Matching pursuit and basis pursuit: a comparison

Albert Cohen
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris

Collaborators: Andrew Barron, Wolfgang Dahmen, Ron DeVore
+ Rémi Gribonval, Christine de Mol and Jean-Marie Mirebeau

College Station, 2007
A general problem

Consider a dictionary of functions $\mathcal{D} = (g)_{g \in \mathcal{D}}$ in a Hilbert space H.
A general problem

Consider a dictionary of functions $\mathcal{D} = (g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized ($\|g\| = 1$), complete, but not orthogonal and possibly redundant.
A general problem

Consider a dictionary of functions $\mathcal{D} = (g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized ($\|g\| = 1$), complete, but not orthogonal and possibly redundant.

Sparse approximation problem: given $N > 0$ and $f \in H$, construct an N-term combination

$$f_N = \sum_{k=1,\ldots,N} c_k g_k,$$

with $g_k \in \mathcal{D}$, which approximates f "at best", and study how fast f_N converges towards f.

A general problem

Consider a dictionary of functions $\mathcal{D} = (g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized ($\|g\| = 1$), complete, but not orthogonal and possibly redundant.

Sparse approximation problem: given $N > 0$ and $f \in H$, construct an N-term combination

$$f_N = \sum_{k=1,\ldots,N} c_k g_k,$$

with $g_k \in \mathcal{D}$, which approximates f “at best”, and study how fast f_N converges towards f.

Sparse recovery problem: if f has an unknown representation $f = \sum_g c_g g$ with $(c_g)_{g \in \mathcal{D}}$ a (possibly) sparse sequence, recover this sequence exactly or approximately from the data of f.
Orthogonal matching pursuit

f_N is constructed by an greedy algorithm. Initialization: $f_0 = 0$.
At step $k - 1$, the approximation is defined by

$$f_{k-1} := P_{k-1} f,$$

with P_{k-1} the orthogonal projection onto Span$\{g_1, \cdots, g_{k-1}\}$.
Choice of next element based on the residual $r_{k-1} = f - P_{k-1}f$:

$$g_k := \text{Argmax}_{g \in \mathcal{D}} |\langle r_{k-1}, g \rangle|.$$
Orthogonal matching pursuit

f_N is constructed by an greedy algorithm. Initialization: $f_0 = 0$.
At step $k - 1$, the approximation is defined by

$$f_{k-1} := P_{k-1}f,$$

with P_{k-1} the orthogonal projection onto $\text{Span}\{g_1, \cdots, g_{k-1}\}$.

Choice of next element based on the residual $r_{k-1} = f - P_{k-1}f$:

$$g_k := \text{Argmax}_{g \in \mathcal{D}} |\langle r_{k-1}, g \rangle|.$$

Many variants: PGA, RGA, WGA, CGA, WCGA, WGAFR...

First versions studied in the 1970’s by statisticians (Friedman, Huber, Stuetzle, Tukey...).
Relaxed greedy algorithm

Define

$$f_k := \alpha_k f_{k-1} + \beta_k g_k,$$

with

$$(\alpha_k, \beta_k, g_k) := \text{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^2 \times \mathcal{D}} \| f - \alpha f_{k-1} + \beta g \|$$.

Relaxed greedy algorithm

Define

\[f_k := \alpha_k f_{k-1} + \beta_k g_k, \]

with

\[(\alpha_k, \beta_k, g_k) := \text{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^2 \times \mathcal{D}} \| f - \alpha f_{k-1} + \beta g \|. \]

Simpler version: set \(\alpha_k \) in advance and optimize only \(\beta \) and \(g \).

If \(\alpha_k = 1 \), this gives the Pure Greedy Algorithm:

\[g_k := \text{Argmax}_{g \in \mathcal{D}} |\langle r_{k-1}, g \rangle| \quad \text{and} \quad f_k := f_{k-1} + \langle r_{k-1}, g_k \rangle g_k. \]

with \(r_{k-1} = f - f_{k-1} \).
Relaxed greedy algorithm

Define

\[f_k := \alpha_k f_{k-1} + \beta_k g_k, \]

with

\[(\alpha_k, \beta_k, g_k) := \text{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^2 \times \mathcal{D}} \| f - \alpha f_{k-1} + \beta g \|. \]

Simpler version: set \(\alpha_k \) in advance and optimize only \(\beta \) and \(g \).

If \(\alpha_k = 1 \), this gives the Pure Greedy Algorithm:

\[g_k := \text{Argmax}_{g \in \mathcal{D}} |\langle r_{k-1}, g \rangle| \quad \text{and} \quad f_k := f_{k-1} + \langle r_{k-1}, g_k \rangle g_k. \]

with \(r_{k-1} = f - f_{k-1} \). It might be wiser to take \(\alpha_k = (1 - \frac{c}{k})^+ \):

\[g_k := \text{Argmax}_{g \in \mathcal{D}} |\langle \tilde{r}_{k-1}, g \rangle| \quad \text{and} \quad f_k := f_{k-1} + \langle \tilde{r}_{k-1}, g_k \rangle g_k. \]

with the modified residual \(\tilde{r}_{k-1} := f - (1 - \frac{c}{k})^+ f_{k-1} \).
Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$\min\left\{ \| (c_g) \|_{\ell^0} ; \| f - \sum c_g g \| \leq \varepsilon \right\}$$

which is usually untractable.
Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$\min \left\{ \| (c_g) \|_{\ell^0} ; \| f - \sum c_g g \| \leq \varepsilon \right\}$$

which is usually untractable. A convex relaxation to this problem is

$$\min \left\{ \| (c_g) \|_{\ell^1} ; \| f - \sum c_g g \| \leq \varepsilon \right\}$$

which can also be formulated as

$$\min \left\{ \| f - \sum c_g g \|^2 + \lambda \| (c_g) \|_{\ell^1} \right\}$$

Intuition: the ℓ^1 norm promotes sparse solutions and λ governs the amount of sparsity of the minimizing sequence.
Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$\min\{ \| (c_g) \|_{\ell^0} ; \| f - \sum c_g g \| \leq \varepsilon \}$$

which is usually untractable. A convex relaxation to this problem is

$$\min\{ \| (c_g) \|_{\ell^1} ; \| f - \sum c_g g \| \leq \varepsilon \}$$

which can also be formulated as

$$\min\{ \| f - \sum c_g g \|^2 + \lambda \| (c_g) \|_{\ell^1} \}$$

Intuition: the ℓ^1 norm promotes sparse solutions and λ governs the amount of sparsity of the minimizing sequence. Many algorithms have been developed for solving this problem, also introduced in the statistical context as LASSO (Tibshirani).
The case when \mathcal{D} is an orthonormal basis

The target function has a unique expansion $f = \sum c_g(f)g$, with $c_g(f) = \langle f, g \rangle$.

OMP \Leftrightarrow hard thresholding: $f_N = \sum_{g \in E_N} c_g(f)g$, with $E_N = E_N(f)$ corresponding to the N largest $|c_g(f)|$.
The case when \mathcal{D} is an orthonormal basis

The target function has a unique expansion $f = \sum c_g(f)g$, with $c_g(f) = \langle f, g \rangle$.

OMP \iff hard thresholding: $f_N = \sum_{g \in E_N} c_g(f)g$, with $E_N = E_N(f)$ corresponding to the N largest $|c_g(f)|$.

BP \iff soft thresholding: $\min \sum_{g \in \mathcal{D}} \{ |c_g(f) - c_g|^2 + \lambda |c_g| \}$ attained by $c^*_g = S_{\lambda/2}(c_g(f))$ with $S_t(x) := \text{sgn}(x)(|x| - t)_+$. The solution $f_\lambda = \sum c^*_g g$ is N-sparse with $N = N(\lambda)$.
The case when \mathcal{D} is an orthonormal basis

The target function has a unique expansion $f = \sum c_g(f)g$, with $c_g(f) = \langle f, g \rangle$.

OMP \Leftrightarrow hard thresholding: $f_N = \sum_{g \in E_N} c_g(f)g$, with $E_N = E_N(f)$ corresponding to the N largest $|c_g(f)|$.

BP \Leftrightarrow soft thresholding: $\min \sum_{g \in \mathcal{D}} \{|c_g(f) - c_g|^2 + \lambda|c_g|\}$ attained by $c^*_g = S_{\lambda/2}(c_g(f))$ with $S_t(x) := \text{sgn}(x)\left(|x| - t\right)_+$.

The solution $f_\lambda = \sum c^*_g g$ is N-sparse with $N = N(\lambda)$.

Rate of convergence: related to the concentration properties of the sequence $(c_g(f))$. For $p < 2$ and $s = \frac{1}{p} - \frac{1}{2}$, equivalence of

(i) $(c_g(f)) \in w\ell^p$ i.e. $\#(\{g \text{ s.t. } |c_g(f)| > \eta\}) \leq C\eta^{-p}$.

(ii) $c_n \leq Cn^{-\frac{1}{p}}$ with $(c_n)_{n \geq 0}$ decreasing permutation of $(|c_g(f)|)$.

(iii) $\|f - f_N\| = \left[\sum_{n \geq N} c_n^2\right]^{\frac{1}{2}} \leq C\left[\sum_{n \geq N} n^{-\frac{2}{p}}\right]^{\frac{1}{2}} \leq CN^{-s}$.
Multiscale decompositions of natural images into wavelet bases are quasi-sparse: a few numerically significant coefficients concentrate most of the energy and information. This property plays a crucial role in applications such as compression and denoising.
Moving away from orthonormal bases

Many possible intermediate assumptions: measure of uncoherence (Temlyakov), restricted isometry properties (Candes-Tao), frames...
Moving away from orthonormal bases

Many possible intermediate assumptions: measure of uncoherence (Temlyakov), restricted isometry properties (Candes-Tao), frames...

Here we rather want to allow for the most general \mathcal{D}.

Signal and image processing (Mallat): composite features might be better captured by dictionary $\mathcal{D} = \mathcal{D}_1 \cup \cdots \cup \mathcal{D}_k$ where the \mathcal{D}_i are orthonormal bases. Example: wavelets + Fourier + Diracs...

Statistical learning: (x, y) random variables, observe independent samples $(x_i, y_i)_{i=1,\ldots,n}$ and look for f such that $|f(x) - y|$ is small in some probabilistic sense. Least square method are based on minimizing $\sum_i |f(x_i) - y_i|^2$ and therefore working with the norm $\|u\|^2 := \sum_i |u(x_i)|^2$ for which \mathcal{D} is in general non-orthogonal.
Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f = \sum c_g g$ with (c_g) a concentrated sequence?
Convergence analysis

Natural question: how do OMP and BP behave when \(f \) has an expansion \(f = \sum c_g g \) with \((c_g) \) a concentrated sequence?
Convergence analysis

Natural question: how do OMP and BP behave when \(f \) has an expansion \(f = \sum c_g g \) with \((c_g)\) a concentrated sequence?

Here concentration cannot be measured by \((c_g) \in w\ell^p\) for some \(p < 2\) since \((c_g) \in \ell^p\) does not ensure convergence of \(\sum c_g g\) in \(H\).
Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f = \sum c_g g$ with (c_g) a concentrated sequence?

Here concentration cannot be measured by $(c_g) \in w\ell^p$ for some $p < 2$ since $(c_g) \in \ell^p$ does not ensure convergence of $\sum c_g g$ in H ...except when $p = 1$: convergence is then ensured by triangle inequality since $\|g\| = 1$ for all $g \in \mathcal{D}$.
Convergence analysis

Natural question: how do OMP and BP behave when \(f \) has an expansion \(f = \sum c_g g \) with \((c_g) \) a concentrated sequence?

Here concentration cannot be measured by \((c_g) \in w\ell^p \) for some \(p < 2 \) since \((c_g) \in \ell^p \) does not ensure convergence of \(\sum c_g g \) in \(H \)

...except when \(p = 1 \): convergence is then ensured by triangle inequality since \(\|g\| = 1 \) for all \(g \in D \).

We define the space \(\mathcal{L}^1 \subset H \) of all \(f \) having a summable expansion, equipped with the norm

\[
\|f\|_{\mathcal{L}^1} := \inf \{ \sum |c_g| ; \sum c_g g = f \}.
\]

Note that \(\|f\| \leq \|f\|_{\mathcal{L}^1} \).
The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_k = (1 - c/k)_+$, there exists $C > 0$ such that for all $f \in \mathcal{L}^1$, we have

$$\|f - f_N\| \leq C \|f\|_{\mathcal{L}^1} N^{-\frac{1}{2}}.$$
The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_k = (1 - c/k)_+$, there exists $C > 0$ such that for all $f \in \mathcal{L}^1$, we have

$$\|f - f_N\| \leq C\|f\|_{\mathcal{L}^1} N^{-\frac{1}{2}}.$$

Remark 1: the rate $s = 1/2$ is consistent with $s = 1/p - 1/2$ in the case of an orthonormal basis
The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_k = (1 - c/k)_+$, there exists $C > 0$ such that for all $f \in L^1$, we have

$$\|f - f_N\| \leq C\|f\|_{L^1}N^{-\frac{1}{2}}.$$

Remark 1: the rate $s = 1/2$ is consistent with $s = 1/p - 1/2$ in the case of an orthonormal basis

Remark 2: the PGA does not give the optimal rate. It is known that

(i) If $f \in L^1$, then $\|f - f_N\| \leq CN^{-\frac{11}{62}}$ (Konyagin and Temlyakov).

(ii) $\|f - f_N\| \geq cN^{-0.27}$ for some D and $f \in L^1$ (Lifchitz and Temlyakov).
Proof for OMP

Since \(r_k = f - f_k = f - P_k f \) is the error of orthogonal projection onto \(\text{Span}\{g_1, \cdots, g_k\} \), we have

\[
\|r_k\|^2 \leq \|r_{k-1}\|^2 - |\langle r_{k-1}, g_k \rangle|^2,
\]

and

\[
\|r_{k-1}\|^2 = \langle r_{k-1}, f \rangle = \sum c_g \langle r_{k-1}, g \rangle \leq \|f\|_{\mathcal{L}^1} |\langle r_{k-1}, g_k \rangle|.
\]

Therefore, with the notation \(M = \|f\|^2_{\mathcal{L}^1} \) and \(a_k = \|r_k\|^2 \), we obtain that

\[
a_k \leq a_{k-1}(1 - \frac{a_{k-1}}{M}),
\]

and \(a_0 \leq M \), since \(a_0 = \|r_0\|^2 = \|f\|^2 \leq \|f\|^2_{\mathcal{L}^1} \).

This easily implies by induction that \(a_N \leq \frac{M}{N+1} \).
The case of a general $f \in \mathcal{H}$

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C > 0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^1$, we have

$$\|f - f_N\| \leq \|f - h\| + C\|h\|_{\mathcal{L}^1}N^{-\frac{1}{2}}.$$
The case of a general \(f \in \mathcal{H} \)

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists \(C > 0 \) such that for any \(f \in H \) and for any \(h \in \mathcal{L}^1 \), we have

\[
\| f - f_N \| \leq \| f - h \| + C \| h \|_{\mathcal{L}^1} N^{-\frac{1}{2}}.
\]

Remark: this shows that the convergence behaviour of OMP has some stability, although \(f \mapsto f_N \) is intrinsically unstable with respect to a perturbation of \(f \).
The case of a general $f \in \mathcal{H}$

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C > 0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^1$, we have

$$
\|f - f_N\| \leq \|f - h\| + C\|h\|_{\mathcal{L}^1} N^{-\frac{1}{2}}.
$$

Remark: this shows that the convergence behaviour of OMP has some stability, although $f \mapsto f_N$ is intrinsically unstable with respect to a perturbation of f.

A first consequence: for any $f \in \mathcal{H}$ one has $\lim_{N \to +\infty} f_N = f$.
The case of a general $f \in \mathcal{H}$

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C > 0$ such that for any $f \in \mathcal{H}$ and for any $h \in \mathcal{L}^1$, we have

$$\| f - f_N \| \leq \| f - h \| + C \| h \|_{\mathcal{L}^1} N^{-\frac{1}{2}}.$$

Remark: this shows that the convergence behaviour of OMP has some stability, although $f \mapsto f_N$ is intrinsically unstable with respect to a perturbation of f.

A first consequence: for any $f \in \mathcal{H}$ one has $\lim_{N \to +\infty} f_N = f$.

Also leads to characterization of intermediate rates of convergence N^{-s} with $0 < s < 1/2$, by interpolation spaces between \mathcal{L}^1 and \mathcal{H}.
What about Basis Pursuit?

For a general \mathcal{D}, consider $f_\lambda = \sum c_g^* g$ solution of

$$\min \{ \| f - \sum c_g g \|^2 + \lambda \| (c_g) \|_{\ell^1} \}$$
What about Basis Pursuit?

For a general D, consider $f_\lambda = \sum c_g^* g$ solution of

$$\min \{ \| f - \sum c_g g \|^2 + \lambda \| (c_g) \|_1 \}$$

Questions: Does the minimizer always exist? If it exists is it unique? If it exists is (c_g^*) finitely supported?
What about Basis Pursuit?

For a general \mathcal{D}, consider $f_\lambda = \sum c_g^* g$ solution of

$$\min \{ \|f - \sum c_g g\|^2 + \lambda \| (c_g) \|_{\ell^1} \}$$

Questions: Does the minimizer always exist? If it exists is it unique? If it exists is (c_g^*) finitely supported?

Answers: NO, NO and NO.
What about Basis Pursuit?

For a general \mathcal{D}, consider $f_\lambda = \sum c^*_g g$ solution of

$$\min\{\|f - \sum c_g g\|^2 + \lambda \|c_g\|_{\ell^1}\}$$

Questions: Does the minimizer always exist? If it exists is it unique? If it exists is (c^*_g) finitely supported?

Answers: NO, NO and NO.

Finite dimensional case: solution exists if and only if $-\mathcal{D} \cup \mathcal{D}$ is a closed subset of the unit sphere.

Infinite dimensional case: a sufficient condition for existence of a minimizer with (c^*_g) finitely supported is: for all $\varepsilon > 0$ and $f \in H$

$$\#\{g \mid |\langle f, g \rangle| > \varepsilon\} \leq C(\varepsilon) < \infty.$$
Bessel sequences

\mathcal{D} is a Bessel sequence. if for all $(c_g) \in \ell^2$,

$$\| \sum c_g g \|^2 \leq C \sum |c_g|^2,$$

or equivalently for all $f \in H$

$$\sum |\langle f, g \rangle|^2 \leq C \|f\|^2,$$

i.e. the frame operator is bounded.
Bessel sequences

\(\mathcal{D} \) is a Bessel sequence. if for all \((c_g) \in \ell^2\),

\[
\left\| \sum c_g g \right\|^2 \leq C \sum |c_g|^2,
\]

or equivalently for all \(f \in H\)

\[
\sum |\langle f, g \rangle|^2 \leq C \|f\|^2,
\]

i.e. the frame operator is bounded.

This assumption was considered by Gribonval and Nielsen (2004). It is also the framework considered by Daubechies, Defrise and Demol (2005), when minimizing \(\|y - Kx\|_{\ell^2}^2 + \lambda \|x\|_{\ell^1} \) with \(\|K\| \leq C \).

Under such an assumption, the minimizer \(f_\lambda = \sum c^*_g g \) exists with \((c^*_g)\) finitely supported. Uniqueness might fail.
Approximation properties of BP

Theorem (Cohen, DeMol, Gribonval, 2007): If \mathcal{D} is a Bessel sequence, then

(i) for all $f \in \mathcal{L}^1$,

$$\|f - f_\lambda\| \leq C\|f\|_{\mathcal{L}^1} N^{-1/2},$$

with $N = N(\lambda)$ the support size of (c_g^*).

(ii) for all $f \in H$ and $h \in \mathcal{L}^1$,

$$\|f - f_\lambda\| \leq C(\|f - h\| + \|f\|_{\mathcal{L}^1} N^{-1/2}).$$

The constant C depends on the constant in the Bessel assumption.

Open question: does this result hold for more general dictionaries?
Proof \((f \in \mathcal{L}^1)\)

Optimality condition gives:

\[c_g^* \neq 0 \Rightarrow |\langle f - f\lambda, g \rangle| = \frac{\lambda}{2}. \]

Therefore

\[N \frac{\lambda^2}{4} = \sum |\langle f - f\lambda, g \rangle|^2 \leq C \|f - f\lambda\|^2, \]

so that \(\lambda \leq 2C \|f - f\lambda\| N^{-1/2} \).

Now if \(f = \sum c_g g \) with \(\sum |c_g| \leq M \), we have

\[\|f - f\lambda\|^2 + \lambda \|(c_g^*)\|_{\ell^1} \leq \lambda M, \]

and therefore \(\|f - f\lambda\|^2 \leq \lambda M \).

Combining both gives

\[\|f - f\lambda\| \leq 2C \|f\|_{\mathcal{L}^1} N^{-1/2}. \]
A result in the regression context for OMP

Let \hat{f}_k be the estimator obtained by running OMP on the data (y_i) with the least square norm $\|u\|_n^2 := \frac{1}{n} \sum_{i=1}^{n} |u(x_i)|^2$.
A result in the regression context for OMP

Let \hat{f}_k be the estimator obtained by running OMP on the data (y_i) with the least square norm $\|u\|_n^2 := \frac{1}{n} \sum_{i=1}^{n} |u(x_i)|^2$.

Selecting k: one sets

$$k^* := \text{Argmax}_{k>0} \{\|y - \hat{f}_k\|_n^2 + \text{pen}(k, n)\},$$

with $\text{pen}(k, n) \sim \frac{k \log n}{n}$, and defines $\hat{f} = \hat{f}_{k^*}$.
A result in the regression context for OMP

Let \hat{f}_k be the estimator obtained by running OMP on the data (y_i) with the least square norm $\|u\|_n^2 := \frac{1}{n} \sum_{i=1}^{n} |u(x_i)|^2$.

Selecting k: one sets

$$k^* := \text{Argmax}_{k > 0} \{\|y - \hat{f}_k\|_n^2 + \text{pen}(k, n)\},$$

with $\text{pen}(k, n) \sim \frac{k \log n}{n}$, and defines $\hat{f} = \hat{f}_{k^*}$

We denote by $f(x) := E(y|x)$ the regression function and $\|u\|^2 := E(|u(x)|^2)$.

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

$$E(\|\hat{f} - f\|^2) \leq C \inf_{k \geq 0, h \in \mathcal{L}_1} \{\|h - f\|^2 + k^{-1} \|h\|_{\mathcal{L}_1}^2 + \text{pen}(k, n)\}.$$
A result in the regression context for OMP

Let \(\hat{f}_k \) be the estimator obtained by running OMP on the data \((y_i)\) with the least square norm \(\|u\|^2_n := \frac{1}{n} \sum_{i=1}^{n} |u(x_i)|^2 \).

Selecting \(k \): one sets

\[
 k^* := \text{Argmax}_{k>0} \{ \|y - \hat{f}_k\|^2_n + \text{pen}(k, n) \},
\]

with \(\text{pen}(k, n) \sim \frac{k \log n}{n} \), and defines \(\hat{f} = \hat{f}_{k^*} \).

We denote by \(f(x) := E(y|x) \) the regression function and \(\|u\|^2 := E(|u(x)|^2) \).

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

\[
 E(\|\hat{f} - f\|^2) \leq C \inf_{k \geq 0, h \in \mathcal{L}^1} \{ \|h - f\|^2 + k^{-1} \|h\|^2_{\mathcal{L}^1} + \text{pen}(k, n) \}.
\]

Similar oracle estimate for LASSO? Which assumptions should be needed on \(\mathcal{D} \)?