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Setting

I Observation: a vector Y ∈ RK

I sample Y of n i.i.d. repetitions Y = (Y 1, . . . ,Y n)

I Unknown mean vector µ
I Unknown dependency between the coordinates
I “Small n large K ” : n � K
I Goal 1: confidence region for µ?
I Goal 2: find coordinates k : µk 6= 0? (Multiple testing)
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Assumptions

I (GA): Y is Gaussian with known bound on coordinate variance
σ2 ≥ maxk Var [Yk ]

or

I (BSA): Y is bounded by known B and has a symmetric distribution
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Some motivations
I Neuroimaging:
I small number of observations n

of a noisy image with large
number K of pixels

I want to detect where signal is
present or obtain a confidence
envelope about the signal

I strong spatial dependence with
unknown structure (possibly non
stationary, possible
long-distance correlation. . . )

I Microarrays:
I detect significant differences

(typical problem of multiple
testing)

I completely unknown
dependencies
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Precising goals: confidence regions

I We are interested in “ψ-distance” uniform confidence regions
based on the empirical mean Y = 1

n
∑n

i=1 Y i , of the form{
ψ(Y− µ) ≤ t

}
.

I Goal: find a threshold t as sharp as possible so that the above
region has covering probability 1− α .
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Precising goals: multiple testing

I We want to test for every coordinate k the hypothesis Hk : µk = 0
against the alternative µk 6= 0

I Multiple testing procedure: rejects a subset of hypotheses

R(Y) ⊂ {1, . . . ,K}

I We want to control the family-wise error rate

FWER(R) = P [∃k ∈ R(Y)|µk = 0]

I Goal: FWER(R) ≤ α while having high power, i.e. large |R| .
I Relationship to confidence region: if R(Y) =

{
k : |Yk | > t

}
,

FWER(R) ≤ P
[∥∥Y− µ

∥∥
∞ > t

]
I Note: can be used as a first step to control other type I error

criteria such as FDP and FDR (Pacifico et al. 2004)
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Bonferroni threshold

I under a Gaussian distribution and for ψ(x) = ‖x‖∞ , a union
bound over coordinated gives the threshold

tBonf = σΦ
−1

(α/(2K )) ,

where Φ is the standard Gaussian cdf.
I deterministic threshold
I too conservative if there are strong dependencies between the

coordinates
I to do better (and for more general ψ), take into account the

observed dependencies.
I Note: n � K essentially prevents us from using classical

parametric methods, e.g. estimation of the covariance matrix.
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Resampling

I Obviously, the ideal threshold is the (1− α)-quantile q∗α of
ψ(Y− µ):

P
[
ψ(Y− µ) ≤ q∗α

]
= α .

I We want to use a resampling principle
I Usual (bootstrap) resampling: sample uniformly with replacement

a n-sample Ỹ from the original sample Y
I Resampling heuristics: the empirical process PeY − PY conditional

to Y “mimics” the empirical process PY − P
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Generalized resampling

I We consider more generally a reweighted sample scheme
I W = (W1, . . . ,Wn) vector of random weights independent of Y

(but not necessarily jointly independent)
I Consider the reweighted sample (Y 1,W1), . . . , (Y n,Wn)

• Example 1: Efron’s bootstrap: W is a multinomial (n; n−1, . . . ,n−1)
• Example 2: Rademacher weights: Wi i.i.d random signs
• Example 3: Leave-one-out: Wi = 1{i = i0} , i0 ∼ U({1 . . . ,n}) .

I We consider in particular the reweighted mean

Y〈W 〉
=

n∑
i=1

WiYi
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How to study resampling?

I K fixed and n →∞: asymptotic results (eg. van der Vaart and
Wellner 1996); not adapted to our (typically non-asymptotic)
setting.

I Idea 1: non-asymptotic results inspired from learning theory (for
bounded random variables): Rademacher complexities
(Koltchinskii 2001, Bartlett and Mendelson 2002), more general
reweighting schemes (Fromont 2005). Based on concentration
and comparison in expectation.

I Idea 2: try to estimate directly the quantile using ideas coming
from exact (permutation) tests.
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Result based on concentration

Theorem
Assume (GA), ψ is positive-homogeneous, subadditive and bounded
by ‖.‖p ; W squared-integrable, exchangeable weight vector.
Then, for any α ∈ (0,1) :

tconc
α (Y) :=

EW

[
ψ(Y〈W 〉 −WY)

]
BW

+
‖σ‖p√

n
Φ
−1

(α/2)

[
CW√
nBW

+ 1
]

satisfies
P

[
ψ(Y− µ) > tconc

α

]
≤ α .

With σ2
k = Var

ˆ
Y 1

k

˜
,

BW = E

24 1
n

nX
i=1

(Wi − W )2

! 1
2
35 ; CW =

„
n

n − 1
E
h
(W1 − W )2

i« 1
2
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Main ingredients

I Comparison of expectations:

BW E
[
ψ(Y− µ)

]
= E

[
ψ(Y〈W 〉 −WY)

]
I Gaussian concentration theorem for Lipschitz functions of an i.i.d.

Gaussian vector (Cirels’on, Ibragimov and Sudakov 1976)
• for ψ(Y− µ): deviations bounded by a normal tail of standard

deviation ≤ ‖σ‖p n−
1
2 ;

• for EW

[
ψ(Y

〈W〉 −WY)
]
:

standard deviation ≤ CW ‖σ‖p n−1 .
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Additional remarks

I CW B−1
W ≈ 1 for Rademacher weights and leave-one-out weights

I Can be generalized to more general weights, e.g. V -fold
cross-validation weights (with CW B−1

W ≈
√

n/V ), with calculation
complexity V

I can be generalized (with larger constants) to (BSA) (symmetric,
bounded random variables), see also Fromont (2005).

I if a deterministic threshold is known (for example Bonferroni’s
threshold for ψ = ‖.‖∞), it can be combined with the
resampling-based threshold, by considering a threshold that is
“very close” to the minimum of the two.

I if the expectation cannot be computed exactly, a Monte-Carlo
method can be used.
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Symmetrization idea

I suppose the distribution of Y is symmetric (around µ) .
I the distribution of the centered sample

Y− µ = (Y1 − µ, . . . ,Yn − µ) is invariant by reweighting with
arbitrary signs Wi ∈ {−1,1}.

I define qquant
α (Y) as the (1− α) quantile of

D(ψ(Y〈W 〉
)|Y) ,

where W is a vector of i.i.d. Rademacher weights.
I Using the invariance we have

P
[
ψ(Y− µ) > qquant

α (Y− µ)
]
≤ α.

I For µ = 0 this can be computed exactly and is used in the
framework of exact tests.
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Empirically recentered quantiles

I What can we do for unknown µ? Use the resampling heuristic and
replace µ by Y, i.e., consider

qquant
α (Y− Y)

I What kind of theoretical guarantee can we have for the empirically
recentered quantile?
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Theoretical guarantee for empirically recentered
quantile

Theorem
Let α, δ, γ ∈]0,1[ and f a non-negative function such that

P
[
ψ(Y− µ) > f (Y)

]
≤ αγ

2
;

then the threshold

tquant+f
α (Y) := qquant

α(1−δ)(1−γ)(Y− Y) +

√
2 log(2/(δα))

n
f (Y)

satisfies
P

[
ψ(Y− µ) > tquant+f

α (Y)
]
≤ α .

Arlot, Blanchard and Roquain Resampling confidence regions Direct estimation 21 / 30



Remarks

tquant+f
α (Y) = qquant

α(1−δ)(1−γ)(Y− Y) +

√
2 log(2/(δα))

n
f (Y)

I the only assumption on Y is the symmetry of its distribution.
I the function f only appears as a second-order term.
I the theorem can be iterated, resulting in terms of increasing order.
I to obtain a computable threshold, we need to have a bound on

some extreme quantile of the distribution.
I under additional assumptions (e.g. boundedness or Gausiannity)

we can take f as one of the previous thresholds: tconc
αγ/2, tBonf

αγ/2. . .
I the point is that the threshold used to define f does not have to be

very sharp.
I if the quantile is computed approximately using a Monte-Carlo

scheme with B repetitions, we lose at most (B + 1)−1 in the
covering probablity.
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b=2 b=6

b=12 b=30
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Simulations: n=1000 , K = 1282 , σ = 1

Arlot, Blanchard and Roquain Resampling confidence regions Some simulation results 25 / 30



Simulations: without the additive term in quantiles?
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Simulations: thresholds with non-zero means,
µk ∈ [0, 3]
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High points

We proposed two different methods to obtain non-asymptotic
confidence regions for Gaussian random variables in high dimension
with unknown correlations.

I concentration method inspired from learning theory: applicable to
many different reweighting schemes.

I direct quantile estimation using symmetrization techniques

I non-asymptotic: valid for any K and n
I no knowledge on dependency structure required
I translation invariant (unlike classical symmetrized thresholds for

testing)
I better than Bonferroni/Holm if there are strong correlations present
I can be used to accelerate classical step-down procedures when

computation time is an issue
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Perspectives for future work

I theoretical study of power/ asymptotic threshold optimality
I what about the quantile approach with other weights, with a

non-symmetric distribution?
I application to model selection?
I application to adaptive testing?
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