LE JONES UPAS LOWE\|
Local Finite Sample Minimax Estimation

$$
\begin{aligned}
& Y_{j}=f\left(x_{j}\right)+N_{j} \quad \operatorname{cov}\left\{N_{j}\right\}=N<\sigma \\
& \hat{f}(0)=w^{*}+\sum_{i}^{k} w_{j} Y_{i}=F(w)
\end{aligned}
$$

(1) local approximating parametric (nonparametric) family

$$
\{f(x ; a)\}
$$

[2] local approximating Error function $\epsilon(x) \quad(E(0)=0)$
[3] structural conditions on of $-6 \quad(f \in C)$

$$
W=A r g \min _{\substack{m A x \\ f \in \varepsilon \\ \mid f(x)-f\left(x ; a_{f}\right) l \leq \epsilon(x)}} E[F(w)-f(0)]
$$

compare to global learning

$$
\min _{\hat{f}} \max _{\ell}\|\hat{f}(x) f(x)\|_{P(x)}
$$

$$
\left\|\left\|_{p}=\right\|\right\| \text { writ. predictor measure } P(x) \quad \text { (Cocker, Smalt, ... Tanlyatov) }
$$

We are attempting to give A "window" FOR T (ing singular case
ExT $f(x ; a)=a_{0}+a \cdot x$ linear

PArametric $=a_{0}+a_{1} x+x^{t} B x$ gundratii

$$
\text { non Paramperii }=\sum_{x^{\prime}} a_{x^{\prime}} k\left(x^{\prime}, x\right) \text { with } \|\left|f\left(x^{\prime}, a\right)\right|| | \leq M
$$

REproducing KERNE / Hilbert Sp. Support VECTOR MAchinE

$$
\begin{aligned}
& 6: 0 \leq f(x) \leq 1 \\
& f(x)=\operatorname{Pr}(2 \mid x) \\
& c \mid \text { assification } \\
& \hline|f(x)-f(y)| \leq 2 \bar{M} \\
& \text { bund. oscillation } \\
& \text { (Lipschite } 0)
\end{aligned}
$$

GlobAl finite SAmple minimax Estimation

$$
e_{k}(\varepsilon)=\operatorname{inF}_{F \sup _{f \in\}}} E\left(\|f-F\|_{L_{2}(p)}\right)
$$

ASSUME $\quad x_{j}=X_{i} ;\left(X_{i}, Y_{i}\right)$ i.i.d. $|Y-f(x)| \leq M_{0} ; X_{9} \mathcal{R}$
consiome $A b_{A l l} \quad b\left(W^{s}\left(L_{\infty}(x)\right)=\varepsilon\right.$ and $f+\varepsilon$
(1)
hen $E\left(\|f-\bar{F}\|_{L_{2}(p)}\right) \leq C k^{-\frac{5}{2 s+2 d}}$
(2)

$$
e_{k}(d) \geq c^{\prime} k^{-5 / 2 s+d}
$$

STOWE, DeVore, KErMyAcharina, pieard, Temiyator
(3)

$$
e_{k}(d) \leq C^{\prime \prime} k^{-\frac{s}{2 S+d}}
$$

minimizing \bar{F} is $A_{n} E$ net (coupotation ally infonsible)

Solutions and Approximate Solutions
OlD And NEN AlgoR.
RIDGE REGRESSION
Tinhonor REG.
identify RIDGE, REG. γ
classification
(1) quad prof.
(2) choice of M

Bounds (NEM)

$$
\max _{f \in \varepsilon}^{\left|f(x)-f\left(x ;{ }_{f}\right)\right| \leq \epsilon(x)} E(F(w)-f(0))^{2} \leq L(w)=B(w)+w^{\top} \sigma w
$$

EX. RETrod. K. Mrs.

$$
\epsilon(x)=O_{w}^{\text {min }} L(m)=\left(\sum_{i} \sum_{i} \underset{(k+1) \cdot(k+1)}{\left(\sigma+M^{2} K\right)}\right)^{-1}
$$

Ensembling, bagting, areraginge Fusion $x_{i}=\mathbb{Z}_{i} \quad\left(\bar{X}_{i}, \bar{Y}_{i}\right)$ i.i.d.
empirical evioence: Averaging (random) ald. Pimproves performance (over any singlealg.)
Ex. VAlg.i. : proj. onto randon subsmere U_{i}.
\% Alg i : : use kernel $K_{i}\left(x^{\prime}, x\right)$ Wirt shere (bandaroth) only in dir, in U_{i}.
3) Ranoom Forest: oata parsed - Termanal mode corr. To subsuace U_{i}
 ${ }^{2}$ data subser $\{x, \dot{\prime}\}$
$11+2$ could also use subset to locelize

$$
\begin{aligned}
& \text { EXPERT } \left.i\binom{\text { loc. } l_{\text {lii }}}{\text { CnSe }} Y_{j}=f^{i} / 0\right)+a^{i} \cdot x_{j}^{i}+\xi_{j}^{i}+N_{j}^{i} \\
& F_{i}\left|w^{i}\right|=N^{+i}+\sum_{i} w_{i}^{i} Y_{i} \quad \therefore \quad \text { only } \operatorname{ror} x_{i}+\left\langle x_{i}^{i}\right\} \\
& f^{i} / x /=E\left(I \mid \operatorname{Proj}_{V_{i}}=x\right) N^{i}<\sigma^{i} \text { ho.L. }\left(w^{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f^{i}(0)=E\left(Y / X \subset A_{i}\right) \quad A_{i}=" \operatorname{proj}_{i j} X=0 \\
& I(A)=\text { in for umion minture eg.codin } A_{i}+1 \\
& =\operatorname{din} v_{i}+1
\end{aligned}
$$

$P_{\text {robic.a. on }} O L\left(\sigma_{-A l}\right)$

$$
\begin{aligned}
& \varepsilon(Y \mid P)=\int_{O Z} E(Y / I \in A) d P(A) \\
& \theta(P)=\int_{O}^{O} I(A) d P(A)
\end{aligned}
$$

Expan) i: $F=\sum \alpha_{i} F_{i} \quad \xi(Y / \alpha)=\sum \nu_{i} E(\cdots)$

$$
E\left(F-\varepsilon(Y(\alpha))^{2} \leq G(w, \alpha)\right.
$$

classificintu4, $\frac{G(w,-)+\lambda\left(\frac{1}{\partial(\lambda)}-\frac{1}{d+1}\right)^{\frac{1}{r^{P(0,-F)}}}}{(\psi)}$

Fusion
(1)

(1)
(2)
(3)
$E\left(Y \mid X_{1}=X_{2}=0\right)$

$E\left(Y / X_{1}=0\right.$	$E\left(Y \mid I_{2}=0\right)$	$\varepsilon(Y \mid \beta)$		
0	0	(0)	$2 / 3$	$\left(\frac{2}{3}\right)$
1	$1 / 3$	$\left(\frac{1}{3}\right)$		
$1 / 2$	$1 / 3$	$\left(\frac{2}{3}\right)$	1	(0)
$2 / 3$	$\left(\frac{1}{3}\right)$			
	$1 / 6$	$\left(\frac{1}{3}\right)$	$5 / 6$	$\left(\frac{1}{3}\right)$
$\frac{1}{2}$	(0)			

$$
\xi(Y \mid P)=\int_{O Z} E(Y \mid I \subset A) d P(A)
$$

Generalized Conditional Expectation

Curse of Dimensionality if Expert i corrupted, incorrect with prob. π_{0} (or bad by π_{0}) For class. TAkE $\epsilon^{i}(x)= \begin{cases}0 & x=0 \\ 1 & x \neq 0\end{cases}$ obinm buds L_{i}

GET bound $G^{v}(n, \alpha)$
which " Expected bud. on
M.S.E. which is bud. on

EXPECTEd M.S.E. which is
M.S.E

