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an N-term combination
fN = E CrJk
k=1,.--,N

with g € D, which approximates f “at best”, and study how fast

fn converges towards f.
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Consider a dictionary of functions D = (g)4ep in a Hilbert space H.

The dictionary is countable, normalized (||g|| = 1), complete, but

not orthogonal and possibly redundant.

Sparse approximation problem : given N > 0 and f € H, construct

an N-term combination
fN = E CkJk
k=1,.--,N

with g € D, which approximates f “at best”, and study how fast

fn converges towards f.

Sparse recovery problem : if f has an unknown representation
f=2_,¢q9 with (¢g)gep a (possibly) sparse sequence, recover this

sequence exactly or approximately from the data of f.
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/ Orthogonal matching pursuit

fn is constructed by an greedy algorithm. Initialization: fy = 0.

At step k — 1, the approximation is defined by

fk—l ‘= Pk—lfa
with Py_1 the orthogonal projection onto Span{gi,- -, gx—_1}-

Choice of next element based on the residual rp,_1 = f — P_1kf :

g = Argmax cp|(rr—1,9)|-




/ Orthogonal matching pursuit
fn is constructed by an greedy algorithm. Initialization: fy = 0.

At step k — 1, the approximation is defined by

fk—l ‘= Pk—lfa
with Py_1 the orthogonal projection onto Span{gi,- -, gx—_1}-

Choice of next element based on the residual rp_1 = f — Py_1f :
g = Argmax cp|(rr—1,9)|-

Many variants : PGA, RGA, WCGA, CGA, WCGA, WGAFR...

(Acta Numerica survey by Vladimir Temlyakov to appear).

First versions studied in the 1970’s by statisticians (Friedman,
Huber, Stuetzle, Tukey...).
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with

Relaxed greedy algorithm

I = apfr—1 + Brgk,

(akzaﬁkagk) = Argmin(a’ﬁ’g)eﬁ2xp||f _ afk—l + 69”




/ Relaxed greedy algorithm

Define
Ik = arf—1 + Bk,
with

(&kzaﬁk)gk) = Argmin(a’579)€R2XD||f _ Oéfk—l + 69”

Simpler version: set aj in advance and optimize only 8 and g.

If ap = 1, this gives the Pure Greedy Algorithm :
gr = Argmax cp|(rr—1,9)| and fr = fr—1 + ("k—1, k) k-

with rg_1 = f — fr—1.
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/ Relaxed greedy algorithm

Define
Ik = arf—1 + Bk,
with

(&kaﬁkagk) = Argmin(a’579)€R2XD||f _ Oéfk—l + 5.9”

Simpler version: set aj in advance and optimize only 8 and g.

If ap = 1, this gives the Pure Greedy Algorithm :

with 7,1 = f — fr_1. It might be wiser to take oy = (1 —

with the modified residual 7x_1 := f — (1 — )4 fr—1-

.

gr = Argmax cp|(rr—1,9)| and fr = fr—1 + ("k—1, k) k-
%)Jr :

gk := Argmax cp|(Fk-1,9)| and fr = fr—1 + (Tk—1, 9K) 9.
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/ Basis pursuit

Finding the best approximation of f by /N elements of the

dictionary is equivalent to the support minimization problem

min{]|(co)|leo ; If =D cogll < e}
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min{]|(co)|leo ; If =D cogll < e}

which is usually untractable. A convex relaxation to this problem is

min{[|(co)ller ; 1f =D cogll < e}

which can also be formulated as

min{|[f =) cggll* + All(cg)ller }

Intuition : the ¢! norm promotes sparse solutions and A governs the

amount of sparsity of the minimizing sequence.
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/ Basis pursuit \

Finding the best approximation of f by /N elements of the

dictionary is equivalent to the support minimization problem

min{]|(co)|leo ; If =D cogll < e}

which is usually untractable. A convex relaxation to this problem is

min{[|(co)ller ; 1f =D cogll < e}

which can also be formulated as

min{|[f =) cggll* + All(cg)ller }

Intuition : the ¢! norm promotes sparse solutions and A governs the
amount of sparsity of the minimizing sequence. Many algorithms
have been developped for solving this problem, also introduced in
the statistical context as LASSO (Tibshirani).

N
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/ The case when D is an orthonormal basis \

The target function has a unique expansion f = > c¢,(f)g, with
Cg(f) — <f7 g>

OMP < hard thresholding: fy = deEN cq(f)g, with
En = En(f) corresponding to the N largest |c,(f)|.
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/ The case when D is an orthonormal basis \

The target function has a unique expansion f = > c¢,(f)g, with

Cg(f) — <f7 g>
OMP < hard thresholding: fy = deEN cq(f)g, with
En = En(f) corresponding to the N largest |c,(f)|.

BP < soft thresholding: min ), . {[cg(f) — cgl? + A|eg|} attained
by ¢ = Sx/2(cg(f)) with Sy(z) := sgn(z)(|x| —t)4.
The solution f) = ) cj g is N-sparse with N = N ().

Rate of convergence: related to the concentration properties of the

1 1

sequence (¢4(f)). For p<2and s = - — 3, equivalence of

() (co(f)) € wt? ie. #({g s.t. |ey(f)] > m}) < Oy,

(ii) ¢ < Cn~7 with (¢n)n>0 decreasing permutation of (|c,(f)]).

(i) [|f — fvll = [Zpon AlF <C[X,oyn #]2 <CONT.
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/ Example of concentrated representation \

Digital image 512x512 Multiscale decomposition

Multiscale decompositions of natural images into wavelet bases are
quasi-sparse: a few numerically significant coefficients concentrate

most of the energy and information. This property plays a crucial

\role in applications such as compression and denoising. /




/ Moving away from orthonormal bases \

Many possible intermediate assumptions : measure of uncoherence

(Temlyakov), restricted isometry properties (Candes-Tao), frames...




/ Moving away from orthonormal bases \

Many possible intermediate assumptions : measure of uncoherence

(Temlyakov), restricted isometry properties (Candes-Tao), frames...
Here we rather want to allow for the most general D.

Signal and image processing (Mallat): composite features might be
better captured by dictionary D = D; U - - - U Dy where the D; are

orthonormal bases. Example: wavelets + Fourier + Diracs...

Statistical learning: (x,y) random variables, observe independent
samples (x;,¥;)i=1.... » and look for f such that |f(x) — y| is small
in some probabilistic sense. Least square method are based on
minimizing > |f(x;) — y;|* and therefore working with the norm
Jull* :== >, |u(x;)|? for which D is in general non-orthogonal.
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/ Convergence analysis \

Natural question: how do OMP and BP behave when f has an

expansion f = ) c,g with (¢,) a concentrated sequence ?

Here concentration cannot be measured by (c;) € wéP for some
p < 2 since (¢q4) € ¢P does not ensure convergence of »  c,g in H
...except when p = 1: convergence is then ensured by triangle

inequality since ||g|| = 1 for all g € D.

We define the space £! C H of all f having a summable expansion,

equiped with the norm

Il =ity legls Y g =}
Note that [[f]| < |[f]|:.
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/ The case of summable expansions \

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and
RGA with ar = (1 — ¢/k)4, there exists C' > 0 such that for all
f e L', we have

If = fnll < CIflerN72.
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/ The case of summable expansions \

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and
RGA with ar = (1 — ¢/k)4, there exists C' > 0 such that for all
f e L', we have

If = fnll < CIflerN72.

Remark 1: the rate s = 1/2 is consistent with s = 1/p — 1/2 in the

case of an orthonormal basis

Remark 2: the PGA does not give the optimal rate. It is known
that

(i) If f € £, then ||f — fn|| < CN s (Konyagin and Temlyakov).

(i) || f — fv| = eN7%27 for some D and f € £! (Lifchitz and
Temlyakov).

- /




/ Proof for OMP \

Since rp = f — fr = f — P f is the error of orthogonal projection
onto Span{gi,--- , gk}, we have

Irell® < llre=all® = [{re—1, ge) |,

and
Ire—1? = (1, f) = D calri—1,9) < 1 fller [(re—1, gi)l.
Therefore, with the notation M = || f||%, and ax = ||rk||?, we obtain
that .
ar < ap—1(1 — Vi ),

and ag < M, since ag = ||ro||* = || fII? < | f]|%:-

This easily implies by induction that ay < Niﬂ
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/ The case of a general f € 'H \

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP,
there exists C' > 0 such that for any f € H and for any h € L}, we

have

If = Il < A[f = Al + Cllaf[ 2 N2,
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/ The case of a general f € H \

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP,
there exists C' > 0 such that for any f € H and for any h € L}, we

have
[f = fnll < If =l + Cllhl| . N2,

Remark: this shows that the convergence behaviour of OMP has
some stability, although f — fx is intrinsically unstable with

respect to a perturbation of f.
A first consequence : for any f € H one has limy_ .. fv = f.

Also leads to characterization of intermediate rates of convergence
N~% with 0 < s < 1/2, by interpolation spaces between £! and H.
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/ What about Basis Pursuit ? \

For a general D, consider f) = ) ¢, g solution of
min{||f — > cogl® + All(cg) [l }

Questions: Does the minimizer always exist 7 If it exists is it
unique ? If it exists is (cj) finitely supported ?

Answers: NO, NO and NO.

Finite dimensional case: solution exists if and only if =D U D is a

closed subset of the unit sphere.

Infinite dimensional case: a sufficient condition for existence of a

minimizer with (cj) finitely supported is : for all e > 0 and f € H

#{g; (f,9)] >e} < C(e) < o0.
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/ Bessel sequences

D is a Bessel sequence. if for all (c,) € ¢2,

| chgHQ < CZ 109127

or equivalently for all f € H

Y U1f 9l < ClfIP,

i.e. the frame operator is bounded.




/ Bessel sequences

D is a Bessel sequence. if for all (c,) € ¢2,

| chgHQ < CZ 109127

or equivalently for all f € H

Y U1f 9l < ClfIP,

i.e. the frame operator is bounded.

This assumption was considered by Gribonval and Nielsen (2004).
It is also the framework considered by Daubechies, Defrise and
Demol (2005), when minimizing ||y — Kz||7, + Al|z|,» with

K| <C.

Under such an assumption, the minimizer fy = ) ¢, g exists with

(c;) finitely supported. Uniqueness might fail.
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/ Approximation properties of BP \

Theorem (Cohen, DeMol, Gribonval, 2007): If D is a Bessel

sequence, then

(i) for all f € L1,

If = Al < ClflleaNTH2,
with N = N(A) the support size of (c}).
(ii) for all f € H and h € L*,

If = Al < CUf = bl + £l N7H2).

The constant C' depends on the constant in the Bessel assumption.

Open question: does this result hold for more general dictionaries 7
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/ Proof (f € L)

Optimality condition gives:

A

cg 70=[(f = a9 = 5

Therefore

N 2 2
N-— => =gl <Clf = Al
so that A\ < 20| f — fa||[N~1/2.
Now if f = > cyg with > |c,| < M, we have
Lf = Al + Ml (eg)ller < AM,

and therefore ||f — f\[|? < AM.
Combining both gives

-

1= £l < 2C|fll.a N2,




/ A result in the regression context for OMP \

Let fk be the estimator obtained by running OMP on the data (y;)

with the least square norm ||ul|2 := £ 3% |u(z;)]?.
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/ A result in the regression context for OMP \
Let fk be the estimator obtained by running OMP on the data (y;)
with the least square norm ||ul|2 := £ 3% |u(z;)]?.

Selecting k: one sets

k* = Argmax - o{||y — ka% + pen(k,n)},

with pen(k,n) ~ H198" and defines f = f-

n

We denote by f(x) := E(y|r) the regression function and
lull® == E(Ju(z)[?).

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

E(lf = flII>) < C  inf h— f112 + k7Y h|2, k.n)l.
(If = flI7) < kzol,nhecl{” fIIF+E7 |20 + pen(k,n)}

- /




/ A result in the regression context for OMP \
Let fk be the estimator obtained by running OMP on the data (y;)
with the least square norm |Ju|? := £ 3% | |u(;)|.

Selecting k: one sets

k™ := Argmax; o1y — ka% + pen(k,n)},

with pen(k,n) ~ #198" and defines f = fy-

n

We denote by f(z) := E(y|z) the regression function and
lull® == E(Ju(z)[?).

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

E(lf = flII>) < C  inf h— f112 + k7Y h|2, k.n)l.
(If = flI7) < kzol,nhecl{” fIIF+E7 |20 + pen(k,n)}

Similar oracle estimate for LASSO 7 Which assumptions should be

Qeeded on D ? /




