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First algorithm — from fine to coarse

Designed for approximating images given by luminances (grey levels)

over pixels.

Joint work with L. Demaret, M. Floater and A. Iske.

Second algorithm — from coarse to fine

Aims at approximating bivariate functions given everywhere

in a rectangular domain.

Work in progress with A. Cohen and F. Hecht.

Both algorithms are greedy and allow for error control.
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Linear Splines over Triangulations

3 Linear Splines over Triangulations

Definition. A triangulation of a planar point set Y = {y1, . . . , yN} is a

collection T (Y) = {T }T∈T (Y) of triangles in the plane, such that

(T1) the vertex set of T (Y) is Y;

(T2) any pair of two distinct triangles in T (Y) intersect at most

at one common vertex or along one common edge;

(T3) the convex hull [Y] of Y coincides with the area covered

by the union of the triangles in T (Y).

A triangulation of a point set.
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Linear Splines over Triangulations

Approximation Spaces.

• Given any triangulation T (Y) of Y, we denote by

SY =
{
s : s ∈ C([Y]) and s

∣

∣

T
linear for all T ∈ T (Y)

}
,

the spline space containing all continuous functions over [Y] whose

restriction to any triangle in T (Y) is linear.

• Any element in SY is referred to as a linear spline over T (Y).

• For given function values {I(y) :y ∈ Y}, there is a unique linear spline,

L(Y, I) ∈ SY , which interpolates I at the points of Y, i.e.,

L(Y, I)(y) = I(y), for all y ∈ Y.
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Outline of our Approach

4 Outline of our Approach

On input image I = {(x, I(x)) : x ∈ X},

• determine a good adaptive spline space SY , where Y ⊂ X;

• determine from SY the unique best approximation L∗(Y, I) ∈ SY satisfying
∑

x∈X

|L∗(Y, I)(x) − I(x)|2 = min
s∈SY

∑

x∈X

|s(x) − I(x)|2.

• Encode the linear spline L∗ ∈ SY ;

• Decode L∗ ∈ SY , and so obtain the reconstructed image

Ĩ = {(x, L(Y, Ĩ)(x)) : x ∈ X}, where L(Y, Ĩ) ≈ L∗(Y, I).

OBS! Key Step: Selection of significant pixels Y ⊂ X.

• This is done by using an “adaptive thinning algorithm”.

• For the triangulation in SY , we take the Delaunay triangulation D(Y) of Y.
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Outline of our Approach

Popular Example: Test Image Lena.

Original Image (512 × 512).

Delaunay Triangulation.

3244 significant pixels.

Image Reconstruction.
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Delaunay Triangulations

1 Delaunay Triangulations.

Definition. The Delaunay triangulation D(X) of a discrete planar point set

X is a triangulation of X, such that the circumcircle for each of its triangles does

not contain any point from X in its interior.

Two triangulations of a convex quadrilateral, T (left) and T̃ (right).
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Delaunay Triangulations

Properties of Delaunay Triangulations.
• Uniqueness.

Delaunay triangulation D(X) is unique, if no four points in X are co-circular.

• Complexity.

For any point set X, its Delaunay triangulation D(X) can be computed in

O(N log N) steps, where N = |X|.

• Local Updating.

For any X and x ∈ X, the Delaunay triangulation D(X \ x) of the point set

X \ x can be computed from D(X) by retriangulating the cell C(x) of x.

x

Removal of the node x, and retriangulation of its cell C(x).
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Adaptive Thinning Algorithm

2 Adaptive Thinning Algorithm

INPUT. I = {0, 1, . . . , 2r − 1}X, pixels and luminances, where

X set of pixels, r number of bits for representation of luminances.

(1) Let XN = X;

(2) FOR k = 1, . . . , N − n

(2a) Find a least significant pixel x ∈ XN−k+1;

(2b) Let XN−k = XN−k+1 \ x;

• OUTPUT: Data hierarchy

Xn ⊂ Xn+1 ⊂ · · · ⊂ XN−1 ⊂ XN = X

of nested subsets of X.
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Adaptive Thinning Algorithm

Controlling the Mean Square Error.

• For a given mean square error (MSE), η̄∗, the adaptive thinning algorithm

can be changed in order to terminate when for the first time, the MSE value

corresponding to the current linear spline L(Xp, I) is above η̄∗, for some Xp

in the data hierarchy, n = p a posteriori.

• We take as the final approximation to the image the linear spline

L∗(Xp+1, I), and so we let Y = Xp+1.

• Observe that L∗(Xp+1, I) satisfies

∑

x∈X

|L∗(Xp+1, I)(x) − I(x)|2
/

|Xp+1| ≤ η̄∗,

as desired.
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Pixel Significance Measures

Greedy Two-Point-Removal.

Anticipated Error for the Removal of two Points.

e(y1, y2) = η(Y \ {y1, y2}; X) − η(Y; X), for y1, y2 ∈ Y.

Can be simplified as

e(y1, y2) = eδ(y1) + eδ(y2), for [y1, y2] /∈ D(Y), (1)

provided that y1, y2 ∈ Y are not connected by an edge in D(Y).

Definition. (Adaptive Thinning Algorithm AT2).

For Y ⊂ X, a point pair y∗

1, y∗

2 ∈ Y is said to be least significant in Y, iff it

satisfies

e(y∗

1, y∗

2) = min
y1,y2∈Y

e(y1, y2).
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Implementation of Adaptive Thinning

Implementation of Algorithm AT2.

• Due to the representation

eδ(y1, y2) = eδ(y1) + eδ(y2), for [y1, y2] /∈ D(Y),

the maintenance of the significances {eδ(y1, y2) : {y1, y2} ⊂ Y} can be

reduced to the maintenance of {eδ(y1, y2) : [y1, y2] ∈ D(Y)} and

{eδ(y) :y ∈ Y}.

• For the efficient implementation of Algorithm AT2 we use two different

priority queues, one for the significances eδ of pixels, and one for the

significances eδ of edges in D(Y).

• Each priority queue has a least significant element (pixel or pixel pair) at its

head, and is updated after each pixel removal.

• The resulting algorithm has also complexity O(N log N).
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Implementation of Adaptive Thinning

Further Computational Details

• We do not remove corner points from X, so that the image domain [X] is

invariant during the performance of adaptive thinning.

Uniqueness of Delaunay triangulation.

• Recall that the Delaunay triangulation D(Y) of Y ⊂ X, is unique, provided

that no four points in Y are co-circular.

• Since neither X nor its subsets satisfy this condition, we initially perturb the

pixel positions in order to guarantee the uniqueness of D(Y), for any Y ⊂ X.

• The pertubation rules are known at the encoder and at the decoder.

From now, we denote the set of perturbed pixels by X,

and the set of unperturbed pixels (with integer positions) by X̃.

Likewise, any subset Y ⊂ X corresponds to a subset Ỹ ⊂ X̃ of unperturbed pixels.
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Wavelets and edges

Image: f = χΩ, with ∂Ω smooth.

fN = approximation by N largest

wavelet coefficients

⇒ ‖f − fN‖L2 ∼ N−1/2

Problem : imposes isotropic refinement

fN = piecewise linear interpolation

on N optimaly selected triangles

⇒ ‖f − fN‖L2 ∼ N−1

Problem : non-supervised algorithm ?
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Greedy approach: adaptive mid-point bisection (Dyn, Hecht, AC)

Coarse triangulation ⇒ select triangle with largest local L2 error ⇒

choose the mid-point bisection that best reduces this error
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Greedy approach: adaptive mid-point bisection (Dyn, Hecht, AC)

Coarse triangulation ⇒ select triangle with largest local L2 error ⇒

choose the mid-point bisection that best reduces this error ⇒ split
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Greedy approach: adaptive mid-point bisection (Dyn, Hecht, AC)

Coarse triangulation ⇒ select triangle with largest local L2 error ⇒

choose the mid-point bisection that best reduces this error ⇒ split

⇒ iterate...
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Greedy approach: adaptive mid-point bisection (Dyn, Hecht, AC)

Coarse triangulation ⇒ select triangle with largest local L2 error ⇒

choose the mid-point bisection that best reduces this error ⇒ split

⇒ iterate...
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Greedy approach: adaptive mid-point bisection (Dyn, Hecht, AC)

Coarse triangulation ⇒ select triangle with largest local L2 error ⇒

choose the mid-point bisection that best reduces this error ⇒ split

⇒ iterate....

... until prescribed accuracy or number of triangles is met.
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Development of anisotropic triangles

Example: sharp gradient transition on a sine curve.

Approximation Triangulation
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Theoretical questions

Algorithm stops when reaching the minimal number of triangles N

for which a prescribed L2 error D is ensured.

Open problem: do greedy algorithm allow to obtain the optimal

convergence rate D ≤ CN−1 for piecewise smooth functions with

smooth edges, such as χΩ ?

A more tamed version of this problem: for such functions, is there

a certain splitting scenario which generates triangulations such that

D ≤ CN−1 ? (in other words, is the class of triangulation generated

by splitting rich enough to approximate general smooth edges).

Negative answer in the case where the split is limited to the

mid-point, positive answer with more choices.
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The case of a step function

Consider the step function f(x, y) = χ{y>1/3} on [0, 1]2.

Supervised split : refine the edge at resolution ∆y = 1, 1
2
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The case of a step function

Consider the step function f(x, y) = χ{y>1/3} on [0, 1]2.

Supervised split : refine the edge at resolution ∆y = 1, 1
2
, 1

4
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The case of a step function

Consider the step function f(x, y) = χ{y>1/3} on [0, 1]2.

Supervised split : refine the edge at resolution ∆y = 1, 1
2
, 1

4
, 1

8
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The case of a step function

Consider the step function f(x, y) = χ{y>1/3} on [0, 1]2.

Supervised split : refine the edge at resolution ∆y = 1, 1
2
, 1

4
, 1

8
, 1

16
...
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The case of a step function

Consider the step function f(x, y) = χ{y>1/3} on [0, 1]2.

Supervised split : refine the edge at resolution ∆y = 1, 1
2
, 1

4
, 1

8
, 1

16
...

Number of triangles N = N(j) generated at resolution 2−j :

N(j) = N(j − 1) +N(j − 2) ∼ Gj
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Convergence rate

Supervised split : at resolution 2−j , the L2 square error is at best

controlled by

E ≤ 2−j ≤ CN−r, r =
log 2

logG
≈ 1.44

Greedy split exhibits the same convergence rate. General result ?
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Comparision between the two algorithms

• Triangulations:

First – Delaunay triangulation of a set of significant points (pixels).

Second – A triangulation with a binary tree structure.

• Approximating spaces:

First – Continuous piecewise linear polynomials over the triangulation.

Second – Discontinuous piecewise linear polynomials over the

triangulation.

Nested approximating spaces during the performance of the

algorithm.
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• Computation of the optimal approximant:

First – A global minimization over the values attached to the

significant points (pixels).

Second – Local computation on each triangle;

local correction after a split.

Conclusion:

The approximant obtained by the second algorithm can be encoded

more efficiently.
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