⇠, (5.3)

where we’ve observed that since �(c;�) = I2n, we have B(c;�) = 0. Recalling that B1(x)
is self-adjoint for a.e. x 2 (a, b), we see from this relation that B(x;�) is self-adjoint for
all x 2 (a, b). Consequently, the eigenvalues of B(x;�) must be real-valued, and we denote
these values {⌫j(x;�)}2nj=1. Since B(c;�) = 0, we can conclude that ⌫j(c;�) = 0 for all
j 2 {1, 2, . . . , 2n}, and all � 2 R. In addition, according to (5.2), along with Condition (B),
for each fixed � 2 R, the eigenvalues {⌫j(x;�)}2nj=1 will be non-decreasing as x increases. As
x ! b

�, each eigenvalue ⌫j(x;�) will either approach +1 or a finite limit. In the latter case,
we set

⌫
b
j (�) := lim

x!b�
⌫j(x;�).

Likewise, as x ! a
+, each eigenvalue ⌫j(x;�) will either approach �1 or a finite limit. In

the latter case, we set
⌫
a
j (�) := lim

x!a+
⌫j(x;�).

Comparing the relations (2.4) and (5.3), we see that the proof of Lemma 2.1 can be
adapted with almost no changes to establish the following lemma.

Lemma 5.1. Let Assumptions (A) and (B) hold, and let � 2 [�1,�2] be fixed. Then the
dimension ma(�) of the subspace of solutions to (1.1) that lie left in (a, b) is precisely the
number of eigenvalues ⌫j(x;�) 2 �(B(x;�)) that approach a finite limit as x ! a

+. Likewise,
the dimension mb(�) of the subspace of solutions to (1.1) that lie right in (a, b) is precisely
the number of eigenvalues ⌫j(x;�) 2 �(B(x;�)) that approach a finite limit as x ! b

�.
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Remark 5.1. We emphasize that as opposed to the case � 2 C\R, we cannot conclude
from these considerations that ma(�),mb(�) � n. Rather, in this case we conclude these
inequalities for all � 2 [�1,�2] from Lemma 2.9 (under assumptions (A), (B), and (C)).
Here, as usual, we are taking [�1,�2] \ �ess(L) = ; (or, likewise, [�1,�2] \ �ess(L↵) = ;).

If, for each x 2 (a, b), we let {wj(x;�)}2nj=1 denote an orthonormal collection of eigenvec-
tors associated with the eigenvalues {⌫j(x;�)}2nj=1, then as in the proof of Lemma 2.1, we
can find (for each j 2 {1, 2, . . . , 2n}) a sequence {wj(xk;�)}1k=1 that converges, as xk ! a

+,
to some w

a
j (�) on the unit circle in C2n, and likewise we can find a sequence {wj(xk;�)}1k=1

that converges, as xk ! b
�, to some w

b
j(�) on the unit circle in C2n. Moreover, if ⌫j(x;�)

has a finite limit as x ! a
+, then �(x;�)wa

j (�) will lie left in (a, b), while if ⌫j(x;�) has a
finite limit as x ! b

�, then �(x;�)wb
j(�) will lie right in (a, b).

These considerations provide a practical method for constructing the frames Xa(x;�)
and Xb(x;�) that we’ll need in order to implement Theorems 1.1 and 1.2. Most directly,
if (1.1) is limit-point at x = a (respectively, x = b), then the procedure described in the
previous paragraph will provide precisely n linearly independent solutions to (1.1) that lie
left in (a, b) (respectively, right in (a, b)), and these can be taken to comprise the columns of
Xa(x;�) (respectively, Xb(x;�)). See Section 5.1 for an application in this setting (i.e., the
limit point setting).

More generally, Lemma 2.1 can be used to construct left and right lying solutions of (1.1)
for some �0 2 C\R, and these can then be used to specify the Niessen elements described in
the lead-in to Lemma 2.3. I.e., the matrices Ua(x;�0) and U

b(x;�0) discussed in Section 2
can be constructed in this way. Working, for example, with the solutions constructed above
for � 2 R that lie left in (a, b), we can identify n linearly independent solutions {ua

j (x;�)}
n
j=1

that satisfy
lim
x!a+

U
a(x;�0)

⇤
Ju

a
j (x;�) = 0.

This collection {u
a
j (x;�)}

n
j=1 can be taken to comprise the columns of Xa(x;�), and we can

proceed similarly for x = b. See Section 5.2 for an application in this setting (i.e., the limit
circle setting).

We now turn to our applications.

5.1 Counting Eigenvalues in Spectral Gaps

In this section, we discuss (single) Schrödinger equations

H� := ��
00 + V (x)� = ��, in (0,1)

↵1�(0) + ↵2�
0(0) = 0,

where V (x) is a bounded, real-valued potential obtained by compactly perturbing a periodic
potential V0(x), and ↵1,↵2 2 R are not both 0. In this case, it’s well known that H is
self-adjoint when viewed as an operator on the domain

dom(H) = {� 2 L
2((0,1),C) : �,�0

2 ACloc([0,1),C),
H� 2 L

2((0,1),C), ↵1�(0) + ↵2�
0(0) = 0}.
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If we set
H0� := ��

00 + V0(x)� = ��, in (0,1),

along with any self-adjoint boundary condition at x = 0, then �ess(H0) can be expressed as
a union of closed intervals

�ess(H0) =
1[

j=1

[aj, bj],

or in some special cases as a similar finite union that includes an unbounded interval
[bN ,+1). (See, e.g., [32] and the references cited there.) The intervals {[aj, bj]}1j=1 are
referred to as spectral bands for H0, and the intervening intervals [bj, aj+1] are referred to as
spectral gaps. (It may be the case that bj = aj+1, leaving no gap.) In addition, if V0(x) is per-
turbed to a new potential V (x) = V0(x)+V1(x), where V1 2 L

1((0,1),R), then we will have
�ess(H) = �ess(H0). (See, for example, Corollary XIII.4.2 in [42].) However, it may be the
case that H has additional eigenvalues in the spectral gaps, including up to an infinite num-
ber accumulating at an endpoint of essential spectrum. Let [bj, aj+1], bj < aj+1 denote some
particular spectral gap. Then our approach allows us to fix any interval (�1,�2) 2 [bj, aj+1],
�1,�2 /2 �(H) and determine the number of eigenvalues on this interval.

As a specific example, taken from [1] (so that we have known results to compare with),
we consider H with

V (x) = V0(x) + V1(x) = sin(x) +
60

1 + x2
, ↵1 = cos(⇡/8), ↵2 = sin(⇡/8).

In [1], the authors identify the first two spectral gaps for H0 as

J1 = (�1,�.3785), J2 = (�.3477, .5948),

and they verify that �.3477 serves as an accumulation point for eigenvalues of H in the
interval J2. In addition, the authors identify the 13 right-most eigenvalues of H in this
interval. (In these calculations, the authors proceed with a higher degree of precision than
given above; see [1] for the full results.)

In order to place this equation in our setting, we set y =
�
y1
y2

�
=

�
�
�0

�
, from which we

arrive at (1.1) with

B0(x) + �B1(x) =

✓
� sin(x)� 60

1+x2 0
0 1

◆
+ �

✓
1 0
0 0

◆
. (5.4)

With these choices of B0(x) and B1(x), (1.1)–(5.4) is regular at x = 0 and of course singular
at x = +1. (I.e., we are in the case in which (A)0 holds.) In order to determine if (1.1)–
(5.4) is limit-point or limit-circle at +1, we fix �0 = i (arbitrarily selected as an element
�0 2 C\R) and numerically generate the eigenvalues of A(x;�0) as x increases. (In this
case, we initialize the fundamental matrix �(x;�0) at x = 0.) We know from our general
theory developed in Section 2 that the eigenvalues {µj(x;�0)}2j=1 of A(x;�0) will satisfy
(with our choice of indexing) µ1(x;�0) < 0 < µ2(x;�0) for all x 2 (0,1). As x increases,
these eigenvalues will both monotonically increase, and so µ1(x;�0) will certainly approach
a finite limit (since it is bounded above by 0). In this way, the limit case is determined by
whether µ2(x;�0) approaches a finite limit as x tends to +1. Computing numerically, we
find µ2(5;�0) = 1.1543⇥ 109, suggesting that H is limit-point at +1.
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Remark 5.2. Throughout this section, our numerical calculations are intended only to il-
lustrate the theory, and we make no e↵ort to rigorously justify either the values we obtain or
the conclusions we draw from them. For example, in this last calculation, we have not at-
tempted to find a rigorous error interval for the value of µ2(5;�0), and we o↵er no additional
direct justification that µ2(x;�0) is indeed tending to +1 as x tends to +1. Nonetheless,
we observe that in this case it follows from Corollary 1 in Chapter 9 of [11] that H is indeed
limit-point at +1, and from this we can conclude that this limiting behavior must be qualita-
tively correct. In all cases, the calculations are carried out with built-in MATLAB functions,
primarily ode45.m.

Since (1.1)–(5.4) is limit-point at +1, our construction of the self-adjoint operator asso-
ciated with (1.1)–(5.4) yields a single self-adjoint operator L↵ with domain

D
↵ = {y 2 DM : ↵y(0) = 0}.

(See Claim 2.3 regarding the absence of a condition at b = +1.)

Remark 5.3. It’s straightforward to check that H and L
↵ have precisely the same sets of

essential spectrum, and also the same sets of discrete eigenvalues.

Since (1.1)–(5.4) is regular at x = 0, we can find X↵(x;�1) by solving the initial value
problem

JX0
↵ = (B0(x) + �1B1(x))X↵; X↵(0;�1) =

✓
� sin(⇡/8)

cos(⇡/8)

◆
.

For Xb(x;�2), our observation that H is limit-point at +1 allows us to conclude that
Xb(x;�2) must be the unique (up to constant multiple) solution of JX0

b = (B0(x)+�1B1(x))Xb

that lies right in (a, b). In order to find Xb(x;�2), we compute the eigenvalues of B(x;�2)
for (relatively) large values of x. Specifically, we will take �2 = .2, and for this value we
find ⌫1(5;�2) = .0039 and ⌫2(5;�2) = 1.0724 ⇥ 1015. The unit eigenvector associated with
⌫1(5;�2) is

w1(5;�2) =

✓
�.1287022477

.9916832818

◆
.

Regarding these values, our only justification for keeping so many decimal places is that
the value of w1(x;�2) remains consistent to this many places as we continue to increase x

beyond 5. We emphasize that while our general theory requires the selection of a convergent
subsequence of eigenvectors, the actual (numerically generated) sequence of eigenvectors
converges quickly and with extraordinary consistency. According to our general theory, we
can take Xb(x;�2) = �(x;�2)wb

1(�2), and we will approximate the limit-obtained vector
w

b
1(�2) with w1(5;�2).
Equipped now with frames X↵(x;�1) and Xb(x;�2), we can readily compute

Mas(`↵(·;�1), `b(·;�2); (0,+1)) (5.5)

as a spectral flow for W̃ (x;�1) as specified in (4.1). (In this case, W̃ (x;�1) is a scalar, and
so serves as its own eigenvalue for the spectral flow.)
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For this example, we have the advantage of knowing in advance accurate values for the
13 right-most eigenvalues of H on the interval J2. The right-most five of these are as follows:

�.3154, �.2946, �.2542, �.1613, .1332,

obtained from [1], in which the values are actually computed to substantially higher preci-
sion than presented here. We will illustrate our approach by counting the right-most four
eigenvalues, and also by providing the full Maslov box associated with this calculation. For
this, we will keep �2 = .2 as above, and set �1 = �.3100. Computing (5.5) via a spectral flow
for W̃ (x;�1), we identify crossing points at 14.5, 20.2, 26.8, and 33.7, after which W̃ (x;�1)
begins to oscillate through values in the third quadrant of the complex plane. (These cross-
ing points can be obtained with much greater precision, but there’s no advantage in this.)
We conclude that in this case

N
↵((�1,�2)) = Mas(`a(·;�1), `b(·;�2); (0,+1)) = 4,

as expected. This is the entirety of the necessary calculation associated with the number
of eigenvalues that H has on the interval (�.31, .2), but in order to illustrate the idea,
we provide the full Maslov box associated with this calculation, along with the relevant
spectral curves (see Figure 5.1, created with MATLAB.) In this figure, we see clearly that
each spectral curve intersects the boundary of the Maslov box precisely twice, once along
the left shelf and once along the top shelf. Intersections along the top shelf correspond
with eigenvalues of H, and so it is exactly this correspondence (via the spectral curves)
that allows us to count crossing points along the left shelf rather than along the top shelf.
We emphasize that, strictly speaking, the top shelf should be associated with a limit as
x ! +1, but the dynamics are already thoroughly apparent for x = 50, as depicted. As
discussed in [24], the monotonicity of the spectral curves in this figure is a general feature of
renormalized oscillation theory, and follows from monotonicity in � along horizontal shelves
and monotonicity in x on vertical shelves.

5.2 Energy Levels for the Hydrogen Atom

When Schrödinger’s equation for the hydrogen atom is expressed in spherical coordinates
and analyzed by separation of variables, the resulting radial equation can be expressed in
the form

H� := �
1

x2
(x2

�
0)0 �

�

x
�+

`(`+ 1)

x2
� = ��, (5.6)

where � > 0 is a physical constant and ` is an integer associated with angular momentum
(see, e.g., Chapter 12 in [18]). The natural domain for � in (5.6) is (0,1), and it’s clear
that H is singular at both endpoints. In this case, we postpone specifying a precise domain
for H, though see Remark 5.6 at the end of this section for full details along these lines.

It’s well known that any self-adjoint extension of the minimal operator associated with
H has essential spectrum [0,+1) (see, e.g., [40]), and in addition the eigenvalues of H are
typically reported in physics literature to be

�n = �(
�

2n
)2, n = `+ 1, `+ 2, . . . (5.7)
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Figure 5.1: The Full Maslov Box for H on [�.31, .2].

(see, e.g., [18]). In this section we would like to use our framework to understand how these
values should be interpreted. For specificity, we will take � = 4, and we’ll focus on the case
` = 0, which is particularly interesting from our point of view because H is limit-circle at
x = 0 in this case, whereas it is limit-point at x = 0 for all ` � 1.

In order to place (5.6) in our setting, we set y =
�
y1
y2

�
=

�
�

x2�0

�
, from which we arrive at

(1.1) with

B0(x) + �B1(x) =

✓
�x� `(`+ 1) 0

0 1
x2

◆
+ �

✓
x
2 0
0 0

◆
. (5.8)

This puts us in the setting of Assumptions (A), (B), and (C), for which we can construct
a self-adjoint restriction L for the maximal operator LM associated with (1.1)–(5.8).

We begin by setting �0 = i and verifying (numerically) that (1.1)–(5.8) is limit-circle at
x = 0. In this case, we initialize the fundamental matrix �(x;�0) at x = 1, and we compute
the eigenvalues of A(x;�0), as x tends toward 0. At x = 10�5, we find µ1(10�5;�0) = �.7478
and µ2(10�5;�0) = .3343, with both values stable as x continues to decrease, suggesting that
H is indeed limit-circle at x = 0. Respectively, we find the associated unit eigenvectors of
A(10�5;�0) to be

v1(10
�5;�0) =

✓
.7834

�.0001 + .6216i

◆
, v2(10

�5;�0) =

✓
.0001 + .6216i

.7834

◆
,

and we take these vectors as approximations for the limit-obtained eigenvectors va1(�0) and
v
a
2(�0).
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Remark 5.4. The clear relation between the vectors v1(10�5;�0) and v2(10�5;�0) is a con-
sequence of (2.10). To see this, we first observe that since B0(x) and B1(x) are real-valued in
this case, we can take v1(10�5;�0) to be an eigenvector associated with µ1(10�5;�0). In this
way, our choice of v1(10�5;�0) will be a constant multiple of v1(10�5;�0), say v1(10�5;�0) =
cv1(10�5;�0). But from the first relation in (2.10) we can write

v2(10
�5;�0) = (J/i)v1(10

�5;�0) = c

✓
�.0001i+ .6216

�.7834i

◆
= �ic

✓
.0001 + .6216i

.7834

◆
.

The choice c = i gives v2(10�5;�0) as stated.

As discussed in Section 2, there will be a single Niessen subspace for this problem,
and it will be spanned by two elements that both lie left in (0,+1), namely y

a
1(x;�0) =

�(x;�0)va1(�0) and y
a
2(x;�0) = �(x;�0)va2(�0). In order to specify our boundary condition

at x = 0, we also need to compute

⇢ =
p

�µ1(�0)/µ2(�0) = 1.4956,

and select some � 2 C with |�| = ⇢. (See the discussion leading into Lemma 2.3.) Given
this choice, we will specify our boundary condition via the element

U
a(x;�0) = �(x;�0)(v

a
1(�0) + �v

a
2(�0)).

We emphasize that each choice of � from the circle |�| = ⇢ will correspond with a di↵erent
boundary condition, and so with a di↵erent self-adjoint restriction of LM . In order to fix a
specific case, we will take � to be the real value �1 = 1.4956, where the subscript anticipates
that we will later consider an alternative choice.

Next, we fix �1 = �5, and construct a frame Xa(x;�1) satisfying

JX0
a = (B0(x) + �1B1(x))Xa; lim

x!a+
U

a(x;�0)
⇤
JXa(x;�1) = 0. (5.9)

In order to do this, we work with the matrix B(x;�1), for which we compute the eigenvalues
{⌫j(x;�1)}2j=1 and the associated eigenvectors {wj(x;�1)}2j=1 as x tends to 0. Taking an
approximation obtained by evaluating B(x;�1) at x = 10�5, we obtain the approximate
values ⌫a1 (�1) = �.4205, ⌫a2 (�1) = �.1106, with associated approximate limit-obtained unit
vectors

w
a
1(�1) =

✓
�.8615

.5077

◆
, w

a
2(�1) =

✓
�.5077

�.8615

◆
.

We can now compute Xa(x;�1) as a linear combination

Xa(x;�1) = �(x;�1)(c1w
a
1(�1) + c2w

a
2(�1)),

for some appropriate constants c1 and c2. In particular, c1 and c2 are determined by the
limit specified in (5.9). We can express this as

c1 lim
x!a+

U
a(x;�0)

⇤
J�(x;�1)w

a
1(�1) + c2 lim

x!a+
U

a(x;�0)
⇤
J�(x;�1)w

a
2(�1) = 0.
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We approximate the limits by evaluation at x = 10�5 to obtain

lim
x!a+

U
a(x;�0)

⇤
J�(x;�1)w

a
1(�1) ⇠= �1.2050 + 1.2050i

lim
x!a+

U
a(x;�0)

⇤
J�(x;�1)w

a
2(�1) ⇠= �.6139 + .6139i.

It follows immediately that we can choose c1 and c2 to be c1 = 1, c2 = (�1.2050 +
1.2050i)/(�.6139 + .6139i) = �1.9629. We conclude that

Xa(x;�1) = �(x;�1)w
a(�1); w

a(�1) =

✓
.0613

.9981

◆
,

where w
a(�1) has been normalized to have unit length.

We now turn to the right endpoint b = +1. If we evaluate A(x; i) at x = 25, we obtain
eigenvalues µ1(25; i) = 1.9352 ⇥ 10�22 and µ2(25; i) = 4.6925 ⇥ 1011. This indicates that
µ2(x; i) is tending toward +1 as x increases to +1, and we conclude that (1.1)–(5.8) is
limit-point at b = +1. This means that no additional boundary condition is necessary at
b = +1. We will denote by L�1 the operator obtained from LM by adding our choice of
boundary condition taken above at the left endpoint.

Remark 5.5. Similarly as with our first application, these calculations have not been rigor-
ously justified, but the limit-circle/point conclusions have been rigorously justified elsewhere.
In particular, if we adopt the change of variables � =  /x, then (5.6) with ` = 0 becomes

H := � 
00
�
�

x
 = � ,

which is known to be limit-circle at x = 0 and limit-point at +1 (see, e.g., [13]).

At this point, we have precisely specified a self-adjoint restriction L�1 of LM associated
with (1.1)–(5.8); namely, we restrict the maximal operator LM to the domain

D�1 := {y 2 DM : lim
x!0�

U
a(x;�0)

⇤
Jy(x) = 0},

with no condition required at b = +1, because LM is limit-point at that endpoint.
In an e↵ort to count the first three eigenvalues of H, we will set �2 = �3/8, and in

order to compute Xb(x;�2), we will compute the eigenvalues and eigenvectors of B(x;�2)
as x tends toward +1. Taking x = 40 in this case, we find ⌫1(40;�3/8) = 6.3054 and
⌫2(40;�3/8) = 3.7724⇥ 1011. The unit eigenvector associated with ⌫1(40;�3/8) is

w1(40;�3/8) =

✓
�.3357895545

.9419370335

◆
,

where similarly as with our previous application, the number of decimals given is simply an
indication of the consistent values as x continues to increase. We use w1(40;�3/8) as an
approximation of wb

1(�3/8), and we set Xb(x;�2) = �(x;�2)wb
1(�3/8).

Equipped now with frames Xa(x;�1) and Xb(x;�2), we can readily compute

Mas(`a(·;�1), `b(·;�2); (0,+1)) (5.10)
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as a spectral flow for the matrix W̃ (x;�1) as specified in (4.17). We find crossing points at
approximately x = 1.95 and x = 5.00, after which the value of W̃ (x;�1) remains near �1,
without crossing, as x continues to increase. We conclude that H�1 has two eigenvalues on
the interval [�5,�3/8].

Naively, based on (5.7) with ` = 0 and � = 4, we might have expected to find three eigen-
values on the interval [�5,�3/8] (namely, �4, �1, �4/9), but we recall that the eigenvalues
given in (5.7) correspond with a particular choice of boundary condition (based on physi-
cal considerations). In particular, the argument from physics goes roughly as follows. For
` = 0, we can find a basis for the solutions of (5.6) that includes one solution that remains
bounded as x tends to 0 and one solution that does not (and both of which correspond via
the above relation y =

�
y1
y2

�
=

�
�

x2�0

�
with functions that lie left in (0,+1)). Based on phys-

ical arguments, the unbounded solution is generally eliminated, and this e↵ectively selects
a particular left-hand boundary condition. Precisely, this physical argument asserts that we
need to identify a fixed vector w 2 C2 so that Xa(x;�1) = �(x;�1)w remains bounded as
x approaches 0. By a straightforward minimization argument, we find w =

�
.7121
�.7020

�
. This

solution corresponds with a particular choice of �. In particular, we can identify the value
of � 2 C, |�| = ⇢ so that

lim
x!0+

⇣
�(x;�0)(v1(�0) + �v2(�0))

⌘⇤
J�(x;�1)w = 0.

We can approximate � by setting x = 10�5 and computing

�̄ ⇠= �
v1(�0)⇤�(x;�0)⇤J�(x;�1)w

v2(�0)⇤�(x;�0)⇤J�(x;�1)w
= .2952� 1.4663i =) � ⇠= .2952 + 1.4663i.

Using this choice of �, which we denote �2, leads to a new boundary condition, specified via
U

a(x;�0) = �(x;�0)(v1(�0)+�2v2(�0)), and consequently to a new operator L�2 . Computing
(5.10) in this case, we count three eigenvalues by virtue of crossing points at .68, 2.00, and
5.00.

We conclude with the following remark, addressing some details that have been set aside
during the discussion of this application.

Remark 5.6. It’s natural to view H as an operator on a weighted Hilbert space L2
x2((0,1),C)

with inner product

h�, ix2 =

Z +1

0

x
2
�(x) ̄(x)dx.

With this specification, H is self-adjoint on the domain

dom(H) =
n
� 2 L

2
x2((0,1),C) : �,�0

2 ACloc((0,1),C),

H� 2 L
2
x2((0,1),C), lim

x!0+

⇣
�(x;�0)(v1(�0) + �v2(�0))

⌘⇤
J

✓
�(x)

x2�0(x)

◆
= 0

o
.

Likewise, the operator H from Remark 5.5 is self-adjoint on the domain

dom(H) =
n
 2 L

2((0,1),C) :  , 0
2 ACloc((0,1),C),

H 2 L
2((0,1),C), lim

x!0+

⇣
 (x;�0)(v1(�0) + �v2(�0))

⌘⇤
J

✓
 (x)

 0(x)

◆
= 0

o
,
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where  (x;�) is a fundamental matrix associated with H,

J 0 = B̃(x;�) ;  (1;�) =

✓
1 0
1 1

◆
, B̃(x;�) =

✓
�
x + � 0
0 1

◆
.

With these precise specifications, it’s straightforward to verify that H and L (the latter
constructed as in Lemma 1.1) have precisely the same sets of essential spectrum, and also
the same sets of discrete eigenvalues. In addition, these spectral sets also agree with their
counterparts for H.

A Appendix

In this appendix, we include a full derivation of our Green’s function G
↵(x, ⇠;�) associated

with the operator L↵, and we also provide details on the monotonicity (in �) arguments from
the proofs of Theorems 1.1 and 1.2.

A.1 The Green’s Function

During the proof of Lemma 2.10, we made use of a Green’s function associated with the
operator L�

c,b, and in our proof of Theorem 1.1, we will make brief use of e↵ectively the same
Green’s function, with L

�
c,b replaced by L

↵. For completeness, we include in the current
section a full construction of this Green’s function. Precisely, we assume (A), (A)0, (B),
and (C) all hold, and for any fixed � 2 R\⇢(L↵) we construct the Green’s functionG

↵(x, ⇠;�)
for the equation

(L↵
� �I)y = f. (A.1)

This will allow us to express the action of the resolvent operator

R(L↵;�) = (L↵
� �I)�1

as

R(L↵;�)f =

Z b

a

G
↵(x, ⇠;�)B1(⇠)f(⇠)d⇠.

Equation (A.1) is equivalent to the ODE

Jy
0
� (B0(x) + �B1(x))y = B1(x)f, y 2 D

↵
, (A.2)

which we can solve with variation of parameters. For this, we let �(x;�) denote a funda-
mental matrix for (1.1), initialized by �(a;�) = I2n, and we look for solutions to (A.2) of
the form y(x;�) = �(x;�)v(x;�), where v(x;�) is a vector function to be determined. Com-
puting directly, we find that this leads to the relation J�v0 = B1f . Recalling (2.7) (with
� 2 R), we see that

(J�(x;�))�1 = �J�(x;�)⇤,

allowing us to write
v
0(x;�) = �J�(x;�)⇤B1(x)f(x).
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Upon integration, we obtain

v(x;�) = �

Z x

a

J�(⇠;�)⇤B1(⇠)f(⇠)d⇠ + k(�),

for some vector k(�) independent of x, and we conclude

y(x;�) = ��(x;�)

Z x

a

J�(⇠;�)⇤B1(⇠)f(⇠)d⇠ + �(x;�)k(�). (A.3)

In order to identify k(�), we impose the boundary conditions associated with D
↵. First,

for the boundary condition at x = a, we set x = a in (A.3) to see that ↵y(a) = 0 becomes
↵k(�) = 0, which we can express as

(J↵⇤)⇤Jk(�) = 0. (A.4)

For the boundary condition at b, we have

lim
x!b�

U
b(x;�0)

⇤
Jy(x) = 0. (A.5)

If we let U
b(x;�) denote the 2n ⇥ n matrix comprising as its columns the basis elements

{u
b
j(x;�)}

n
j=1 described in Lemma 2.9, then by construction we have

lim
x!b�

U
b(x;�0)

⇤
JU

b(x;�) = 0. (A.6)

If we alternatively impose the boundary condition

lim
x!b�

U
b(x;�)⇤Jy(x) = 0, (A.7)

then by the Lagrangian property we are e↵ectively looking for a Green’s function that can be
expressed in terms of U b(x;�) for a < ⇠ < x < b. It follows from (A.6) that G↵(x, ⇠;�) will
then satisfy the required boundary condition (A.5) (which can be checked directly with our
final form of the Green’s function). In addition, we note that since the elements {ub

j(x;�)}
n
j=1

are necessarily linearly independent, there must exist a rank-n 2n⇥ n matrix Rb(�) so that
U

b(x;�) = �(x;�)Rb(�).
We proceed now by multiplying (A.3) on the left by U

b(x;�)⇤J , giving

U
b(x;�)⇤Jy(x;�) = �U

b(x;�)⇤J�(x;�)

Z x

a

J�(⇠;�)⇤B1(⇠)f(⇠)d⇠

+ U
b(x;�)⇤J�(x;�)k(�)

=

Z x

a

Rb(�)⇤�(⇠;�)⇤B1(⇠)f(⇠)d⇠ +Rb(�)⇤Jk(�),

where we’ve used the identity (2.7). By construction, �(·;�)Rb(�) 2 L
2
B1
((a, b),C2n), so in

the limit as x ! b
�, we obtain the relation

Z b

a

Rb(�)⇤�(⇠;�)⇤B1(⇠)f(⇠)d⇠ +Rb(�)⇤Jk(�) = 0. (A.8)
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Combining (A.4) and (A.8), we obtain the system
✓
(J↵⇤)⇤

Rb(�)⇤

◆
Jk(�) =

✓
0

�
R b

a R
b(�)⇤�(⇠;�)⇤B1(⇠)f(⇠)d⇠

◆
. (A.9)

We set
E(�) :=

�
J↵

⇤ Rb(�)
�
,

and we observe that if � /2 �(L↵) then E(�) is invertible. This is because U
a(x;�) =

�(x;�)J↵⇤ and U
b(x;�) = �(x;�)Rb(�), so that

U
a(x;�)⇤JU b(x;�) = (J↵⇤)⇤JRb(�).

For � /2 �ess(L↵) the left-hand side of this last relation is non-singular if and only if � /2 �p(L↵)
(because � /2 �p(L↵) if and only if the Lagrangian subspaces with frames U

a(x;�) and
U

b(x;�) do not intersect), and the right-hand side of this last relation is non-singular if and
only if E(�) is non-singular. Accordingly, we can solve (A.9) with

k(�) = J(E(�)⇤)�1

Z b

a

�
0 Rb(�)

�⇤
�(⇠;�)⇤B1(⇠)f(⇠)d⇠.

Upon substitution back into (A.3), we obtain

y(x;�) = ��(x;�)

Z x

a

J�(⇠;�)⇤B1(⇠)f(⇠)d⇠

+ �(x;�)J(E(�)⇤)�1

Z b

a

�
0 Rb(�)

�⇤
�(⇠;�)⇤B1(⇠)f(⇠)d⇠

= ��(x;�)J(E(�)⇤)�1
E(�)⇤

Z x

a

�(⇠;�)⇤B1(⇠)f(⇠)d⇠

+ �(x;�)J(E(�)⇤)�1

Z b

a

�
0 Rb(�)

�⇤
�(⇠;�)⇤B1(⇠)f(⇠)d⇠.

Continuing with this calculation, we next see that

y(x;�) = ��(x;�)J(E(�)⇤)�1
�
J↵

⇤ 0
�⇤

Z x

a

�(⇠;�)⇤B1(⇠)f(⇠)d⇠

� �(x;�)J(E(�)⇤)�1
�
0 Rb(�)

�⇤
Z x

a

�(⇠;�)⇤B1(⇠)f(⇠)d⇠

+ �(x;�)J(E(�)⇤)�1
�
0 Rb(�)

�⇤
Z b

a

�(⇠;�)⇤B1(⇠)f(⇠)d⇠

= ��(x;�)J(E(�)⇤)�1
�
J↵

⇤ 0
�⇤

Z x

a

�(⇠;�)⇤B1(⇠)f(⇠)d⇠

+ �(x;�)J(E(�)⇤)�1
�
0 Rb(�)

�⇤
Z b

x

�(⇠;�)⇤B1(⇠)f(⇠)d⇠.

We see by inspection that

G
↵(x, ⇠;�) =

8
<

:
��(x;�)J(E(�)⇤)�1

⇣
J↵

⇤ 0
⌘⇤
�(⇠;�)⇤ a < ⇠ < x < b

�(x;�)J(E(�)⇤)�1
⇣
0 Rb(�)

⌘⇤
�(⇠;�)⇤ a < x < ⇠ < b.

59



We can express G↵(x, ⇠;�) in a more symmetric form. To see this, we first observe that

E(�)⇤JE(�) =

✓
�↵J

Rb(�)⇤

◆
J
�
J↵

⇤ Rb(�)
�

=

✓
↵J↵

⇤
↵Rb(�)

�Rb(�)⇤↵⇤ Rb(�)⇤JRb(�)

◆
=

✓
0 ↵Rb(�)

�(↵Rb(�))⇤ 0

◆
,

where we’ve used the observations that J↵⇤ andRb(�) are frames for Lagrangian subspaces of
C2n. Here, ↵Rb(�) = (J↵⇤)⇤JRb(�), and we’ve already seen that this matrix is non-singular
so long as � /2 �(L↵). This allows us to write

(E(�)⇤JE(�))�1 =

✓
0 �((↵Rb(�))⇤)�1

(↵Rb(�))�1 0

◆
. (A.10)

It follows that

�
�
J↵

⇤ 0
�
E(�)�1

J(E(�)⇤)�1
�
0 Rb(�)

�⇤

=
�
J↵

⇤ 0
�✓ 0 �((↵Rb(�))⇤)�1

(↵Rb(�))�1 0

◆✓
0

Rb(�)⇤

◆

= �
�
J↵

⇤ 0
�✓((↵Rb(�))⇤)�1Rb(�)⇤

0

◆
= �(J↵⇤)(↵Rb(�)⇤)�1Rb(�)⇤.

On the other hand, (A.10) also allows us to write

(E(�)⇤)�1 = JE(�)

✓
0 �((↵Rb(�))⇤)�1

(↵Rb(�))�1 0

◆
,

from which we see that

(E(�)⇤)�1
�
0 Rb(�)

�⇤
= JE(�)

✓
0 �((↵Rb(�))⇤)�1

(↵Rb(�))�1 0

◆✓
0

Rb(�)⇤

◆

= J
�
J↵

⇤ Rb(�)
�✓�((↵Rb(�))⇤)�1Rb(�)⇤

0

◆
= ↵

⇤((↵Rb(�))⇤)�1Rb(�)⇤.

In this way, we see that

J(E(�)⇤)�1
�
0 Rb(�)

�⇤
=

�
J↵

⇤ 0
�
E(�)�1

J(E(�)⇤)�1
�
0 Rb(�)

�⇤
.

We will set
M(�) := E(�)�1

J(E(�)⇤)�1
,

from which we observe that
M(�)⇤ = �M(�).

For a < x < ⇠ < b, we will re-write G
↵(x, ⇠;�) by using the relation

J(E(�)⇤)�1
�
0 Rb(�)

�⇤
=

�
J↵

⇤ 0
�
M(�)

�
0 Rb(�)

�⇤
,

and proceeding similarly for a < ⇠ < x < b, we find

J(E(�)⇤)�1
�
J↵

⇤ 0
�⇤

=
�
0 Rb(�)

�
M(�)

�
J↵

⇤ 0
�⇤

.

These relations allow us to express G↵(x, ⇠;�) as

G
↵(x, ⇠;�) =

8
<

:
��(x;�)

⇣
0 Rb(�)

⌘
M(�)

⇣
J↵

⇤ 0
⌘⇤
�(⇠;�)⇤ a < ⇠ < x < b

�(x;�)
⇣
J↵

⇤ 0
⌘
M(�)

⇣
0 Rb(�)

⌘⇤
�(⇠;�)⇤ a < x < ⇠ < b.
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A.2 Monotonicity as � Varies

In this section, we verify that the Maslov index specified on the right-hand side of (4.3) is
a monotonic count of crossing points, each negatively directed. From Lemma 3.1, we know
that the signs of the associated crossing points are determined by the matrices

�X↵(c;�)
⇤
J@�X↵(x;�) (A.11)

and
Xb(c;�)

⇤
J@�Xb(x;�). (A.12)

We’ve already seen from our analysis of the top shelf that (A.11) is negative definite for
all c 2 (a, b), so we focus here on making a similar conclusion about (A.12). For this,
we recall that the columns of Xb(x;�) comprise the basis elements for `b(x;�) described
in Lemma 2.11. By construction, these basis elements are analytic in � on the intervals
(�1,�1,2⇤ ), (�1,2⇤ ,�

2,3
⇤ ), ..., (�N�2,N�1

⇤ ,�
N�1,N
⇤ ), (�N�1,N

⇤ ,�2); more precisely, on (�1,�1,2⇤ ) the
columns of Xb(x;�) are analytic extensions of the basis elements {ub

j(x;�
1
⇤)}, on (�1,2⇤ ,�

2,3
⇤ )

the columns of Xb(x;�) are analytic extensions of the basis elements {u
b
j(x;�

2
⇤)}, and so

on, with the values {�
j
⇤}

N
j=1 as specified in the proof of Lemma 2.11. Here, we recall that

�
1
⇤ = �1, �N⇤ = �2, and �j⇤ 2 (�j�1,j

⇤ ,�
j,j+1
⇤ ) for all j 2 {2, . . . , N � 1}. In addition, we know

from Lemma 2.10, that with this construction we have the relation

lim
x!b�

Xb(x;�
j
⇤)

⇤
J@�Xb(x;�

j
⇤) = 0 (A.13)

for all j 2 {1, 2, . . . , n}.
In order to understand rotation as � varies near �j⇤, we first use (2.45) (from Lemma 2.10)

to compute (precisely as with the corresponding calculation for X↵(x;�) in our analysis of
the top shelf in the proof of Theorem 1.1)

@

@x
Xb(x;�

j
⇤)

⇤
J@�Xb(x;�

j
⇤) = Xb(x;�

j
⇤)

⇤
B1(x)Xb(x;�

j
⇤). (A.14)

Integrating on (c, x), we can write

Xb(x;�
j
⇤)

⇤
J@�Xb(x;�

j
⇤) = Xb(c;�

j
⇤)

⇤
J@�Xb(c;�

j
⇤) +

Z x

c

Xb(⇠;�
j
⇤)

⇤
B1(⇠)Xb(⇠;�

j
⇤)d⇠.

Using (A.13), we see that

Xb(c;�
j
⇤)

⇤
J@�Xb(c;�

j
⇤) = �

Z b

c

Xb(⇠;�
j
⇤)

⇤
B1(⇠)Xb(⇠;�

j
⇤)d⇠, (A.15)

allowing us to conclude, similarly as we did with X↵(c;�)⇤J@�X↵(c;�) in the proof of
Theorem 1.1, that the matrix on the left-hand side of (A.15) is negative definite for all
c 2 (a, b), and by continuity in � that Xb(c;�)⇤J@�Xb(c;�) is negative definite for all �
su�ciently close to �j⇤. Possibly by taking a finer partition of [�1,�2] in the proof of Lemma
2.11 (i.e., by taking N larger and the associated radii smaller), we can ensure in this way
that Xb(c;�)⇤J@�Xb(c;�) is negative definite on each interval in our partition, (�1,�1,2⇤ ),
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(�1,2⇤ ,�
2,3
⇤ ), ..., (�N�2,N�1

⇤ ,�
N�1,N
⇤ ), (�N�1,N

⇤ ,�2). We can conclude that the direction of cross-
ings on each of these intervals is negative, and since these intervals partition [�1,�2], that
the direction of all crossings on [�1,�2] is negative (as � increases).
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for several helpful conversations along the way.
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[34] H. D. Niessen, Singuläre S-hermitesche Rand-Eigenwert Probleme, Manuscripta Math.
3 (1970) 35–68.

[35] H. D. Niessen, Zum verallgemeinerten zweiten Weylschen Satz, Archiv der Math. 22
(1971) 648–656.

[36] H. D. Niessen, Greensche Matrix and die Formel von Titchmarch-Kodaira für singuläre
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