Matching pursuit and basis pursuit:
 a comparison

Albert Cohen

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Paris

Collaborators: Andrew Barron, Wolfgang Dahmen, Ron DeVore + Rémi Gribonval, Christine de Mol and Jean-Marie Mirebeau

College Station, 2007

A general problem

Consider a dictionary of functions $\mathcal{D}=(g)_{g \in \mathcal{D}}$ in a Hilbert space H.

A general problem

Consider a dictionary of functions $\mathcal{D}=(g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized $(\|g\|=1)$, complete, but not orthogonal and possibly redundant.

A general problem

Consider a dictionary of functions $\mathcal{D}=(g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized $(\|g\|=1)$, complete, but not orthogonal and possibly redundant.

Sparse approximation problem : given $N>0$ and $f \in H$, construct an N-term combination

$$
f_{N}=\sum_{k=1, \cdots, N} c_{k} g_{k},
$$

with $g_{k} \in \mathcal{D}$, which approximates f "at best", and study how fast f_{N} converges towards f.

A general problem

Consider a dictionary of functions $\mathcal{D}=(g)_{g \in \mathcal{D}}$ in a Hilbert space H. The dictionary is countable, normalized $(\|g\|=1)$, complete, but not orthogonal and possibly redundant.

Sparse approximation problem : given $N>0$ and $f \in H$, construct an N-term combination

$$
f_{N}=\sum_{k=1, \cdots, N} c_{k} g_{k}
$$

with $g_{k} \in \mathcal{D}$, which approximates f "at best", and study how fast f_{N} converges towards f.

Sparse recovery problem: if f has an unknown representation $f=\sum_{g} c_{g} g$ with $\left(c_{g}\right)_{g \in \mathcal{D}}$ a (possibly) sparse sequence, recover this sequence exactly or approximately from the data of f.

Orthogonal matching pursuit

f_{N} is constructed by an greedy algorithm. Initialization: $f_{0}=0$.
At step $k-1$, the approximation is defined by

$$
f_{k-1}:=P_{k-1} f
$$

with P_{k-1} the orthogonal projection onto $\operatorname{Span}\left\{g_{1}, \cdots, g_{k-1}\right\}$.
Choice of next element based on the residual $r_{k-1}=f-P_{-1} k f$:

$$
g_{k}:=\operatorname{Argmax}_{g \in \mathcal{D}}\left|\left\langle r_{k-1}, g\right\rangle\right|
$$

Orthogonal matching pursuit

f_{N} is constructed by an greedy algorithm. Initialization: $f_{0}=0$.
At step $k-1$, the approximation is defined by

$$
f_{k-1}:=P_{k-1} f
$$

with P_{k-1} the orthogonal projection onto $\operatorname{Span}\left\{g_{1}, \cdots, g_{k-1}\right\}$.
Choice of next element based on the residual $r_{k-1}=f-P_{k-1} f$:

$$
g_{k}:=\operatorname{Argmax}_{g \in \mathcal{D}}\left|\left\langle r_{k-1}, g\right\rangle\right| .
$$

Many variants : PGA, RGA, WGA, CGA, WCGA, WGAFR... (Acta Numerica survey by Vladimir Temlyakov to appear).

First versions studied in the 1970's by statisticians (Friedman, Huber, Stuetzle, Tukey...).

Relaxed greedy algorithm

Define

$$
f_{k}:=\alpha_{k} f_{k-1}+\beta_{k} g_{k},
$$

with

$$
\left(\alpha_{k}, \beta_{k}, g_{k}\right):=\operatorname{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^{2} \times \mathcal{D}}\left\|f-\alpha f_{k-1}+\beta g\right\| .
$$

Relaxed greedy algorithm

Define

$$
f_{k}:=\alpha_{k} f_{k-1}+\beta_{k} g_{k},
$$

with

$$
\left(\alpha_{k}, \beta_{k}, g_{k}\right):=\operatorname{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^{2} \times \mathcal{D}}\left\|f-\alpha f_{k-1}+\beta g\right\| .
$$

Simpler version: set α_{k} in advance and optimize only β and g.
If $\alpha_{k}=1$, this gives the Pure Greedy Algorithm :

$$
g_{k}:=\operatorname{Argmax}_{g \in \mathcal{D}}\left|\left\langle r_{k-1}, g\right\rangle\right| \text { and } f_{k}:=f_{k-1}+\left\langle r_{k-1}, g_{k}\right\rangle g_{k}
$$

with $r_{k-1}=f-f_{k-1}$.

Relaxed greedy algorithm

Define

$$
f_{k}:=\alpha_{k} f_{k-1}+\beta_{k} g_{k},
$$

with

$$
\left(\alpha_{k}, \beta_{k}, g_{k}\right):=\operatorname{Argmin}_{(\alpha, \beta, g) \in \mathbb{R}^{2} \times \mathcal{D}}\left\|f-\alpha f_{k-1}+\beta g\right\| .
$$

Simpler version: set α_{k} in advance and optimize only β and g. If $\alpha_{k}=1$, this gives the Pure Greedy Algorithm :

$$
g_{k}:=\operatorname{Argmax}_{g \in \mathcal{D}}\left|\left\langle r_{k-1}, g\right\rangle\right| \text { and } f_{k}:=f_{k-1}+\left\langle r_{k-1}, g_{k}\right\rangle g_{k}
$$

with $r_{k-1}=f-f_{k-1}$. It might be wiser to take $\alpha_{k}=\left(1-\frac{c}{k}\right)_{+}$:

$$
g_{k}:=\operatorname{Argmax}_{g \in \mathcal{D}}\left|\left\langle\tilde{r}_{k-1}, g\right\rangle\right| \text { and } f_{k}:=f_{k-1}+\left\langle\tilde{r}_{k-1}, g_{k}\right\rangle g_{k}
$$

with the modified residual $\tilde{r}_{k-1}:=f-\left(1-\frac{c}{k}\right)_{+} f_{k-1}$.

Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$
\min \left\{\left\|\left(c_{g}\right)\right\|_{\ell^{0}} ;\left\|f-\sum c_{g} g\right\| \leq \varepsilon\right\}
$$

which is usually untractable.

Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$
\min \left\{\left\|\left(c_{g}\right)\right\|_{\ell^{0}} ;\left\|f-\sum c_{g} g\right\| \leq \varepsilon\right\}
$$

which is usually untractable. A convex relaxation to this problem is

$$
\min \left\{\left\|\left(c_{g}\right)\right\|_{\ell^{1}} ;\left\|f-\sum c_{g} g\right\| \leq \varepsilon\right\}
$$

which can also be formulated as

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

Intuition : the ℓ^{1} norm promotes sparse solutions and λ governs the amount of sparsity of the minimizing sequence.

Basis pursuit

Finding the best approximation of f by N elements of the dictionary is equivalent to the support minimization problem

$$
\min \left\{\left\|\left(c_{g}\right)\right\|_{\ell^{0}} ;\left\|f-\sum c_{g} g\right\| \leq \varepsilon\right\}
$$

which is usually untractable. A convex relaxation to this problem is

$$
\min \left\{\left\|\left(c_{g}\right)\right\|_{\ell^{1}} ;\left\|f-\sum c_{g} g\right\| \leq \varepsilon\right\}
$$

which can also be formulated as

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

Intuition : the ℓ^{1} norm promotes sparse solutions and λ governs the amount of sparsity of the minimizing sequence. Many algorithms have been developped for solving this problem, also introduced in the statistical context as LASSO (Tibshirani).

The case when \mathcal{D} is an orthonormal basis
The target function has a unique expansion $f=\sum c_{g}(f) g$, with $c_{g}(f)=\langle f, g\rangle$.

OMP \Leftrightarrow hard thresholding: $f_{N}=\sum_{g \in E_{N}} c_{g}(f) g$, with $E_{N}=E_{N}(f)$ corresponding to the N largest $\left|c_{g}(f)\right|$.

The case when \mathcal{D} is an orthonormal basis
The target function has a unique expansion $f=\sum c_{g}(f) g$, with $c_{g}(f)=\langle f, g\rangle$.

OMP \Leftrightarrow hard thresholding: $f_{N}=\sum_{g \in E_{N}} c_{g}(f) g$, with
$E_{N}=E_{N}(f)$ corresponding to the N largest $\left|c_{g}(f)\right|$.
$\mathrm{BP} \Leftrightarrow$ soft thresholding: min $\sum_{g \in \mathcal{D}}\left\{\left|c_{g}(f)-c_{g}\right|^{2}+\lambda\left|c_{g}\right|\right\}$ attained
by $c_{g}^{*}=S_{\lambda / 2}\left(c_{g}(f)\right)$ with $S_{t}(x):=\operatorname{sgn}(x)(|x|-t)_{+}$.
The solution $f_{\lambda}=\sum c_{g}^{*} g$ is N-sparse with $N=N(\lambda)$.

The case when \mathcal{D} is an orthonormal basis
The target function has a unique expansion $f=\sum c_{g}(f) g$, with $c_{g}(f)=\langle f, g\rangle$.

OMP \Leftrightarrow hard thresholding: $f_{N}=\sum_{g \in E_{N}} c_{g}(f) g$, with $E_{N}=E_{N}(f)$ corresponding to the N largest $\left|c_{g}(f)\right|$.
$\mathrm{BP} \Leftrightarrow$ soft thresholding: min $\sum_{g \in \mathcal{D}}\left\{\left|c_{g}(f)-c_{g}\right|^{2}+\lambda\left|c_{g}\right|\right\}$ attained by $c_{g}^{*}=S_{\lambda / 2}\left(c_{g}(f)\right)$ with $S_{t}(x):=\operatorname{sgn}(x)(|x|-t)_{+}$.
The solution $f_{\lambda}=\sum c_{g}^{*} g$ is N-sparse with $N=N(\lambda)$.
Rate of convergence: related to the concentration properties of the sequence $\left(c_{g}(f)\right)$. For $p<2$ and $s=\frac{1}{p}-\frac{1}{2}$, equivalence of
(i) $\left(c_{g}(f)\right) \in w \ell^{p}$ i.e. $\#\left(\left\{g\right.\right.$ s.t. $\left.\left.\left|c_{g}(f)\right|>\eta\right\}\right) \leq C \eta^{-p}$.
(ii) $c_{n} \leq C n^{-\frac{1}{p}}$ with $\left(c_{n}\right)_{n \geq 0}$ decreasing permutation of $\left(\left|c_{g}(f)\right|\right)$.
(iii) $\left\|f-f_{N}\right\|=\left[\sum_{n \geq N} c_{n}^{2}\right]^{\frac{1}{2}} \leq C\left[\sum_{n \geq N} n^{-\frac{2}{p}}\right]^{\frac{1}{2}} \leq C N^{-s}$.

Example of concentrated representation

Digital image 512x512

Multiscale decomposition

Multiscale decompositions of natural images into wavelet bases are quasi-sparse: a few numerically significant coefficients concentrate most of the energy and information. This property plays a crucial role in applications such as compression and denoising.

Moving away from orthonormal bases

Many possible intermediate assumptions : measure of uncoherence (Temlyakov), restricted isometry properties (Candes-Tao), frames...

Moving away from orthonormal bases

Many possible intermediate assumptions : measure of uncoherence (Temlyakov), restricted isometry properties (Candes-Tao), frames...

Here we rather want to allow for the most general \mathcal{D}.
Signal and image processing (Mallat): composite features might be better captured by dictionary $\mathcal{D}=\mathcal{D}_{1} \cup \cdots \cup \mathcal{D}_{k}$ where the \mathcal{D}_{i} are orthonormal bases. Example: wavelets + Fourier + Diracs...

Statistical learning: (x, y) random variables, observe independent samples $\left(x_{i}, y_{i}\right)_{i=1, \cdots, n}$ and look for f such that $|f(x)-y|$ is small in some probabilistic sense. Least square method are based on minimizing $\sum_{i}\left|f\left(x_{i}\right)-y_{i}\right|^{2}$ and therefore working with the norm $\|u\|^{2}:=\sum_{i}\left|u\left(x_{i}\right)\right|^{2}$ for which \mathcal{D} is in general non-orthogonal.

Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f=\sum c_{g} g$ with $\left(c_{g}\right)$ a concentrated sequence ?

Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f=\sum c_{g} g$ with $\left(c_{g}\right)$ a concentrated sequence ?

Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f=\sum c_{g} g$ with $\left(c_{g}\right)$ a concentrated sequence?

Here concentration cannot be measured by $\left(c_{g}\right) \in w \ell^{p}$ for some $p<2$ since $\left(c_{g}\right) \in \ell^{p}$ does not ensure convergence of $\sum c_{g} g$ in H

Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f=\sum c_{g} g$ with $\left(c_{g}\right)$ a concentrated sequence ?

Here concentration cannot be measured by $\left(c_{g}\right) \in w \ell^{p}$ for some $p<2$ since $\left(c_{g}\right) \in \ell^{p}$ does not ensure convergence of $\sum c_{g} g$ in H ...except when $p=1$: convergence is then ensured by triangle inequality since $\|g\|=1$ for all $g \in \mathcal{D}$.

Convergence analysis

Natural question: how do OMP and BP behave when f has an expansion $f=\sum c_{g} g$ with $\left(c_{g}\right)$ a concentrated sequence ?

Here concentration cannot be measured by $\left(c_{g}\right) \in w \ell^{p}$ for some $p<2$ since $\left(c_{g}\right) \in \ell^{p}$ does not ensure convergence of $\sum c_{g} g$ in H ...except when $p=1$: convergence is then ensured by triangle inequality since $\|g\|=1$ for all $g \in \mathcal{D}$.

We define the space $\mathcal{L}^{1} \subset H$ of all f having a summable expansion, equiped with the norm

$$
\|f\|_{\mathcal{L}^{1}}:=\inf \left\{\sum\left|c_{g}\right| ; \sum c_{g} g=f\right\} .
$$

Note that $\|f\| \leq\|f\|_{\mathcal{L}^{1}}$.

The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_{k}=(1-c / k)_{+}$, there exists $C>0$ such that for all $f \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq C\|f\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}} .
$$

The case of summable expansions
Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_{k}=(1-c / k)_{+}$, there exists $C>0$ such that for all $f \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq C\|f\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}} .
$$

Remark 1: the rate $s=1 / 2$ is consistent with $s=1 / p-1 / 2$ in the case of an orthonormal basis

The case of summable expansions
Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and RGA with $\alpha_{k}=(1-c / k)_{+}$, there exists $C>0$ such that for all $f \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq C\|f\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}} .
$$

Remark 1: the rate $s=1 / 2$ is consistent with $s=1 / p-1 / 2$ in the case of an orthonormal basis

Remark 2: the PGA does not give the optimal rate. It is known that
(i) If $f \in \mathcal{L}^{1}$, then $\left\|f-f_{N}\right\| \leq C N^{-\frac{11}{62}}$ (Konyagin and Temlyakov).
(ii) $\left\|f-f_{N}\right\| \geq c N^{-0.27}$ for some \mathcal{D} and $f \in \mathcal{L}^{1}$ (Lifchitz and Temlyakov).

Proof for OMP

Since $r_{k}=f-f_{k}=f-P_{k} f$ is the error of orthogonal projection onto $\operatorname{Span}\left\{g_{1}, \cdots, g_{k}\right\}$, we have

$$
\left\|r_{k}\right\|^{2} \leq\left\|r_{k-1}\right\|^{2}-\left|\left\langle r_{k-1}, g_{k}\right\rangle\right|^{2}
$$

and

$$
\left\|r_{k-1}\right\|^{2}=\left\langle r_{k-1}, f\right\rangle=\sum c_{g}\left\langle r_{k-1}, g\right\rangle \leq\|f\|_{\mathcal{L}^{1}}\left|\left\langle r_{k-1}, g_{k}\right\rangle\right|
$$

Therefore, with the notation $M=\|f\|_{\mathcal{L}^{1}}^{2}$ and $a_{k}=\left\|r_{k}\right\|^{2}$, we obtain that

$$
a_{k} \leq a_{k-1}\left(1-\frac{a_{k-1}}{M}\right)
$$

and $a_{0} \leq M$, since $a_{0}=\left\|r_{0}\right\|^{2}=\|f\|^{2} \leq\|f\|_{\mathcal{L}^{1}}^{2}$.
This easily implies by induction that $a_{N} \leq \frac{M}{N+1}$.

The case of a general $f \in \mathcal{H}$
Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C>0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq\|f-h\|+C\|h\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}}
$$

The case of a general $f \in \mathcal{H}$
Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C>0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq\|f-h\|+C\|h\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}}
$$

Remark: this shows that the convergence behaviour of OMP has some stability, although $f \mapsto f_{N}$ is intrinsically unstable with respect to a perturbation of f.

The case of a general $f \in \mathcal{H}$
Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C>0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq\|f-h\|+C\|h\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}}
$$

Remark: this shows that the convergence behaviour of OMP has some stability, although $f \mapsto f_{N}$ is intrinsically unstable with respect to a perturbation of f.

A first consequence : for any $f \in \mathcal{H}$ one has $\lim _{N \rightarrow+\infty} f_{N}=f$.

The case of a general $f \in \mathcal{H}$
Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP, there exists $C>0$ such that for any $f \in H$ and for any $h \in \mathcal{L}^{1}$, we have

$$
\left\|f-f_{N}\right\| \leq\|f-h\|+C\|h\|_{\mathcal{L}^{1}} N^{-\frac{1}{2}}
$$

Remark: this shows that the convergence behaviour of OMP has some stability, although $f \mapsto f_{N}$ is intrinsically unstable with respect to a perturbation of f.

A first consequence : for any $f \in \mathcal{H}$ one has $\lim _{N \rightarrow+\infty} f_{N}=f$.
Also leads to characterization of intermediate rates of convergence N^{-s} with $0<s<1 / 2$, by interpolation spaces between \mathcal{L}^{1} and H.

What about Basis Pursuit?

For a general \mathcal{D}, consider $f_{\lambda}=\sum c_{g}^{*} g$ solution of

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

What about Basis Pursuit?

For a general \mathcal{D}, consider $f_{\lambda}=\sum c_{g}^{*} g$ solution of

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

Questions: Does the minimizer always exist ? If it exists is it unique? If it exists is $\left(c_{g}^{*}\right)$ finitely supported?

What about Basis Pursuit?

For a general \mathcal{D}, consider $f_{\lambda}=\sum c_{g}^{*} g$ solution of

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

Questions: Does the minimizer always exist ? If it exists is it unique? If it exists is $\left(c_{g}^{*}\right)$ finitely supported?
Answers: NO, NO and NO.

What about Basis Pursuit ?

For a general \mathcal{D}, consider $f_{\lambda}=\sum c_{g}^{*} g$ solution of

$$
\min \left\{\left\|f-\sum c_{g} g\right\|^{2}+\lambda\left\|\left(c_{g}\right)\right\|_{\ell^{1}}\right\}
$$

Questions: Does the minimizer always exist ? If it exists is it unique? If it exists is $\left(c_{g}^{*}\right)$ finitely supported?
Answers: NO, NO and NO.
Finite dimensional case: solution exists if and only if $-\mathcal{D} \cup \mathcal{D}$ is a closed subset of the unit sphere.

Infinite dimensional case: a sufficient condition for existence of a minimizer with $\left(c_{g}^{*}\right)$ finitely supported is: for all $\varepsilon>0$ and $f \in H$

$$
\#\{g ;|\langle f, g\rangle|>\varepsilon\} \leq C(\varepsilon)<\infty
$$

Bessel sequences

\mathcal{D} is a Bessel sequence. if for all $\left(c_{g}\right) \in \ell^{2}$,

$$
\left\|\sum c_{g} g\right\|^{2} \leq C \sum\left|c_{g}\right|^{2}
$$

or equivalently for all $f \in H$

$$
\sum|\langle f, g\rangle|^{2} \leq C\|f\|^{2}
$$

i.e. the frame operator is bounded.

Bessel sequences

\mathcal{D} is a Bessel sequence. if for all $\left(c_{g}\right) \in \ell^{2}$,

$$
\left\|\sum c_{g} g\right\|^{2} \leq C \sum\left|c_{g}\right|^{2}
$$

or equivalently for all $f \in H$

$$
\sum|\langle f, g\rangle|^{2} \leq C\|f\|^{2}
$$

i.e. the frame operator is bounded.

This assumption was considered by Gribonval and Nielsen (2004). It is also the framework considered by Daubechies, Defrise and Demol (2005), when minimizing $\|y-K x\|_{\ell^{2}}^{2}+\lambda\|x\|_{\ell^{1}}$ with $\|K\| \leq C$.

Under such an assumption, the minimizer $f_{\lambda}=\sum c_{g}^{*} g$ exists with $\left(c_{g}^{*}\right)$ finitely supported. Uniqueness might fail.

Approximation properties of BP
Theorem (Cohen, DeMol, Gribonval, 2007): If \mathcal{D} is a Bessel sequence, then
(i) for all $f \in \mathcal{L}^{1}$,

$$
\left\|f-f_{\lambda}\right\| \leq C\|f\|_{\mathcal{L}^{1}} N^{-1 / 2}
$$

with $N=N(\lambda)$ the support size of $\left(c_{g}^{*}\right)$.
(ii) for all $f \in H$ and $h \in \mathcal{L}^{1}$,

$$
\left\|f-f_{\lambda}\right\| \leq C\left(\|f-h\|+\|f\|_{\mathcal{L}^{1}} N^{-1 / 2}\right)
$$

The constant C depends on the constant in the Bessel assumption.
Open question: does this result hold for more general dictionaries ?

$$
\text { Proof }\left(f \in \mathcal{L}^{1}\right)
$$

Optimality condition gives:

$$
c_{g}^{*} \neq 0 \Rightarrow\left|\left\langle f-f_{\lambda}, g\right\rangle\right|=\frac{\lambda}{2}
$$

Therefore

$$
N \frac{\lambda^{2}}{4}=\sum\left|\left\langle f-f_{\lambda}, g\right\rangle\right|^{2} \leq C\left\|f-f_{\lambda}\right\|^{2}
$$

so that $\lambda \leq 2 C\left\|f-f_{\lambda}\right\| N^{-1 / 2}$.
Now if $f=\sum c_{g} g$ with $\sum\left|c_{g}\right| \leq M$, we have

$$
\left\|f-f_{\lambda}\right\|^{2}+\lambda\left\|\left(c_{g}^{*}\right)\right\|_{\ell^{1}} \leq \lambda M
$$

and therefore $\left\|f-f_{\lambda}\right\|^{2} \leq \lambda M$.
Combining both gives

$$
\left\|f-f_{\lambda}\right\| \leq 2 C\|f\|_{\mathcal{L}^{1}} N^{-1 / 2}
$$

A result in the regression context for OMP
Let \hat{f}_{k} be the estimator obtained by running OMP on the data $\left(y_{i}\right)$ with the least square norm $\|u\|_{n}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left|u\left(x_{i}\right)\right|^{2}$.

A result in the regression context for OMP
Let \hat{f}_{k} be the estimator obtained by running OMP on the data $\left(y_{i}\right)$ with the least square norm $\|u\|_{n}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left|u\left(x_{i}\right)\right|^{2}$.

Selecting k : one sets

$$
k^{*}:=\operatorname{Argmax}_{k>0}\left\{\left\|y-\hat{f}_{k}\right\|_{n}^{2}+\operatorname{pen}(k, n)\right\}
$$

with $\operatorname{pen}(k, n) \sim \frac{k \log n}{n}$, and defines $\hat{f}=\hat{f}_{k^{*}}$

A result in the regression context for OMP

Let \hat{f}_{k} be the estimator obtained by running OMP on the data $\left(y_{i}\right)$ with the least square norm $\|u\|_{n}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left|u\left(x_{i}\right)\right|^{2}$.

Selecting k : one sets

$$
k^{*}:=\operatorname{Argmax}_{k>0}\left\{\left\|y-\hat{f}_{k}\right\|_{n}^{2}+\operatorname{pen}(k, n)\right\}
$$

with $\operatorname{pen}(k, n) \sim \frac{k \log n}{n}$, and defines $\hat{f}=\hat{f}_{k^{*}}$
We denote by $f(x):=E(y \mid x)$ the regression function and $\|u\|^{2}:=E\left(|u(x)|^{2}\right)$.

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

$$
E\left(\|\hat{f}-f\|^{2}\right) \leq C \inf _{k \geq 0, h \in \mathcal{L}^{1}}\left\{\|h-f\|^{2}+k^{-1}\|h\|_{\mathcal{L}^{1}}^{2}+\operatorname{pen}(k, n)\right\}
$$

A result in the regression context for OMP

Let \hat{f}_{k} be the estimator obtained by running OMP on the data $\left(y_{i}\right)$ with the least square norm $\|u\|_{n}^{2}:=\frac{1}{n} \sum_{i=1}^{n}\left|u\left(x_{i}\right)\right|^{2}$.

Selecting k : one sets

$$
k^{*}:=\operatorname{Argmax}_{k>0}\left\{\left\|y-\hat{f}_{k}\right\|_{n}^{2}+\operatorname{pen}(k, n)\right\}
$$

with $\operatorname{pen}(k, n) \sim \frac{k \log n}{n}$, and defines $\hat{f}=\hat{f}_{k^{*}}$
We denote by $f(x):=E(y \mid x)$ the regression function and $\|u\|^{2}:=E\left(|u(x)|^{2}\right)$.

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

$$
E\left(\|\hat{f}-f\|^{2}\right) \leq C \inf _{k \geq 0, h \in \mathcal{L}^{1}}\left\{\|h-f\|^{2}+k^{-1}\|h\|_{\mathcal{L}^{1}}^{2}+\operatorname{pen}(k, n)\right\}
$$

Similar oracle estimate for LASSO ? Which assumptions should be needed on \mathcal{D} ?

