Math 437, Homework 3

1. (a) Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & 5 \\
-1 & 2 & -4 \\
-8 & -1 & 2
\end{array}\right)
$$

Compute $\|A\|_{\infty}$ and find a vector x such that $\|A\|_{\infty}=\|A x\|_{\infty} /\|x\|_{\infty}$
(b) Show that if a square matrix A satisfies an inequality $\|A x\| \geq \theta\|x\|$ for all x with $\theta>0$, then A is nonsingular and $\left\|A^{-1}\right\| \leq \theta^{-1}$. This is valid for any vector norm and its subordinate matrix norm.
2. (a) Prove that

$$
n^{-1}\|A\|_{2} \leq n^{-1 / 2}\|A\|_{\infty} \leq\|A\|_{2} \leq n^{1 / 2}\|A\|_{1} \leq n\|A\|_{2}
$$

(b) Let S be a real and nonsingular matrix, and let $\|\cdot\|$ be any norm on R^{n}. Define $\|\cdot\|^{\prime}$ by $\|x\|^{\prime}=\|S x\|$. Show that $\|\cdot\|^{\prime}$ is also a norm on R^{n}.
3. Prove that the $\|\cdot\|_{1}$ matrix norm can be computed by

$$
\|A\|_{1}:=\max _{x \neq 0} \frac{\|A x\|_{1}}{\|x\|_{1}}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right| .
$$

4. (a) Show that the eigenvalues of a Hermitian matrix are real.
(b) Prove that if A is nonsingular and if $|\lambda|<\left\|A^{-1}\right\|^{-1}$, then λ is not an eigenvalue of A.
(c) Show that if there is a polynomial p without constant term such that

$$
\|I-p(A)\|<1
$$

then A is invertible. Find a formula for A^{-1}.
5. Use the Gramm-Schmidt procedure to calculate L_{1}, L_{2}, and L_{3}, where $\left\{L_{0}, L_{1}, L_{2}, L_{3}\right\}$ is an orthogonal set of polynomials on $(0, \infty)$ with respect to the weight function $w(x)=e^{-x}$, and $L_{0}(x) \equiv 1$. The polynomials obtained from this procedure are called the Laguerre polynomials.

