
MATH 437 Homework #4

1.(a) Show that the basic iteration process given by

Qx(k+1) = (Q− A)x(k) + b

is equivalent to the following:

x(k+1) = x(k) + z(k),

where z(k) satisfies the equation Qz(k) = r(k) with r(k) = b− Ax(k).
(b). Using the notation in (a), show that

r(k+1) = (I − AQ−1)r(k), z(k+1) = (I −Q−1A)z(k).

2. Programming: please print out your results together with your code.
Consider solving the linear system Ax = b where A is a sparse matrix. Dealing with

sparse matrices efficiently involves avoiding computations involving the zero entries. To
do this, the matrix must be stored in a scheme which only involves the nonzero en-
tries. We shall use a modified Compressed Sparse Row (CSR) structure. We refer to
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html for a discus-
sion. This structure is designed so that it is easy to access the entries in a row. Our
modification is made so that it is also easy to access the diagonal entry in any row.

The CSR structure involves three arrays: val, col ind and row ptr. val is an array of
real numbers and stores the actual (nonzero) entries of A. col ind is an integer array which
contains the column indices for nonzero entries in A. The length of val and col ind are equal
to the number of nonzero entries in A. Finally, row ptr is an integer array of dimension n+1
and contains the row offsets (into the arrays val and col ind). By convention, row ptr(n+1)
is set to the total number of nonzeroes plus one. For example, consider

A =


2 −1 0 0
−1/3 3 −2/3 0

0 −1/4 4 −3/4
0 0 −1/5 5

 .

The modified CSR structure is as follows:

val 2 −1 3 −1/3 −2/3 4 −1/4 −3/4 5 −1/5
col ind 1 2 2 1 3 3 2 4 4 3
pow ptr 1 3 6 9 11

Note that the i’s entry of row ptr points to the start of the nonzero values (in val) for the
i’s row. It also points to the start of the column indices for that row. The modification
is that we always put the diagonal entry at that location, i.e. val(row ptr(i)) = Aii. The
general CSR structure does not do this. Indeed, the general CSR storage does not have a
diagonal entry whenever the diagonal entry is zero.

1

http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html

2

(a). Given a positive integer N , consider the following N by N matrix:

A = N2


2 −1
−1 2 −1

.
−1 2 −1

−1 2

 .

Create a m-file CreateSystemMatrix.m to generate the above matrix in the modified CRS
format. The code should be like

1 f unc t i on A = CreateSystemMatrix (N)

2 % crea t e the s t r u c t o f A

3 A = s t ru c t (’ va l ’ , [] , ’ c o l i n d ’ , [] , ’ row ptr ’ , []) ;

4 % as s i gn number o f nonzero e n t r i e s

5 num non zeros = ??? ;

6 % i n i t i a l i z e a r rays

7 A. va l = ze ro s (num non zeros , 1) ;

8 A. c o l i n d = ze ro s (num non zeros , 1) ;

9 A. row ptr = ze ro s (N+1 ,1) ;

10 % put nonzero e n t r i e s from the f i r s t row in to A

11 ns = Nˆ2 ;

12 A. va l (1) = 2∗ns ; A. va l (2) = −ns ;
13 A. c o l i n d (1) = 1 ; A. c o l i n d (2) = 2 ;

14 A. row ptr (1) = 1 ;

15 % put nonzero e n t r i e s from the second row to (N−1)th
16 % row in to A

17 f o r i = 2 :N−1
18 ???

19 end

20 % put nonzero e n t r i e s from the l a s t row in to A

21 ???

22 A. row ptr (N+1) = num non zeros + 1 ;

23 end

Now we are in a position to solve the linear system using iterative methods with the
CRS format. An example to use the CRS format is the matrix-vector multiplication. Let
src and dst be the input and output arrays, respectively. We need to compute

dst(i) =
N∑
j=1

Aij ∗ src(j), for i = 1, 2, . . . , N.

Here is the Matlab code:

1 f unc t i on dst = vmult (A, s r c)

2 num rows = length (s r c) ;

3 dst = ze ro s (num rows , 1) ;

4 f o r i =1:num rows

5 dst (i) = 0 ;

6 f o r j = A. row ptr (i) : (A. row ptr (i +1)−1)

3

7 dst (i) = dst (i) + A. va l (j) ∗ s r c (A. c o l i n d (j)) ;

8 end

9 end

10 end

Here we note the the loop for j from A.row ptr(i) to A.row ptr(i+1)-1 gives the access to
the nonzero entries in the i row.

(b). Create an m-file JacobiIteration.m which does one step of the Jacobi iteration given
the CRS format of A and the right hand side vector b. Let src and dst be the input and
output arrays, respectively. Recall the iteration

D ∗ dst = D ∗ src + (b− A ∗ src) = b− (A−D) ∗ src,
where D is the diagonal part of A (i.e. Aii = A.val(row ptr(i)) with the row index i). So
we need to update dst by

dst(i) = (b(i)−
∑
j 6=i

Aij ∗ src(j))/Aii, for i = 1, 2, . . . , N.

The code should look like:

1 f unc t i on dst = Ja c ob i I t e r a t i o n (A, b , s r c)

2 num rows = length (s r c) ;

3 f o r i =1:num rows

4 ??? %update dst with Jacobi a lgor i thm

5 end

6 end

(c). Create an m-file GaussSeidelIteration.m which does one step of the Gauss-Seidel
iteration given the CRS format of A and the right hand side vector b. Let src and dst be
the input and output arrays, respectively. Recall the iteration

(D + L) ∗ dst = −U ∗ src + b,

where L and U is the lower and upper triangular part of A. We solve dst using forward
substitution, i.e. initialize dst with src and compute

dst(i) = (b(i)−
∑
j 6=i

Aij ∗ dst(j))/Aii, for i = 1, 2, . . . , N

(Why?). The code should look like:

1 f unc t i on dst = Gaus sS e i d e l I t e r a t i on (A, b , s r c)

2 num rows = length (s r c) ;

3 f o r i =1:num rows

4 ??? %update dst with Gauss−Se i d e l a lgor i thm

5 end

6 end

(d). Write a driver routine to solve the system Ax = b with Jacobi and Gauss-Seidel
methods, where A is given in part (a) with N = 4, 8, 16, 32, 64 and b = (1, 1, . . . , 1) . Set
the initial vector x0 to be the zero vector and stop the iteration when ‖Ax − b‖2 < 10−12

(use norm(vmult(A, x) − b) to compute the l2 norm in MATLAB). Report the number of
iterations as a function of N (i.e. a table with values of N in the first column and #iter in
the second column).

4

(e) (Bonus) Use the function vmult to create a Conjugate Gradient (CG) subroutine and
solve the above linear system with CG. Report the number of iterations as a function of
N .

