Architectures for Compressive Sampling

Justin Romberg
School of Electrical and Computer Engineering
Georgia Institute of Technology

Collaborators: Emmanuel Candès, Joel Tropp, Richard Baraniuk, Marco Duarte, Jason Laska, Paul Voss, Paul Hasler, Ryan Robucci, Ken Chiu
Compressive Sampling Linear Algebra

- High resolution (unknown) \(n \)-point signal \(x_0 \)

- Small number of measurements

\[y_k = \langle x_0, \phi_k \rangle, \quad k = 1, \ldots, m \quad \text{or} \quad y = \Phi x_0 \]

\(\phi_k = \) “test function”

- Fewer measurements than degrees of freedom, \(m \ll n \)

\[
\begin{bmatrix}
y
\end{bmatrix} =
\begin{bmatrix}
\Phi
\end{bmatrix}
\begin{bmatrix}
x_0
\end{bmatrix}
\]

- Compressive Sampling: for sparse \(x_0 \), we can “invert” certain \(\Phi \)
Sparse Recovery

• Model: signal/image x_0 is sparse in the Ψ domain
 (example: x_0 is an image, Ψ is a wavelet transform)

• Acquisition: measure $y = \Phi x_0$

• Recovery: solve

$$\min_x \|\Psi^T x\|_{\ell_1} \quad \text{subject to} \quad \Phi x = y$$

 Finds the sparsest signal which explains the measurements

• For which Φ does this “work”?
Sensing Sparse Coefficients

S-sparse vector

incoherent measurements

- Signal is local, measurements are global
- When the test functions are just iid random sequences, we can recover perfectly from \((CT,D \ '06)\)

\[m \gtrsim S \cdot \log n \]

measurements

- In practice, it seems that

\[m \approx 5S \]

measurements are sufficient

- Random sensing is a universal acquisition scheme
\[y_1 = \langle \quad , \quad \rangle \]
\[y_2 = \langle \quad , \quad \rangle \]
\[y_3 = \langle \quad , \quad \rangle \]
\[\vdots \]
\[y_m = \langle \quad , \quad \rangle \]
Representation vs. Measurements

- **Image structure:** *local, coherent*
 Good basis functions:

- **Measurements:** *global, incoherent*
 Good test functions:
Problems with Random Measurements

- How do I compute with them?
 - Recovery algorithm will invariably require applying Φ multiple times

- How do I take them physically?
Structured Recovery

- Sparsity basis Ψ (orthonormal)
- Measurement basis M (orthonormal)
- $\Omega =$ random subset of sample locations $y = M_\Omega x_0$
- Recover solving

$$\min_x \| \Psi^T x \|_{\ell_1} \quad \text{subject to} \quad \Phi x = y, \quad \Phi = M_\Omega$$

- Perfect recovery for

$$m \gtrsim \mu^2 \cdot S \cdot \log n$$

depends on coherence $1 \leq \mu^2 \leq n$ between M and Ψ (CR ’07)
Examples of Incoherence

- Signal is sparse in time domain, sampled in Fourier domain

 Time domain $x(t)$
 Frequency domain $\hat{x}(\omega)$

 S nonzero components
 Measure m samples

- Signal is sparse in wavelet domain, measured with noiselets (Coifman et. al)

 example noiselet
 wavelet domain
 noiselet domain
Another way to downsample

input signal

modulate (fast)

± 1

∫

sum and sample (slow) at fixed locations
Randomly Modulated Summation

- Instead of choosing small set of random samples, “Downsample” by changing phases, breaking into chunks, and summing.
- Measurement system M with coherence μ
- To form Φ: divide rows into m blocks, randomly flip sign of each row, sum over block.
- S sparse x_0 can be recovered from

 $$m \gtrsim \mu^2 \cdot S \cdot \log^2 n$$

measurements (TDLRB ’08)
DARPA: “Analog to Information”

- Goal: reconstruct spectrally sparse signals with incredibly high freqs
 ADCs cannot run fast enough for Nyquist

- CS Architecture I: random non-uniform sampling
 Take standard ADC, clock it non-uniformly with “slow” average rate

- CS Architecture II: randomly modulated summation
 Modulate incoming pulse, integrate (high-speed but simple circuit), sample uniformly at slow rate

- Hardware implementation in progress ...
Georgia Tech Analog Imager

- Bottleneck in imager arrays is *data readout*
- Instead of quantizing pixel values, take noiselet inner products *in analog*
- Potential for tremendous (factor of $\approx 10^4$) power savings
Universality

• Sampling domain M must be very different than sparsity domain $Ψ$

• Are there *universal* measurement schemes that are structured for fast computations?

• Yes, but we need to add just a little more randomness...
Random Convolution

Create a *random* orthonormal system in three easy steps:
Take FFT, randomly change the phases, Inverse FFT

Measurement matrix is diagonal in Fourier domain

\[M = \mathcal{F}^* \Sigma \mathcal{F}, \quad \Sigma = \text{diag}(\{\sigma_\omega\}), \]

each \(\sigma_\omega\) has unit magnitude, random phase

then randomly subsample the rows

Equivalent to *convolving* with a random pulse, then *subsampling in time*
Intuition for Random Convolution

- With (extremely) high probability, measurements will be incoherent with a fixed orthosystem Ψ,

$$\mathcal{F}^* \Sigma \mathcal{F}$$ looks like noise in the Ψ domain

- Applying M is fast (two FFTs)

- Example: Wavelets

local in time | local in freq | not local in M

sample here
Theory for Random Convolution

• Fix representation Ψ, generate $M = \mathcal{F}^*\Sigma\mathcal{F}$ (random orthobasis)

• Coherence between Ψ and M will be $\mu^2 \sim \log n$
 \Rightarrow extra $\log n$ factors in the number of samples required

• Refining our notion of coherence slightly eliminates these

• Perfect recovery with random non-uniform sampling from

 \[m \gtrsim S \cdot \log n \] samples,\hspace{1cm} (R ’08)

 and with randomly modulate summation, from

 \[m \gtrsim S \cdot \log^2 n \] samples
Why is random convolution + subsampling universal?

\[
\begin{bmatrix}
F \\
\sigma_1 \\
\sigma_2 \\
\vdots \\
\sigma_n
\end{bmatrix}
\begin{bmatrix}
\hat{\psi}_1(\omega) \\
\hat{\psi}_2(\omega) \\
\vdots \\
\hat{\psi}_n(\omega)
\end{bmatrix}
\]

- One entry of \(M \):

\[
M_{t,s} = \sum_\omega e^{j2\pi \omega t} \sigma_\omega \hat{\psi}_s(\omega)
\]

\[
= \sum_\omega \sigma'_\omega \hat{\psi}_s(\omega)
\]

- Size of each entry will be concentrated around \(\|\hat{\psi}_s(\omega)\|_2 = 1 \)

 où does not depend on the “shape” of \(\hat{\psi}_s(\omega) \)
Compare to Fast Johnson-Lindenstrauss Transform

- Ailon and Chazelle, 2006

- Problem:
 \(k \) points \(x_1, \ldots, x_k \) in \(\mathbb{R}^n \), project onto \(\mathbb{R}^m \) using \(\Phi \) (\(m \times n \) matrix)
 Want \(\| \Phi(x_i - x_j) \|_2 \approx \| x_i - x_j \|_2 \) for \(m \sim \log k \), and \(\Phi \) to be “fast”

- JL problem is closely related to CS (Baraniuk et al. ’07)

- Their solution: take \(\Phi = PHD \)
 \(D = \text{diag}(\{ \epsilon_i \}) \) (makes input signs random)
 \(H = \text{Hadamard transform} \) (Fourier on \(\mathbb{Z}_2 \))
 \(P = m \times n \) subsampling matrix,
 each row has \(m \) random entries at random locations

- This \(\Phi \) would be tremendous, except it is not clear how to implement it by taking \(O(m) \) physical measurements (\(P \) has \(m^2 \) entries in it)
Random Convolution

- Convolving with a random pulse then subsampling is an efficient, universal acquisition strategy.

- Structure allows for fast computations.
 Applying $M = \mathcal{F}^* \Sigma \mathcal{F}$ is fast (two FFTs).

- Convolution can actually be done physically:
 Two examples:
 - Radar imaging (hi-freq wideband pulse, low-freq sampling)
 - Fourier optics (hi-res diffraction grating, low-res sensor array)
Figure 2.1: Ground-plane geometry for data collection in spotlight-mode SAR.

A more limited area than stripmap-mode SAR, because by steering the antenna, the same terrain portion can be observed through a wider range of angles as compared to that in stripmap-mode SAR.

The geometry for data collection in a spotlight-mode SAR is shown in Figure 2.1. The $x-y$ coordinate system (denoting range and azimuth coordinates respectively) is centered on a relatively small patch of ground illuminated by a narrow RF beam from the moving radar. As the radar traverses the flight path, the radar beam is continuously pointed in the direction of the ground patch. At points corresponding to equal increments of θ (the angle between the x-axis and u-axis in Figure 2.1), high-bandwidth pulses (such as linear FM) are transmitted to the ground patch and echoes are then received and processed.

As we will illustrate in the following sections, demodulated SAR returns at each observation point (after some pre-processing and certain approximations) are related to a particular projectional view of the underlying scene, and the full set of returns provide a band-limited spatial frequency domain description of the scene.

- Send out pulse $p(t)$, return signal is $p(t)$ convolved with range profile $q(t)$
- CS \Rightarrow ADC sampling rate is determined by complexity of range profile, and not the bandwidth of the pulses

(figure from M. Cetin)
Fourier Optics

- Take Fourier transform of input image with a lens
- Apply random amplitude/phase modulation in the Fourier domain with a spatial light modulator (=random convolution in space)
- Inverse Fourier transform with another lens
- Large pixels: average consecutive rows of M
- Problem: averaging destroys incoherence (“low pass filter”)
- Solution: randomly modulate the summation
“real” image

Fourier Transform

magnitude

phase

modulate in Fourier
(fine grid)

coarse CCD array
(integrate over big squares)

coarse grid
measurements

“real” image

Fourier Transform

magnitude

phase

modulate in Fourier
(fine grid)

coarse CCD array
(integrate over big squares)

coarse grid
measurements

Invers
Fourier Transform

modulate in space
(fine grid)

coarse CCD array
(integrate over big squares)

coarse grid
measurements
coarse grid measurements \[\min \ell_1 \]

compare to standard:

pixelated image (coarse grid) \hspace{2cm} recovered image (fine grid)
Summary

• Random measurements:
 S-sparse recovery from $m \gtrsim S \cdot \log n$ measurements

• Structured measurements:
 S-sparse recovery from $m \gtrsim \mu^2 \cdot S \cdot \log n$ measurements

• Random convolution:
 S-sparse recovery from $m \gtrsim S \cdot \log n$ samples
 – structured yet “incoherent”
 – makes universal, large-scale recovery possible

• Immediately suggests architectures for CS imaging
 – Radar
 – Fourier optics