Math 437, Homework 1

1. Consider $f(x)=x^{3}-2$.
(a) Show that $f(x)$ has a root α in the interval $[1,2]$.
(b) Repeat, using fixed point iteration with $g_{1}(x)=x-f(x) / 3$ and $g_{2}(x)=2 / x^{2}$. Take $x_{0}=1.5$ for the starting value.
(c) Repeat, using Newton's method. Take $x_{0}=1.5$ for the starting value.

For each method, present the results in a form of a table:
column 1: n (step)
column 2: x_{n} (approximation)
column 3: $f\left(x_{n}\right)$ (residual)
column 4: $\left|\alpha-x_{n}\right|$ (error)
2. Let α be a fixed point of $g(x)$. Consider the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$ and suppose that $\max \left|g^{\prime}(x)\right|=k<1$. Prove the following error estimate:

$$
\left|\alpha-x_{n+1}\right| \leq \frac{k}{1-k}\left|x_{n+1}-x_{n}\right| .
$$

3. Show that the equation

$$
x=3+0.5 \cos x
$$

has a unique solution α. Show that the iteration $x_{n+1}=3+0.5 \cos x_{n}$ will converge to α. Find a bound for the error.
4. Let α be the solution of $f(x)=0$, and $\left\{x_{n}\right\}$ be the sequence of approximate solutions, generated by the Newton's method. Show that

$$
\alpha-x_{n+1}=-\frac{1}{2} \frac{f^{\prime \prime}\left(\xi_{n}\right)}{f^{\prime}\left(x_{n}\right)}\left(\alpha-x_{n}\right)^{2},
$$

where ξ_{n} is between x_{n} and α.
5. Consider the following system of nonlinear equations:

$$
\begin{gathered}
f(x, y)=2 x^{2}-2 x y+2 y^{2}-x-y=0 \\
g(x, y)=4 x-y-2=0 .
\end{gathered}
$$

Find an approximation to the solution of this system by taking 1 step of Newton's method, starting from the initial guess $x_{0}=2, y_{0}=0$.

