MATH 437 Homework \#4

1.(a) Show that the basic iteration process given by

$$
Q x^{(k+1)}=(Q-A) x^{(k)}+b
$$

is equivalent to the following:

$$
x^{(k+1)}=x^{(k)}+z^{(k)},
$$

where $z^{(k)}$ satisfies the equation $Q z^{(k)}=r^{(k)}$ with $r^{(k)}=b-A x^{(k)}$.
(b). Using the notation in (a), show that

$$
r^{(k+1)}=\left(I-A Q^{-1}\right) r^{(k)}, \quad z^{(k+1)}=\left(I-Q^{-1} A\right) z^{(k)} .
$$

2. Programming: please print out your results together with your code.

Consider solving the linear system $A x=b$ where A is a sparse matrix. Dealing with sparse matrices efficiently involves avoiding computations involving the zero entries. To do this, the matrix must be stored in a scheme which only involves the nonzero entries. We shall use a modified Compressed Sparse Row (CSR) structure. We refer to http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html for a discussion. This structure is designed so that it is easy to access the entries in a row. Our modification is made so that it is also easy to access the diagonal entry in any row.

The CSR structure involves three arrays: val, col_ind and row_ptr. val is an array of real numbers and stores the actual (nonzero) entries of A. col_ind is an integer array which contains the column indices for nonzero entries in A. The length of val and col_ind are equal to the number of nonzero entries in A. Finally, row_ptr is an integer array of dimension $n+1$ and contains the row offsets (into the arrays val and col_ind). By convention, row_ptr(n+1) is set to the total number of nonzeroes plus one. For example, consider

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 / 3 & 3 & -2 / 3 & 0 \\
0 & -1 / 4 & 4 & -3 / 4 \\
0 & 0 & -1 / 5 & 5
\end{array}\right)
$$

The modified CSR structure is as follows:

Note that the i 's entry of row_ptr points to the start of the nonzero values (in val) for the i 's row. It also points to the start of the column indices for that row. The modification is that we always put the diagonal entry at that location, i.e. $\operatorname{val}($ row_ptr $(i))=A_{i i}$. The general CSR structure does not do this. Indeed, the general CSR storage does not have a diagonal entry whenever the diagonal entry is zero.
(a). Given a positive integer N, consider the following N by N matrix:

$$
A=N^{2}\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

Create a m-file CreateSystemMatrix.m to generate the above matrix in the modified CRS format. The code should be like

```
function A = CreateSystemMatrix(N)
    % create the struct of A
    A = struct('val', [],' col_ind', [], 'row_ptr', []);
    % assign number of nonzero entries
    num_non_zeros = ???;
    % initialize arrays
    A.val = zeros(num_non_zeros,1);
    A.col_ind = zeros(num_non_zeros,1);
    A.row_ptr = zeros (N+1,1);
    % put nonzero entries from the first row into A
    ns}=\mp@subsup{N}{}{\wedge}2
    A.val(1) = 2*ns; A.val(2) = -ns;
    A.col_ind(1) = 1; A.col_ind (2) = 2;
    A.row_ptr(1) = 1;
    % put nonzero entries from the second row to (N-1)th
    % row into A
    for i = 2:N-1
        ???
    end
    % put nonzero entries from the last row into A
    ???
    A.row_ptr (N+1) = num_non_zeros + 1;
end
```

Now we are in a position to solve the linear system using iterative methods with the CRS format. An example to use the CRS format is the matrix-vector multiplication. Let src and dst be the input and output arrays, respectively. We need to compute

$$
\operatorname{dst}(i)=\sum_{j=1}^{N} A_{i j} * \operatorname{src}(j), \quad \text { for } i=1,2, \ldots, N
$$

Here is the Matlab code:

```
function dst = vmult(A, src)
    num_rows = length(src);
    dst = zeros(num_rows,1);
    for i=1:num_rows
        dst(i) = 0;
        for j = A.row_ptr(i) : (A.row_ptr(i+1)-1)
```

```
            dst(i) = dst(i) + A.val(j) * src(A.col_ind(j));
        end
        end
```

end

Here we note the the loop for j from A.row_ptr(i) to $A \cdot r o w _p t r(i+1)-1$ gives the access to the nonzero entries in the i row.
(b). Create an m-file Jacobilteration.m which does one step of the Jacobi iteration given the CRS format of A and the right hand side vector b. Let src and dst be the input and output arrays, respectively. Recall the iteration

$$
D * \mathrm{dst}=D * \operatorname{src}+(b-A * \mathrm{src})=b-(A-D) * \mathrm{src}
$$

where D is the diagonal part of A (i.e. $A_{i i}=A$.val(row_ptr(i)) with the row index i. So we need to update dst by

$$
\operatorname{dst}(i)=\left(b(i)-\sum_{j \neq i} A_{i j} * \operatorname{src}(j)\right) / A_{i i}, \quad \text { for } i=1,2, \ldots, N .
$$

The code should look like:

```
function dst = JacobiIteration(A,b, src)
    num_rows = length(src);
    for i=1:num_rows
        ??? %update dst with Jacobi algorithm
    end
end
```

(c). Create an m-file GaussSeidellteration.m which does one step of the Gauss-Seidel iteration given the CRS format of A and the right hand side vector b. Let src and dst be the input and output arrays, respectively. Recall the iteration

$$
(D+L) * \mathrm{dst}=-U * \operatorname{src}+b
$$

where L and U is the lower and upper triangular part of A. We solve dst using forward substitution, i.e. initialize dst with src and compute

$$
\operatorname{dst}(i)=\left(b(i)-\sum_{j \neq i} A_{i j} * \operatorname{dst}(j)\right) / A_{i i}, \quad \text { for } i=1,2, \ldots, N
$$

(Why?). The code should look like:

```
function dst = GaussSeidelIteration(A,b,src)
    num_rows = length(src);
    for i=1:num_rows
        ??? %update dst with Gauss-Seidel algorithm
        end
end
```

(d). Write a driver routine to solve the system $A x=b$ with Jacobi and Gauss-Seidel methods, where A is given in part (a) with $N=4,8,16,32,64$ and $b=(1,1, \ldots, 1)$. Set the initial vector x_{0} to be the zero vector and stop the iteration when $\|A x-b\|_{2}<10^{-12}$ (use norm $(\operatorname{vmult}(A, x)-b)$ to compute the l^{2} norm in MATLAB). Report the number of iterations as a function of N (i.e. a table with values of N in the first column and \#iter in the second column).
(e) (Bonus) Use the function vmult to create a Conjugate Gradient (CG) subroutine and solve the above linear system with CG. Report the number of iterations as a function of N.

