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Setting

Observation: a vector Y € R¥

sample Y of ni.i.d. repetitions Y = (Y',..., Y")
Unknown mean vector p

Unknown dependency between the coordinates
“‘Small nlarge K" : n < K

Goal 1: confidence region for u?

Goal 2: find coordinates k : ux # 0? (Multiple testing)
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Assumptions

» (GA): Y is Gaussian with known bound on coordinate variance
02 > maxy Var [ Y]

or

» (BSA): Y is bounded by known B and has a symmetric distribution
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Some motivations

» Neuroimaging:
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Some motivations

» Neuroimaging:

» small number of observations n
of a noisy image with large
number K of pixels

» want to detect where signal is

present or obtain a confidence
envelope about the signal

» strong spatial dependence with
unknown structure (possibly non
stationary, possible
long-distance correlation...)
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Some motivations

» Neuroimaging:

» small number of observations n
of a noisy image with large
number K of pixels

» want to detect where signal is

present or obtain a confidence
envelope about the signal

» strong spatial dependence with
unknown structure (possibly non
stationary, possible
long-distance correlation...)

» Microarrays:

» detect significant differences
(typical problem of multiple
testing)

» completely unknown
dependencies
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Resampling confidence regions
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Precising goals: confidence regions

» We are interested in “y-distance” uniform confidence regions
based on the empirical mean Y = 1 37 | Y’ of the form

{v(Y—p)<t}.

» Goal: find a threshold t as sharp as possible so that the above
region has covering probability 1 — «.
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Precising goals: multiple testing

» We want to test for every coordinate k the hypothesis Hy : i =0
against the alternative px # 0

» Multiple testing procedure: rejects a subset of hypotheses
RYY)c{1,...,K}
» We want to control the family-wise error rate
FWER(R) = P[3k € R(Y)|ux = 0]

» Goal: FWER(R) < « while having high power, i.e. large |R]| .
» Relationship to confidence region: if R(Y) = {k : [Y«| > t},

FWER(R) < P[||Y — u|_ > {]

» Note: can be used as a first step to control other type | error
criteria such as FDP and FDR (Pacifico et al. 2004)
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Bonferroni threshold

» under a Gaussian distribution and for ¥(x) = || x|/, , @ union
bound over coordinated gives the threshold

¢Bonf _ 0671 (a/(2K)),

where ¢ is the standard Gaussian cdf.
deterministic threshold

» too conservative if there are strong dependencies between the
coordinates

» to do better (and for more general ), take into account the
observed dependencies.

v

» Note: n <« K essentially prevents us from using classical
parametric methods, e.g. estimation of the covariance matrix.
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Resampling

» Obviously, the ideal threshold is the (1 — a)-quantile g;, of
(Y — p): _
Plp(Y-p)<qy]=a.
» We want to use a resampling principle

» Usual (bootstrap) resampling: sample uniformly with replacement
a n-sample Y from the original sample Y

» Resampling heuristics: the empirical process Py — Py conditional
to Y “mimics” the empirical process Py — P
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Generalized resampling

» We consider more generally a reweighted sample scheme

» W= (W,..., W,) vector of random weights independent of Y
(but not necessarily jointly independent)
» Consider the reweighted sample (Y, W;),...,(Y", Wy)

« Example 1: Efron’s bootstrap: W is a multinomial (n; n=',... n~")
« Example 2: Rademacher weights: W; i.i.d random signs
e Example 3: Leave-one-out: W; =1{i =ip}, io ~U({1 ..., n}).

» We consider in particular the reweighted mean

n
i=1
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How to study resampling?

> K fixed and n — oo: asymptotic results (eg. van der Vaart and
Wellner 1996); not adapted to our (typically non-asymptotic)
setting.
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How to study resampling?

> K fixed and n — oo: asymptotic results (eg. van der Vaart and
Wellner 1996); not adapted to our (typically non-asymptotic)
setting.

» Idea 1: non-asymptotic results inspired from learning theory (for
bounded random variables): Rademacher complexities
(Koltchinskii 2001, Bartlett and Mendelson 2002), more general
reweighting schemes (Fromont 2005). Based on concentration
and comparison in expectation.
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How to study resampling?

> K fixed and n — oo: asymptotic results (eg. van der Vaart and
Wellner 1996); not adapted to our (typically non-asymptotic)
setting.

» Idea 1: non-asymptotic results inspired from learning theory (for
bounded random variables): Rademacher complexities
(Koltchinskii 2001, Bartlett and Mendelson 2002), more general
reweighting schemes (Fromont 2005). Based on concentration
and comparison in expectation.

» ldea 2: try to estimate directly the quantile using ideas coming
from exact (permutation) tests.
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Result based on concentration

Theorem

Assume (GA), ¢ is positive-homogeneous, subadditive and bounded
by |-l ; W squared-integrable, exchangeable weight vector.
Then, for any o € (0,1) :

tCOnC(Y) :

- Ew [w(Y — WY)} N ||0||p$_1(a/2)[ Gy +1]
- By vn VnBy
satisfies

P (Y —p) >t <a.
With ai = Var [YH s

1 1

By =E [(; é(wf —W)2> } o= (e[ - W)
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Main ingredients

» Comparison of expectations:

BwE [6(Y — )] = E [u(Y" — WY)

» Gaussian concentration theorem for Lipschitz functions of an i.i.d.
Gaussian vector (Cirels’on, Ibragimov and Sudakov 1976)

« for (Y — p): deviations bounded by a normal tail of standard
deviation < |||, n~2;

- for Ey [¢(7<W> - WY):
standard deviation < Cw [|o,n~".
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Additional remarks

» CwB;' ~ 1 for Rademacher weights and leave-one-out weights
w

» Can be generalized to more general weights, e.g. V-fold
cross-validation weights (with Cy B, ~ /n/V), with calculation
complexity V

» can be generalized (with larger constants) to (BSA) (symmetric,
bounded random variables), see also Fromont (2005).

» if a deterministic threshold is known (for example Bonferroni’s
threshold for ¢» = ||.|| ), it can be combined with the
resampling-based threshold, by considering a threshold that is
“very close” to the minimum of the two.

» if the expectation cannot be computed exactly, a Monte-Carlo
method can be used.
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Symmetrization idea

» suppose the distribution of Y is symmetric (around p).

» the distribution of the centered sample
Y —pu=(Y"—pu,...,Y"— pu)is invariant by reweighting with
arbitrary signs W, € {—1,1}.

quant

» define ga  (Y) as the (1 — a) quantile of
w(W
DY )IY),

where W is a vector of i.i.d. Rademacher weights.
» Using the invariance we have

P [¢(Y = p) > qI®"(Y — p)] < .

» For u = 0 this can be computed exactly and is used in the
framework of exact tests.
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Empirically recentered quantiles

» What can we do for unknown ? Use the resampling heuristic and
replace p by Y, i.e., consider

guant (Y _ V)

» What kind of theoretical guarantee can we have for the empirically
recentered quantile?
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Theoretical guarantee for empirically recentered
quantile

Theorem

Let o, 6,7 €]0,1[ and f a non-negative function such that

P (Y — ) > f(Y)] < 5

then the threshold
t 2log(2/(0c))
tguant+f(y) = qgtlf25)(1_7)(v -Y)+ n f(Y)
satisfies B
P[u(Y - ) > "+ (Y)] < a.
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Remarks

— 2log(2/(dc
tguantJrf(Y) _ qiltlfﬁ%)m_’y)(v - Y) + g( n/( )) f(Y)

the only assumption on Y is the symmetry of its distribution.

the function f only appears as a second-order term.

the theorem can be iterated, resulting in terms of increasing order.

to obtain a computable threshold, we need to have a bound on

some extreme quantile of the distribution.

under additional assumptions (e.g. boundedness or Gausiannity)

we can take f as one of the previous thresholds: 5973, t5$7£ ..

» the point is that the threshold used to define f does not have to be
very sharp.

» if the quantile is computed approximately using a Monte-Carlo

scheme with B repetitions, we lose at most (B + 1)~ in the

covering probablity.

Arlot, Blanchard and Roquain Resampling confidence regions Direct estimation 22/30

vvyyy

v



Plan

@ Some simulation results

=] = = E na
Arlot, Blanchard and Roquain Resampling confidence regions



=} = = = E DA®




Simulations: n=1000, K = 1282, 0 = 1
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Simulations: without the additive term in quantiles?

Threshold
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Simulations: thresholds with non-zero means,
JUSS [073]
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High points

We proposed two different methods to obtain non-asymptotic
confidence regions for Gaussian random variables in high dimension
with unknown correlations.

» concentration method inspired from learning theory: applicable to
many different reweighting schemes.

» direct quantile estimation using symmetrization techniques

» non-asymptotic: valid for any K and n
no knowledge on dependency structure required

» translation invariant (unlike classical symmetrized thresholds for
testing)

v

v

better than Bonferroni/Holm if there are strong correlations present

» can be used to accelerate classical step-down procedures when
computation time is an issue
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Perspectives for future work

» theoretical study of power/ asymptotic threshold optimality

» what about the quantile approach with other weights, with a
non-symmetric distribution?

» application to model selection?
» application to adaptive testing?
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