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A general problem

Consider a dictionary of functions D = (g)g∈D in a Hilbert space H.
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Consider a dictionary of functions D = (g)g∈D in a Hilbert space H.

The dictionary is countable, normalized (‖g‖ = 1), complete, but

not orthogonal and possibly redundant.

Sparse approximation problem : given N > 0 and f ∈ H, construct

an N -term combination

fN =
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k=1,··· ,N

ckgk,

with gk ∈ D, which approximates f “at best”, and study how fast

fN converges towards f .
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A general problem

Consider a dictionary of functions D = (g)g∈D in a Hilbert space H.

The dictionary is countable, normalized (‖g‖ = 1), complete, but

not orthogonal and possibly redundant.

Sparse approximation problem : given N > 0 and f ∈ H, construct

an N -term combination

fN =
∑

k=1,··· ,N

ckgk,

with gk ∈ D, which approximates f “at best”, and study how fast

fN converges towards f .

Sparse recovery problem : if f has an unknown representation

f =
∑

g cgg with (cg)g∈D a (possibly) sparse sequence, recover this

sequence exactly or approximately from the data of f .



'

&

$

%

Orthogonal matching pursuit

fN is constructed by an greedy algorithm. Initialization: f0 = 0.

At step k − 1, the approximation is defined by

fk−1 := Pk−1f,

with Pk−1 the orthogonal projection onto Span{g1, · · · , gk−1}.

Choice of next element based on the residual rk−1 = f − P−1kf :

gk := Argmaxg∈D|〈rk−1, g〉|.
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Orthogonal matching pursuit

fN is constructed by an greedy algorithm. Initialization: f0 = 0.

At step k − 1, the approximation is defined by

fk−1 := Pk−1f,

with Pk−1 the orthogonal projection onto Span{g1, · · · , gk−1}.

Choice of next element based on the residual rk−1 = f − Pk−1f :

gk := Argmaxg∈D|〈rk−1, g〉|.

Many variants : PGA, RGA, WGA, CGA, WCGA, WGAFR...

(Acta Numerica survey by Vladimir Temlyakov to appear).

First versions studied in the 1970’s by statisticians (Friedman,

Huber, Stuetzle, Tukey...).
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Relaxed greedy algorithm

Define

fk := αkfk−1 + βkgk,

with

(αk, βk, gk) := Argmin
(α,β,g)∈IR2

×D
‖f − αfk−1 + βg‖.
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with

(αk, βk, gk) := Argmin
(α,β,g)∈IR2

×D
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Simpler version: set αk in advance and optimize only β and g.

If αk = 1, this gives the Pure Greedy Algorithm :

gk := Argmaxg∈D|〈rk−1, g〉| and fk := fk−1 + 〈rk−1, gk〉gk.

with rk−1 = f − fk−1.
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Relaxed greedy algorithm

Define

fk := αkfk−1 + βkgk,

with

(αk, βk, gk) := Argmin
(α,β,g)∈IR2

×D
‖f − αfk−1 + βg‖.

Simpler version: set αk in advance and optimize only β and g.

If αk = 1, this gives the Pure Greedy Algorithm :

gk := Argmaxg∈D|〈rk−1, g〉| and fk := fk−1 + 〈rk−1, gk〉gk.

with rk−1 = f − fk−1. It might be wiser to take αk = (1 − c
k )+ :

gk := Argmaxg∈D|〈r̃k−1, g〉| and fk := fk−1 + 〈r̃k−1, gk〉gk.

with the modified residual r̃k−1 := f − (1 − c
k )+fk−1.
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Basis pursuit

Finding the best approximation of f by N elements of the

dictionary is equivalent to the support minimization problem

min{‖(cg)‖ℓ0 ; ‖f −
∑

cgg‖ ≤ ε}

which is usually untractable.



'

&

$

%

Basis pursuit

Finding the best approximation of f by N elements of the

dictionary is equivalent to the support minimization problem

min{‖(cg)‖ℓ0 ; ‖f −
∑

cgg‖ ≤ ε}

which is usually untractable. A convex relaxation to this problem is

min{‖(cg)‖ℓ1 ; ‖f −
∑

cgg‖ ≤ ε}
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Intuition : the ℓ1 norm promotes sparse solutions and λ governs the

amount of sparsity of the minimizing sequence.
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Basis pursuit

Finding the best approximation of f by N elements of the

dictionary is equivalent to the support minimization problem

min{‖(cg)‖ℓ0 ; ‖f −
∑

cgg‖ ≤ ε}

which is usually untractable. A convex relaxation to this problem is

min{‖(cg)‖ℓ1 ; ‖f −
∑

cgg‖ ≤ ε}

which can also be formulated as

min{‖f −
∑

cgg‖
2 + λ‖(cg)‖ℓ1}

Intuition : the ℓ1 norm promotes sparse solutions and λ governs the

amount of sparsity of the minimizing sequence. Many algorithms

have been developped for solving this problem, also introduced in

the statistical context as LASSO (Tibshirani).
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The case when D is an orthonormal basis

The target function has a unique expansion f =
∑

cg(f)g, with

cg(f) = 〈f, g〉.

OMP ⇔ hard thresholding: fN =
∑

g∈EN
cg(f)g, with

EN = EN (f) corresponding to the N largest |cg(f)|.
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cg(f)g, with

EN = EN (f) corresponding to the N largest |cg(f)|.

BP ⇔ soft thresholding: min
∑

g∈D {|cg(f) − cg|
2 + λ|cg|} attained

by c∗g = Sλ/2(cg(f)) with St(x) := sgn(x)(|x| − t)+.

The solution fλ =
∑

c∗g g is N -sparse with N = N(λ).
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The case when D is an orthonormal basis

The target function has a unique expansion f =
∑

cg(f)g, with

cg(f) = 〈f, g〉.

OMP ⇔ hard thresholding: fN =
∑

g∈EN
cg(f)g, with

EN = EN (f) corresponding to the N largest |cg(f)|.

BP ⇔ soft thresholding: min
∑

g∈D {|cg(f) − cg|
2 + λ|cg|} attained

by c∗g = Sλ/2(cg(f)) with St(x) := sgn(x)(|x| − t)+.

The solution fλ =
∑

c∗g g is N -sparse with N = N(λ).

Rate of convergence: related to the concentration properties of the

sequence (cg(f)). For p < 2 and s = 1
p − 1

2 , equivalence of

(i) (cg(f)) ∈ wℓp i.e. #({g s.t. |cg(f)| > η}) ≤ Cη−p.

(ii) cn ≤ Cn− 1

p with (cn)n≥0 decreasing permutation of (|cg(f)|).

(iii) ‖f − fN‖ = [
∑

n≥N c2
n]

1

2 ≤ C[
∑

n≥N n− 2

p ]
1

2 ≤ CN−s.
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Example of concentrated representation

Digital image 512x512 Multiscale decomposition

Multiscale decompositions of natural images into wavelet bases are

quasi-sparse: a few numerically significant coefficients concentrate

most of the energy and information. This property plays a crucial

role in applications such as compression and denoising.
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Moving away from orthonormal bases

Many possible intermediate assumptions : measure of uncoherence

(Temlyakov), restricted isometry properties (Candes-Tao), frames...
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Moving away from orthonormal bases

Many possible intermediate assumptions : measure of uncoherence

(Temlyakov), restricted isometry properties (Candes-Tao), frames...

Here we rather want to allow for the most general D.

Signal and image processing (Mallat): composite features might be

better captured by dictionary D = D1 ∪ · · · ∪ Dk where the Di are

orthonormal bases. Example: wavelets + Fourier + Diracs...

Statistical learning: (x, y) random variables, observe independent

samples (xi, yi)i=1,··· ,n and look for f such that |f(x) − y| is small

in some probabilistic sense. Least square method are based on

minimizing
∑

i |f(xi) − yi|
2 and therefore working with the norm

‖u‖2 :=
∑

i |u(xi)|
2 for which D is in general non-orthogonal.
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Convergence analysis

Natural question: how do OMP and BP behave when f has an

expansion f =
∑

cgg with (cg) a concentrated sequence ?
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Convergence analysis

Natural question: how do OMP and BP behave when f has an

expansion f =
∑

cgg with (cg) a concentrated sequence ?

Here concentration cannot be measured by (cg) ∈ wℓp for some

p < 2 since (cg) ∈ ℓp does not ensure convergence of
∑

cgg in H

...except when p = 1: convergence is then ensured by triangle

inequality since ‖g‖ = 1 for all g ∈ D.

We define the space L1 ⊂ H of all f having a summable expansion,

equiped with the norm

‖f‖L1 := inf{
∑

|cg| ;
∑

cgg = f}.

Note that ‖f‖ ≤ ‖f‖L1 .
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The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and

RGA with αk = (1 − c/k)+, there exists C > 0 such that for all

f ∈ L1, we have

‖f − fN‖ ≤ C‖f‖L1N− 1

2 .
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Remark 1: the rate s = 1/2 is consistent with s = 1/p − 1/2 in the

case of an orthonormal basis



'

&

$

%

The case of summable expansions

Theorem (DeVore and Temlyakov, Jones, Maurey): For OMP and

RGA with αk = (1 − c/k)+, there exists C > 0 such that for all

f ∈ L1, we have

‖f − fN‖ ≤ C‖f‖L1N− 1

2 .

Remark 1: the rate s = 1/2 is consistent with s = 1/p − 1/2 in the

case of an orthonormal basis

Remark 2: the PGA does not give the optimal rate. It is known

that

(i) If f ∈ L1, then ‖f − fN‖ ≤ CN− 11

62 (Konyagin and Temlyakov).

(ii) ‖f − fN‖ ≥ cN−0.27 for some D and f ∈ L1 (Lifchitz and

Temlyakov).
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Proof for OMP

Since rk = f − fk = f − Pkf is the error of orthogonal projection

onto Span{g1, · · · , gk}, we have

‖rk‖
2 ≤ ‖rk−1‖

2 − |〈rk−1, gk〉|
2,

and

‖rk−1‖
2 = 〈rk−1, f〉 =

∑
cg〈rk−1, g〉 ≤ ‖f‖L1 |〈rk−1, gk〉|.

Therefore, with the notation M = ‖f‖2
L1 and ak = ‖rk‖

2, we obtain

that

ak ≤ ak−1(1 −
ak−1

M
),

and a0 ≤ M , since a0 = ‖r0‖
2 = ‖f‖2 ≤ ‖f‖2

L1 .

This easily implies by induction that aN ≤ M
N+1 .
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The case of a general f ∈ H

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP,

there exists C > 0 such that for any f ∈ H and for any h ∈ L1, we

have

‖f − fN‖ ≤ ‖f − h‖ + C‖h‖L1N− 1

2 .
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have
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Remark: this shows that the convergence behaviour of OMP has

some stability, although f 7→ fN is intrinsically unstable with

respect to a perturbation of f .
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The case of a general f ∈ H

Theorem (Barron, Cohen, Dahmen, DeVore, 2007): for the OMP,

there exists C > 0 such that for any f ∈ H and for any h ∈ L1, we

have

‖f − fN‖ ≤ ‖f − h‖ + C‖h‖L1N− 1

2 .

Remark: this shows that the convergence behaviour of OMP has

some stability, although f 7→ fN is intrinsically unstable with

respect to a perturbation of f .

A first consequence : for any f ∈ H one has limN→+∞ fN = f .

Also leads to characterization of intermediate rates of convergence

N−s with 0 < s < 1/2, by interpolation spaces between L1 and H.
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What about Basis Pursuit ?

For a general D, consider fλ =
∑

c∗g g solution of

min{‖f −
∑

cgg‖
2 + λ‖(cg)‖ℓ1}



'

&

$

%

What about Basis Pursuit ?

For a general D, consider fλ =
∑

c∗g g solution of

min{‖f −
∑

cgg‖
2 + λ‖(cg)‖ℓ1}

Questions: Does the minimizer always exist ? If it exists is it

unique ? If it exists is (c∗g) finitely supported ?



'

&

$

%

What about Basis Pursuit ?

For a general D, consider fλ =
∑

c∗g g solution of

min{‖f −
∑

cgg‖
2 + λ‖(cg)‖ℓ1}

Questions: Does the minimizer always exist ? If it exists is it

unique ? If it exists is (c∗g) finitely supported ?

Answers: NO, NO and NO.



'

&

$

%

What about Basis Pursuit ?

For a general D, consider fλ =
∑

c∗g g solution of

min{‖f −
∑

cgg‖
2 + λ‖(cg)‖ℓ1}

Questions: Does the minimizer always exist ? If it exists is it

unique ? If it exists is (c∗g) finitely supported ?

Answers: NO, NO and NO.

Finite dimensional case: solution exists if and only if −D ∪D is a

closed subset of the unit sphere.

Infinite dimensional case: a sufficient condition for existence of a

minimizer with (c∗g) finitely supported is : for all ε > 0 and f ∈ H

#{g ; |〈f, g〉| > ε} ≤ C(ε) < ∞.
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Bessel sequences

D is a Bessel sequence. if for all (cg) ∈ ℓ2,

‖
∑

cgg‖
2 ≤ C

∑
|cg|

2,

or equivalently for all f ∈ H
∑

|〈f, g〉|2 ≤ C‖f‖2,

i.e. the frame operator is bounded.
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Bessel sequences

D is a Bessel sequence. if for all (cg) ∈ ℓ2,

‖
∑

cgg‖
2 ≤ C

∑
|cg|

2,

or equivalently for all f ∈ H
∑

|〈f, g〉|2 ≤ C‖f‖2,

i.e. the frame operator is bounded.

This assumption was considered by Gribonval and Nielsen (2004).

It is also the framework considered by Daubechies, Defrise and

Demol (2005), when minimizing ‖y − Kx‖2
ℓ2 + λ‖x‖ℓ1 with

‖K‖ ≤ C.

Under such an assumption, the minimizer fλ =
∑

c∗g g exists with

(c∗g) finitely supported. Uniqueness might fail.
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Approximation properties of BP

Theorem (Cohen, DeMol, Gribonval, 2007): If D is a Bessel

sequence, then

(i) for all f ∈ L1,

‖f − fλ‖ ≤ C‖f‖L1N−1/2,

with N = N(λ) the support size of (c∗g).

(ii) for all f ∈ H and h ∈ L1,

‖f − fλ‖ ≤ C(‖f − h‖ + ‖f‖L1N−1/2).

The constant C depends on the constant in the Bessel assumption.

Open question: does this result hold for more general dictionaries ?
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Proof (f ∈ L1)

Optimality condition gives:

c∗g 6= 0 ⇒ |〈f − fλ, g〉| =
λ

2
.

Therefore

N
λ2

4
=

∑
|〈f − fλ, g〉|2 ≤ C‖f − fλ‖

2,

so that λ ≤ 2C‖f − fλ‖N
−1/2.

Now if f =
∑

cgg with
∑

|cg| ≤ M , we have

‖f − fλ‖
2 + λ‖(c∗g)‖ℓ1 ≤ λM,

and therefore ‖f − fλ‖
2 ≤ λM .

Combining both gives

‖f − fλ‖ ≤ 2C‖f‖L1N−1/2.
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A result in the regression context for OMP

Let f̂k be the estimator obtained by running OMP on the data (yi)

with the least square norm ‖u‖2
n := 1

n

∑n
i=1 |u(xi)|

2.
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n
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i=1 |u(xi)|

2.

Selecting k: one sets

k∗ := Argmaxk>0{‖y − f̂k‖
2
n + pen(k, n)},

with pen(k, n) ∼ k log n
n , and defines f̂ = f̂k∗
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A result in the regression context for OMP

Let f̂k be the estimator obtained by running OMP on the data (yi)

with the least square norm ‖u‖2
n := 1

n

∑n
i=1 |u(xi)|

2.

Selecting k: one sets

k∗ := Argmaxk>0{‖y − f̂k‖
2
n + pen(k, n)},

with pen(k, n) ∼ k log n
n , and defines f̂ = f̂k∗

We denote by f(x) := E(y|x) the regression function and

‖u‖2 := E(|u(x)|2).

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

E(‖f̂ − f‖2) ≤ C inf
k≥0, h∈L1

{‖h − f‖2 + k−1‖h‖2
L1 + pen(k, n)}.
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A result in the regression context for OMP

Let f̂k be the estimator obtained by running OMP on the data (yi)

with the least square norm ‖u‖2
n := 1

n

∑n
i=1 |u(xi)|

2.

Selecting k: one sets

k∗ := Argmaxk>0{‖y − f̂k‖
2
n + pen(k, n)},

with pen(k, n) ∼ k log n
n , and defines f̂ = f̂k∗

We denote by f(x) := E(y|x) the regression function and

‖u‖2 := E(|u(x)|2).

Theorem (Barron, Cohen, Dahmen, DeVore, 2007):

E(‖f̂ − f‖2) ≤ C inf
k≥0, h∈L1

{‖h − f‖2 + k−1‖h‖2
L1 + pen(k, n)}.

Similar oracle estimate for LASSO ? Which assumptions should be

needed on D ?


