Math 437, Homework 2

1. (a) A monomial matrix is a square matrix in which each row and column contains exactly one nonzero entry. Prove that a monomial matrix is nonsingular.
(b) A square matrix A is said to be skew-symmetric if $A^{T}=-A$. Prove that if A is skewsymmetric, then $x^{T} A x=0$ for all x.
2. (a) Given

$$
E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-m_{21} & 1 & 0 \\
-m_{31} & 0 & 1
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Find \tilde{E}_{1} such that $P_{2} E_{1}=\tilde{E}_{1} P_{2}$. (This is used in showing that if A is nonsingular, there exists a permutation matrix P such that $P A$ has an $L U$ factorization.)
(b) In general, let P_{j}^{i} denote the permutation matrix which interchanges row i and row j. Let E_{k} be an elementary row operation matrix used in Gaussian elimination. Show that if $i>j>k$, then $P_{j}^{i} E_{k}=\tilde{E}_{k} P_{j}^{i}$, where \tilde{E}_{k} has the same form as E_{k}. What is the difference between E_{k} and \tilde{E}_{k} ?
(c) Let $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be a permutation of $(1,2, \ldots, n)$ and define the matrix P by $p_{i j}=\delta_{p_{i} j}$. Let A be an arbitrary $n \times n$ matrix. Describe $P A, A P, P^{-1}, P A P^{-1}$.
3. Given

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
2 & -1 & 0 \\
0 & 2 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

(a) Find a permutation matrix P such that $P A$ has an $L U$ factorization. Give the L, U factors of $P A$.
(b) Solve $P A x=P b$ by forward elimination $(L y=P b)$ and back substitution $(U x=y)$.
4. Given

$$
A=\left(\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right), \quad b=\left(\begin{array}{l}
4 \\
2 \\
4
\end{array}\right),
$$

find the $L U$ factorization of A. Solve $A x=b$ by forward elimination $(L y=b)$ and back substitution $(U x=y)$.
5. Consider the $N \times N$ tridiagonal matrix

$$
A=\frac{1}{h^{2}}\left(\begin{array}{ccccccc}
2 \epsilon+h^{2} & -\epsilon & 0 & \ldots & 0 & 0 & 0 \\
-\epsilon & 2 \epsilon+h^{2} & -\epsilon & \ldots & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -\epsilon & 2 \epsilon+h^{2} & -\epsilon \\
0 & 0 & 0 & \ldots & 0 & -\epsilon & 2 \epsilon+h^{2}
\end{array}\right)
$$

and the vector $f=\left(f_{1}, f_{2}, \ldots, f_{N}\right)^{T}$, where $f_{i}=2 i h+1, h=2^{-n}, N=2^{n}-1, n=1,2, \ldots, 8$. Take $\epsilon=10^{-3}$ and solve the system $A u=f$ using $L U$ factorization for a tridiagonal matrix as discussed in class. In your code do not create the matrix A. For each value of $n=1,2, \ldots, 8$, plot the points $\left(u_{i}, x_{i}\right), i=1, \ldots, N$, where u is the solution of the system and $x_{i}=i h$.

