Math 437, Homework 3

1. (a) Consider the matrix

$$A = \left(\begin{array}{rrrr} 1 & 2 & 5\\ -1 & 2 & -4\\ -8 & -1 & 2 \end{array}\right).$$

Compute $||A||_{\infty}$ and find a vector x such that $||A||_{\infty} = ||Ax||_{\infty}/||x||_{\infty}$

(b) Show that if a square matrix A satisfies an inequality $||Ax|| \ge \theta ||x||$ for all x with $\theta > 0$, then A is nonsingular and $||A^{-1}|| \le \theta^{-1}$. This is valid for any vector norm and its subordinate matrix norm.

2. (a) Prove that

$$n^{-1} \|A\|_2 \le n^{-1/2} \|A\|_{\infty} \le \|A\|_2 \le n^{1/2} \|A\|_1 \le n \|A\|_2$$

(b) Let S be a real and nonsingular matrix, and let $\|\cdot\|$ be any norm on \mathbb{R}^n . Define $\|\cdot\|'$ by $\|x\|' = \|Sx\|$. Show that $\|\cdot\|'$ is also a norm on \mathbb{R}^n .

3. Prove that the $\|\cdot\|_1$ matrix norm can be computed by

$$||A||_1 := \max_{x \neq 0} \frac{||Ax||_1}{||x||_1} = \max_j \sum_{i=1}^n |a_{ij}|.$$

- 4. (a) Show that the eigenvalues of a Hermitian matrix are real.
 - (b) Prove that if A is nonsingular and if $|\lambda| < ||A^{-1}||^{-1}$, then λ is not an eigenvalue of A.
 - (c) Show that if there is a polynomial p without constant term such that

$$||I - p(A)|| < 1$$

then A is invertible. Find a formula for A^{-1} .

5. Use the Gramm-Schmidt procedure to calculate L_1 , L_2 , and L_3 , where $\{L_0, L_1, L_2, L_3\}$ is an orthogonal set of polynomials on $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$, and $L_0(x) \equiv 1$. The polynomials obtained from this procedure are called the *Laguerre polynomials*.