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      Optimal local estimation is formulated in the minimax sense for inverse problems and nonlinear 
regression.This theory provides best mean squared finite sample error bounds for some popular
statistical learning algorithms and also for several optimal improvements of other existing learning
algorithms such as smoothing splines and kernel regularization. The bounds and improved 
algorithms are not based on asymptotics or Bayesian assumptions and are truly local for each 
query, not depending on cross validating estimates at other queries to optimize modeling 
parameters.  Results are given for optimal local learning of approximately linear functions with 
side information (context) using real algebraic geometry. In particular finite sample error bounds 
are given for ridge regression and for a local version of lasso regression.The new regression 
methods require only quadratic programming with linear or quadratic inequality constraints for 
implementation. Greedy additive expansions are then combined with local minimax learning via a 
change in metric. An optimal strategy is presented for fusing the local minimax estimators of a 
class of experts- providing  optimal finite sample prediction error bounds from (random) forests.  
Local minimax learning is extended to kernel machines. Best local prediction error bounds for 
finite samples are given for Tikhonov regularization.  The geometry of  reproducing  kernel  Hilbert 
space is used to derive improved estimators with finite sample mean squared  error bounds for 
class membership probability in  two class pattern classification problems. A purely local, cross 
validation free algorithm is proposed which uses Fisher information with these bounds to 
determine best local kernel shape in vector machine learning. Finally a locally quadratic solution to 
the finite Fourier moments problem is presented. After reading the first three sections the reader 
may proceed directly to any of the subsequent applications sections. 
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          I. Introduction and Summary

      As increased computing power has lead to more sophisticated artificial neural network and 

machine learning algorithms for function estimation and approximation in higher dimensional 

spaces so has the challenge become more difficult of proving theorems concerning the 

predictive accuracy at a query point of these procedures applied to a finite training sample ( the 

“local  estimation problem” ; see [2], [23], [44] .). At the heart of the problem is the curse of   

dimensionality for local estimation which is exhibited in the following special case of estimating a 

scalar function f(x)  at  the point   x0 : suppose the predictor  distribution (distribution of x’s at 

which noisy values of f(x) are given)  is uniform on the ball of radius one with center  x0 in d-

dimensional space Rd . Assume we are interested in estimating the expected response f(x0).  It 

might  be  reasonable to use only sample vectors inside a ball of radius r < 1, assuming  

euclidean   distance as a measure of closeness. But, since the probability of  a sample vector x 

lying in the  smaller ball is rd ,  it is necessary that sample sizes are exponential in d  to get 

enough close vectors for accurate estimation ( Indeed the sample size would have to be at least 

r-d  to have on average at least one vector x lie in the smaller ball.). Clearly the curse persists for 

many other general predictor distributions and distances. 

      One way we may hope to avoid the curse is to assume that  f(x) has approximately a very 

simple model close( in terms of an appropriate distance measure) to  x0  like linear or quadratic (if 

a very complicated model is necessary then insufficient data close to  x0 may prevent                       
                                                                          
accuracy), but still the accuracy could be low  with  f(x)  linear close to  x0 (or even globally 

linear) as is the case with simple linear prediction at a query point relatively far away from the 

data cluster. Hence any other information, like  known bounds on f(x) in a neighborhood of the    

query (as is certainly the case if f is class 2  probability given x ( Pr(2|x) ) in a two class decision 

problem), must be incorporated. We refer to such information as context  and call the associated 

( constrained) model a contextual model. Our results will treat only  cases of band limited range  

( i.e. the  contextual information consists of bounds on f(x) or the change in f(x) in various 
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neighborhoods of  x0) although results for other types of contextual information are anticipated. 

For many engineering applications there are physical or model assumptions that allow one to 

get  bounds on f  (or the change in f) in some region even when f is globally linear. In many other 

cases such  bounds  may be estimated initially from the data.  
                                                                             
      Note in the 2-class problem that a logistic model  exp{a*x +b} / ( 1 + exp{a*x +b} ),  although 

having the bound of one automatically,  could well be too complicated for accuracy since slopes 

of  locally fitting functions can be arbitrarily large. Assuming a simple contextual condition on 

f(x) in addition to a locally approximating  ( linear or nonlinear) model, we will define a notion of 

local minimaxity at the query point  x0 (with respect to a given data set) which gives a best upper 

bound on mean squared error  of any affine ( in the training response values) estimator of  

f(x0). Our  local minimax approach will be shown in simple examples to be superior  to three 

popular methods of local estimation.(They will be reviewed in Sec.II. See [2] for a survey.) The 

approach also does not rely on crossvalidation (global leave-one-out averaging) to find 

weighting bandwidths as two of the popular methods do.  We will present a large naturally 

occurring class of examples with globally linear  f (x)  for which the boundedness assumption in 

a neighborhood of x0 leads to a large reduction in mean squared error ( by a factor of O(1/d) ) 

when the method is compared to ordinary least squares and near neighbor methods. Since 

versions of our method are scale invariant a similar reduction will often occur when they are 

compared to regularization and shrinkage methods. (See [42] for a survey.)

          Implementing the boundedness (or other contextual) assumptions requires the solution 

of an optimization and classical real algebraic geometry problem. This associated geometry 

problem is solved here  for the local approximately linear model. In this case the estimator 

coefficients are  determined by solving a minimization problem (using quadratic programming (QP) 

for regression) where the number of variables is the number of  predictors in the training set.                   

        For learning nonlinear functions at x0 dimensionality reduction may be necessary to get 
                                                                                              
enough “close” points ( so that a local approximation is accurate for a large enough sample). To 
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this end we examine a  second way to avoid the curse  by assuming that f(x) has an  

approximation by ridge functions which holds globally (or  just in a weak  neighborhood of  x0)   

                                                   N  

         (#)                 f(x)     ~     Σ    cn gn( an
t
x )                           

                                                 n=1                     

with weights cn  which are l1 bounded (w.l.o.g. Σ |cn| < 1 ),  an ε A, gn ε G , where A is a given 

                                                                      
class of ridge  vectors in Rd and  G is a given class of uniformly bounded real valued functions 

on R . ( e.g. G could be the class of  translations of a fixed bounded neural activation function. 

Existence of approximations of the form (#),which are uniformly accurate to any desired degree, 

was proven in [10]. A constructive proof of this followed in[21].  Efficient algorithms for and 

theorems on the  average global  accuracy of the expansion (#) have been obtained in [16], [24], 

[38],[20],[3],[4],[29],[30],[28],[12],[22],[13],[31],[11],[14], [8]. An algorithm for obtaining a best local 

expansion of the form (#) in a weak neighborhood of  x0 is given in [23]. For an extensive survey 

see [35].) Hence we are assuming that f is (locally) nearly  a convex   combination of  functions  

of projections onto R . 

      More generally the a’s could be dx m matrices and the g’s could be real functions on R
m

  

(where m may vary with n). Some algorithms for obtaining (#)  are given in   [15] where 

such gn’s are pieceswise constant in m(n) splitting variables used to iteratively construct a 

regression or classification tree at stage n. Theorems relating the mean global accuracy of 

averaging ( cn = 1/N ) the gn’s corresponding to randomly generated trees (a random forest) are  

presented in [6]. Also of interest are algorithms for constructing the expansions (#) where the 

gn(ant x)  are replaced by functions of quadratic forms in x , gn(xtAnx),  like Gaussian kernels or 

other radial basis functions used in support vector machines. See [36] and [43]. We refer to the 

set of all such functions to be used in the expansions as a dictionary.
                                                                       
                  Assuming  the  existence  of  uniform approximations  with any given degree of 

accuracy of the form (#) for f(x) and assuming a machine algorithm finds a parsimonious  
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estimate of f of the form (#), we will show how  this algorithm, which finds estimates of the 

above ridge vectors(matrices) an  using part of the training data, leads to a distance measure 

which reduces the dimensionality in an approximate sense so that our proposed local contextual 

methods may be accurate for the remaining  data. 
            
              We develop a method of aggregating the local minimax estimators of a group of experts 

which  yields a solution to the optimal estimation of the regression function from a random forest.           

An example in bioinformatics is given using these techniques.
                                                                        
             We then apply our methods to optimally estimating a nonlinear function at a point using a 

sum of kernels. This leads to an improvement  of the Tikhonov regularization procedure when the 

function is class 2 probability given x. An algorithm based on Fisher information is proposed to 

determine optimal local kernel shape. 

              We conclude with remarks on extensions to general loss functions and the real 

algebraic geometry of quadratic approximation.  We present a solution to the linear inverse 

problem in one dimension of optimal reconstruction of a locally approximately quadratic function 

from  noisy integral transform data ( the finite Fourier moments problem). After reading the first 

three sections the reader may proceed directly to any of the subsequent applications sections. 

   II.  Local Minimax Function Estimation with Contextual Model  Assumptions                             

    A. Statement of Problem and Review of Popular Solution Methods 

             The most general setting is that of linear inverse problems with (possibly) 
                                                                      
indirect measurements in which we are given real values  Yj  for  j = 1,2,.........k  where 

 

                                    Yj   =    S θ j (t) f(t) dt1 dt2 .....dtd        +         Nj .  

with θ j (t) known weight functions, f (x ) an unknown real valued function on R
d
, the value of 

                                                                      
which is to be estimated at x0, and mean zero noise having covariance N with known positive 

definite upper bound σ  (i.e.  σ - N is positive semi-definite).
                                                                       
            For ease of exposition and since the majority of our results are for regression and 
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classification, we stay in this subsection with the following regression case for now with θ j (t) 

being the δ  function at  xj ; that is we observe

                                Yj  =   f ( xj )     +     Nj            j = 1,2,.........k

                                                                                                                                                            

where { xj } are k predetermined design points in R
d 

or xj = Xj  with { Xj }  n  i.i.d. random predictor 

vectors in R
d
 drawn from some unknown continuous probability distribution P  on R

d
 ,  f (x ) an 

unknown real valued function the value of which is to be estimated at x0 , and  { Nj }  k 

independent real valued noises which have mean  zero and variance bounded by a known 
                                                                        
constant  σj

2. Our results will actually be proven for the somewhat more general dependent case 

where  σ -  N  is positive semi-definite for some  known positive definite covariance σ . But we 

keep the independence assumption in this subsection unless we specify otherwise (as in the 2 

general forms of ridge regression and later in our theorems ). ( Subscripts  of  the letter x will 

denote enumeration of predictor vectors or queries. The notation ( -)i will be used in a few 

instances to denote the ith component of -. )

                  Let the distance between x and y in R
d 

be given by a  nonnegative  function  D( x , y ) 

( which we may assume to be Euclidean, || ||, in this section ; other distances are  introduced in 

Section V. ) By translation we may take x0 to be the zero vector. We seek  optimal affine 

estimators of  f(0) of the form

                                                                         k

     F  =  F( w)   =   w*  +  wt Y   =    w*   +    Σ  wj Yj        (  w  = (w*, w), w = (w1, .....wk )t  )

                                                                         1                                    

where the w*, wj’s are functions  of the design vectors (predictors)  but not of the Y’s. 

                                                                          
Linearity will be in terms of the Yj. This assumption is made to obtain optimality results which are 

noise distribution free as long as we assume mean 0 noises with  known covariance bounds. 
                                                                      
For w* = 0 such estimators are also called local smoothers. ( A rigorous minimax theory of local 
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estimation such as that which we are developing needs to be presented first for the affine case  

before being extended to the nonlinear case. Furthermore such estimators might produce fewer 

artifacts common to many current nonlinear methods in inverse problems. And it must be noted 

that nonlinear estimators of probabilities in classification problems often do not generalize well 

since they depend too heavily on misclassified subsamples.)The estimators will be nonlinear in 

{xj}  and D(0,xj).  The  optimality will be in terms of minimax  criteria applied to  L ( f(0), F )  where 

                                                                         
L (x ,y) is a general nonnegative loss function which we assume to be continuous in  (x,y) .
 
            One important learning theory example with known bounded noise variance is the two 

class classification problem in which case Yj is 0 for class one and 1 tor class 2 when xj is 

observed, f(x) = Pr {class 2| x observed} and Var Nj  = f(xj)(1-f(xj)), so that we may take   σj
2 = 

                                                                       
.25 (  or even the smaller bound p(1-p) if  the  probability f(xj) is known to lie outside the interval 

(p,1-p) ). It is important in many applications to estimate this function together with a confidence 

bound. Other cases where a   σj
2 can be determined occur in regression when the Y’s are 

known to lie  in a bounded interval , in inverse problems where  σj
  is the maximum magnitude of  

the instrument noise in the indirect measurements  Yj  and in many other modeling situations. 

       Optimality is in terms of the general  criterion which we may now write as L(f (0),F).  We 

first give three  popular methods for which the solutions for the first two are linear (in the Y’s but 

not in the x’s )with squared error loss  and for which the third is based on both linearity and the 

squared error loss assumption.(See [2], [17], [18].) Our method is then formulated for general 

loss functions. We present the solutions using our method for L (x,y) =( x - y )
2
 in the remaining 

sections. As we will see, since the loss with our method  is only applied at (f (0),F) where F is a 

superposition, the squared error is highly appropriate as F is bell shaped for even modest sample 

sizes under a bounded noise assumption while many other local and global methods first apply  

the loss at each predictor-response pair and then sum thus making robustness a key issue.The 
                                                                          
problem for  more general loss functions is discussed in section VIII.
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---------------------------------------------------------------------------------------------------------------
        1.  Distance Weighted Learning ( or Kernel Method)

                                                                    k

           Estimate f(0)  by          arg min       Σ   L ( Yj, y  ) Kh ( D(0,xj) )             where

                                                       y         j=1
          
                                                               
Kh (    )   is a one dimensional kernel function of bandwidth  h centered at the origin.     ( Kh (u) = 

h
-1

 K (u/ h)  for a fixed univariate K (x) .)  For L(x,y)  equal the squared error loss function  
                                                                   
the estimator is linear and the method is the popular standard  kernel  regression.

------------------------------------------------------------------------------------------------------------------
      2. Locally  Weighted Residuals (LWR)

         Let  f ( x ; a )  be a  parametric  model for f ( x ) . (i.e. the vector parameter a varies in 

some set  with nonempty interior A  C  R
q  

and for each a the domain of  f (x; a) contains  { xj }. ) 

A  generalization of 1. is to estimate f(0) by  f( 0 ; a )  where a minimizes the weighted residuals:              

                                                                k

               a        =                arg min        Σ   L ( Yj , f ( xj  ;a ) ) Kh ( D(0,xj) )            

                                                   a          j=1

        Constraints( which are nonlinear inequalities in all examples given) may be imposed on a 

corresponding to information about  f  which is then assumed only for the models  f (x; a).  

(Since the models are usually only approximate this will not impose all knowledge about f  while 

our method will impose all such knowledge.)  These situations will be described as alternatives 

to each solution using our method. In section II-C we give several simple examples where such 

constraints are imposed and for which our method is superior to all residual weightings. In both 

methods characterizing the constraints is a problem in  real algebraic  geometry.

        A popular choice for  f ( x ; a )  is the  linear model    a0    +     ( a1 , a2 , ..... aq-1 ) * x    where       

q = d + 1  and,for squared error loss,  the method is the usual locally weighted residual linear 

regression. The bias and variance of the estimator may be estimated using Taylor’s theorem. In 

many applications with data of 1. and 2.  both the bandwidth parameter h and the distance D 
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have been adaptively chosen. (See [2], [9] ) This may introduce inaccuracy due to overtuning. 

Often h has been chosen by cross validation - performing the local estimation at each training 

point ( leaving it out) for fixed h and obtaining a global estimate of estimation error as a function 

of h; then  choosing the minimizing h for this function for the local analysis. The objection to this 

practice is clear: if one is only interested in f at 0 one should not let global information have too 

much influence. Our method does not need a bandwith parameter. Also for the general setting of  

inverse problems (where L ( Yj , f ( xj  ;a ) ) is replaced above by  L ( Yj,S θ j (t) f(t;a) dt1..dtd ) )  

it is unclear how to assign the weighting while our approach takes advantage of the redundancy 

and geometric configuration of the integral transform data and still produces the optimal affine 

estimator.
                                                                              
--------------------------------------------------------------------------------------------------------------------
       3. Best Linear Unbiased Estimator Assuming Exact Local Model  (Local  Kriging  [17],[18])

          Suppose only “near neighbor” predictors  xj , lying in   Vo  =   {x:  D(0, x )  <   r0},

are to be used in the analysis where the user specifies  r0 as a threshold of closeness; so we 

assume the sample has  been appropriately redefined. Let us limit ourselves to squared error 

loss, linear estimators F of  f ( 0 ) (i.e. w* = 0 ), and to target functions f  belonging to  a class of  

general linear models i.e. parametric models as defined in 2. which are  linear in a basis of 

bounded functions {hi} on Vo. 

           f ( x )  =  f ( x ; a )  =  ao ho(x) + a1 h1(x)  +.....  + aqhq(x)     for some a  where ho(x) = 1 

        
and  hi(0) = 0 for i > 0  ( hence   ao  =   f ( 0 ) ). Assume further that  Var ( Nj ) =  σ

0

2 . Now let us

consider estimators F which are(conditionally) unbiased for the target value f(0)  (conditioned on 

the predictors Xj = xj):  E ( ( F -  ao )
 
|  x1, x2, .......xk )  =  0  for any parameter vector a in A. 

Then, using the linearity of expectation, it is straightforward to see that this restriction on the 

estimators is equivalent to 

               ( 1 )           Σ  wj  hi(xj ) = 0       for    i =1,2 ....q     and      Σ wj   =   1 

                                                                        8



Then the weights for the unbaised linear estimator minimizing the expected  loss 
      

                        E ( ( F -  ao )
2  

|  x1, x2, .......xk )                 

are easily seen  to be  the { wj } that minimize Σwj
2   

subject to the  constraints ( 1 ). The 

associated estimator is the local Kriging estimator. It can be extended to include correlated noises 

[18] for applications to one or two dimensional settings. We also include the case of correlated 

noise in our main theorems. 

             It should also be noted that for many simple local models Kriging produces only the 
                                                                       
ordinary least squares  formulas applied to the close predictors. (The same occurs with our 

method below when the local model is exact and no context is applied. Otherwise different 

solutions arise. Local Kriging is unaltered by context because of the the unbiasedness 

restriction: Note that  in local Kriging any boundedness constraints on f  have no effect on the 

estimator, when A = R
q  

and the  hi are bounded in Vo , since the set of parameters a  describing 

the possible f’s would still have a nonempty interior.)  For instance for a local linear model it is 

well known that the ordinary linear prediction formula from least squares  for the expected 

response at 0 results. ( One possible proof is to apply our Theorem II and then let M become 

infinite.) 
-------------------------------------------------------------------------------------------------------------------

        Let X be the k x (d+1) dimensional design matrix wth 1’s in the first column and the  

components of the k vectors in the rest of the columns. Assuming X  has full rank we have the 

ordinary linear regression estimator a : 

         a  = H Y   with  Y  = ( Y1, Y2,   ...... Yk )t and H =  ( Xt X)-1 Xt     ( see [27], sec.2.2.1)

and ao is  the estimate of f(0) . 

      The above ordinary linear prediction formula for f(0)  is often modified using  ridge 

regression in  high dimensions or when the matrix XtX  is (nearly) singular. (This is required in 

the ordinary formula if there is no data in some direction but this is not an issue with a convex 
                                                                          9



programming approach such as ours. As we shall see,with the exception of  Theorem II, our 

formulas will be analytically different from ridge regression and the scale invariant versions can 
                                                                       
potentially outperform it.) The ridge regression  technique  corresponds to adding fake data to 
                                                                         
the problem by placing  a diagonal matrix Γ at the bottom of the design matrix X ( call it  X* ) and  

d+1  0’s at the end of the response vector Y ( call it  Y* ) and minimizing  ( X*a  -  Y*)t( X*a  -  Y* ). 

(See [2] section 8.1.) The estimator of f(0)  is    a*o   where a*    =     ( Xt X   +    Γ2
   )-1 Xt Y.  

             In the general dependent noise case of  cov ({ Nj} ) = σ  we would apply weighted least 

squares  and minimize ( X*a  -  Y*)t σ ∗  −1( X*a  -  Y*) where σ ∗  extends σ  by a diagonal 

matrix of  d+1 one’s  down the diagonal.The regularized estimator would then be

                     a*    =     ( Xt σ −1X   +    Γ2
   )-1 Xt σ −1Y  

If  Γ  is a multiple of the identity matrix I  then we call this a standard regularization. Standard 

regularization  corresponds to minimizing ( Xa  -  Y)t σ −1( Xa  -  Y)  +     λata.  Another form of 

ridge regression is obtained by minimizing    ( Xa  -  Y)tσ −1( Xa  -  Y )     +      λ (ata  -   ao
2
 ) . We 

call it penalized regression or gradient regularization.  It is given by

          
 
(  Xt σ −1X   +   λIo   )

-1
 Xt σ −1  Y        where Io equals the identity matrix I

                                                             but with 0  in the  upper left corner.

               Ridge regression  requires some understanding of the proper scale of the various data 

components. The choice of Γ and the result would otherwise be highly heuristic and without  

sound justification. One of our results ( Theorem II) gives an an explicit formula which is in the 

form of a gradient regularization, yielding a minimax justification for ridge regression and 

providing the value of λ. We now describe our approach. 

B. Minimax Function Approximation and Estimation for Approximate Local Models 
                     with Context and Finite Sample  Error Bounds
                                                                                                                                                                     
               Let us allow both parametric and nonparametric local models M = {f (x ; a)}  where the 

parameter vector a varies in A 
 ( A is a subset of R

q 
in the parametric case or A is an abtract 
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infinite dimensional set in the nonparametric case.).Assume the local smoothness condition that  

the true f(x)  can be uniformly approximated with  accuracy  ε( x ), in some region V containing 0 

and the supports of the θ j (for regression the predictors {xj} ), by some member of the family of  

models:
                                                                      

 (2)     | f ( x )   -   f ( x; a) |  <  ε( x )  for some a and for all x  in  V for given ε( x ) with ε(0)=0. 

           In addition the true f is often known or assumed to satisfy additional regularity and/or 

structural conditions C  in V , like belonging to a certain function class and taking values in a 

bounded interval ( we also denote by C  the class of functions satisfying the conditions). With 

these assumptions on f  the optimal (minimax ) strategy for choosing the weight vector w for F is 

  (3)   w     =    arg    min                    max                      E { L ( f(0) , F( w) )  |  θ1(t), θ2(t), ...θk(t)}              

                                  w         f ε C ; (2) holds for f  

              This is  the more general inverse problem case. For  regression  the  objective

         function is denoted  by  E { L ( f(0) , F( w ) )  |  x1, x2, .....xk }   reflecting  the fact 

         that the  general distributions θ j (t) on predictor space are just  δ  functions at xj.

       ( Here the noise is mean zero with covariance N. In all our maximizations we will 

        optimize over the values of   N as well as f  which will essentially force the    
 
       heteroscedastic case,  N  = σ , as Nature’s strategy. Of course Nature may never 

       be able to employ this strategy if we are  dealing with a classification problem but 

       still our analysis provides estimators and upper bounds on their performances. )                          

          We call the  minimax value the local complexity, LC ,  based on noisy data from the 

weightings   θ1, θ2, .......θk :

                        LC    =     min                   max              E { L ( f(0) , F( w ) )  |  θ1, θ2, .......θk }                 

                                        w        f ε C ; (2) holds for f    
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It gives a least upper bound on expected loss based on information about the nature  (conds. C  ) 

of the target function and how it can be approximated ( the family  f ( x; a) and  ε( x ) ). 

          Some aspects of the proposal (3) have been previously suggested. Gauss had argued 

with Laplace that a gametheoretic approach, as (3) indeed is, incorporating side information 

about the function being estimated, was preferable to maximum likelihood although at that time not 
                                                                            
computationally feasible ([ 1]). Also for regression  with no context  assumptions, uncorrelated 

noise with known σi
2 , distinct predictors and a  linear M  the proposal (3) is part of the global 

parameter estimation (in M ) convex program  proposed by Sacks and Ylvisaker [40]. Our 

solution algorithms are more general than theirs, are provably convergent and apply to context 

cases and inverse problems also. All but one of our results involve context ( non trivial C ). It is 

the context assumptions or side information which require solutions to classical real algebraic 

geometry problems and lead to potential increases in accuracy for high dimensional  problems. 

        Of particular interest are the cases derived from Taylor’s theorem when  f ( x; a)  is 
                                                                           
a polynomial of degree s in the d coordinate variables. If f is sufficiently smooth, with a uniformly 

convergent power series about 0 in V, then the error  of approximation at x using  the terms up 

to degree s  in x1, x2, ....xd  is given  by the error of the s’th order Maclaurin expansion for         

G ( t )  =    f ( t x / ||x|| )  at  t  = ||x||. But this error is clearly bounded by  ε( x ) =  c ||x|| 
s+1

/ (s+1)!                

where c would be a user assumed bound on the maximum absolute value of all  the s+1 ‘st  

directional derivatives of  f  at points in  V  along  rays through 0.  We may take this ε( x ) as the 

modulus of  approximation. In the ensuing analysis c could serve as a robustness parameter, 

indicating the richness of the possible local behavior of  f  through the relationship (2); or c could 

be determined via physical or other modelling assumptions. But, as we shall see in the 

approximately linear case, c can often be quite large while the mean squared error bound is not 

much larger than that for c = 0.  
                                                                        
            Unfortunately (3) appears to be computationally difficult to solve exactly when C  requires 
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a boundedness condition.  We can not always describe the class of  f’s in the maximization 

problem with a simple set of constraints. We do solve (3) explicitly in the important context-free 

case in Theorems I  and in the exact (ε( x ) = 0 ) local model contextual cases in Theorems  II - V.  

Otherwise we obtain an upper bound on the minimax value.                       

C.Contrast with Global and Locally Weighted Residual Approximation and Estimation:
            simple examples for which the proposed minimax method outperforms           
                          all  local  least squares  residual weightings
                                                                   
          We first review the most common global approximation and estimation counterpart of (3):   

( see [37] )  The global estimator of  f , f*, satisfies f*(x) = f(x;a*) where

                a*  =  arg      min       { 1/kΣ σj
-2  L ( Yj , f(xj; a) )     +           γ P(a)  }   

                                   a ε A                                                                                                                             

            A local version is obtained by weighting the terms of the sum by Kh ( D(0,xj) ) as in Sec-

tion A-2. Here  { f(x;a) }  is either a parametric or nonparametric global family  and  a penalty term   

γ P(a)  is added to the objective function where   γ  is a regularization parameter which acts like 

a Lagrange multiplier. (In the homoscedastic case or approximation-interpolation problem the  σj
-2  

                                                                                                      

are omitted.) This counterpart arises in regularized minimum empirical loss solutions for a where 

P(a) is a complexity or lack of smoothness measure of  the function f(x;a). It also arises in 

Bayesian maximum posterior likelihood solutions where the prior on a  has the form exp { - ζ P(a)   

+  τ  }  and the independent  measurements Yj  have densities of the form  exp {  -   σj
-2 L ( yj , 

f(xj ; a) ) +  βj   } .  In the linear inverse problem case (where   L ( Yj , f ( xj  ;a ) ) is replaced  by   

L ( Yj , S θ j (t) f(t;a) dt1 ....dtd ) ) , if  P(a) is an abstract distance from f(x;a)  to a universal 

function fo ( e.g. cross entropy) and L(x,y) =0 only if x = y, then as the  σj  approach zero we 

get the minimum distance solution subject to data consistency [ 25] ( e.g. minimum cross entropy 

or maximum entropy when fo is a constant function). 

              For  various  losses  one  can  bound  the  expectation  of  the  above empirical  loss  in 
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brackets (with expectation over the design points as well as responses) as a sum of two 

terms, one varying directly as an appropriate distance between the true f in C  and its best 

approximation f(x;a**)  and the second as an expected distance between f(x;a*)  and  f(x;a**).  

One could then vary the set of models {f(x;a)} over a class M and minimize  the bound. Usually 

the first term is bounded by a multiple of the Vapnik-Chernovenkis dimension of  {f(x;a)}.

         Next it is important to know  if there is something to be gained by  the proposed minimax 

method. Without context, with a general linear model and with  ε(x) =0  the method reduces to 
                                                                   
local Kriging ( Thm.I ). A  example of the benefits of the method without context but with 

nonzero  ε(x) is given in the next section. Here we give two simple contextual examples of 

estimating f(0) for a truly linear function f on V = [-1, 1] whose slope is assumed to have an 

absolute value at most one: In both cases the predictor data are x1= 1/2 and x2 = 1. Assume 

independent mean 0 noises with variance bounds   σj
2 = 1/4. Thm. II  will yield optimal weights for 

the minimax estimator F:  w1 = 1, w2 = w* = 0. For the first example the function is f(x) = x and 

the noises are + 1/2 with equal probability.The four equally probable  regressor- response 

training sets are  {(1/2, 1/2 + 1/2), (1, 1 + 1/2)}. For the local minimax method the mean squared 

error of estimating f(0) is 1/2 while it is easily checked that the mean squared error of estimating 

f(0) with the ordinary least squares linear fit, subject to the constraint that its slope is at most 

one in absolute value, is 11/16. It is also easily checked that the error is at least 11/16 for any so

constrained weighted residual least squares  linear fit (minimizing α(  (residual)2 at 1/2)  +  (1-α) 

( ( residual)2 at 1) with  0<α<1 subject to above constraint).  For the second example again take 

f(x) = x  ( 0< x < 1)  but let the noise be -x with probability 1-x or else 1-x with probability x. The 

two  equally probable training sets are {(1/2, 1/2 + 1/2), (1, 1)}.The proposed method has error 

1/2 while the ordinary least squares constrained (as above) linear fit has error  17/32. Any least 

squares weighted residual constrained linear fit, favoring the data at  1/2 ( α > 1/2), has an error 

greater than 17/32 while all other least squares weighted residual constrained linear fits have  
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error greater than 1/2. See Figure 1 as an aid in checking these assertions. Finally note in each 

example that only one of the possible data sets has nonzero residuals. Hence our assertions are 

valid when we allow the weighting to depend on the data set.
  
III.   Context Free Solution for Regression and Linear Inverse Problems;  the
        Redundancy Function, Robustness and Advantages over Smoothing Splines
      We now present the solution  to (3) for the simple (but important) context free case involving 

local general linear models but with nonzero ε(x). Our first result  extends local Kriging to include 

approximate  general  linear models. It is also a generalization, which includes  linear  inverse 

problems, of a result in [40;eq. (3.4)]. It has a routine proof that involves an equation that is used 

in less trivial ways in  later theorems. We define a term in our bound as the redundancy function 

   R(w) =  { S | Σwj θ j (t) | ε(t)  dt1.... dtd } 
2 

.  From its form one sees that it is minimized by 

oppositely weighting combinations of θ j (t)’s which are equal in regions of large ε(t)  (exploiting 

redundancy in the model weight functions).   Further define Hji  =  S θ j (t) hi(t) dt1.....dtd.

                                       Theorem I     Let the general linear parametric family be given by                           

  f ( x ; a )  =  ao ho(x) + a1 h1(x)  +.....  + aqhq(x)      where a lies in  A  =  R
q+1 

, ho(x) = 1,   hi 

bounded and hi(0) = 0 for   i > 0. Consider  (3) for the general linear inverse problem:  Assume 

that in  V,  a  region  containing 0 and the supports of  bounded functions θ j (t) (or the predictors 

{ xj } in the regression case where θ j (t) are δ  functions at xj ), the true f(x) is within ε(x) of  

                                                                     
some family member  f ( x ; a). Assume mean zero noise having covariance N with known upper 

bound σ. Use squared error loss. Make  no context assumption. Then the solution to (3) is 

        w     =       arg     min    [    w 
tσ  w    +     R(w) 

 
]     , w* = 0 , w = (w1,...wk)t    

                                     w 
                                                                                                                                            

subject to    (1G)        Σj wj   Hji  = 0       for    i =1,2 ....q     and      Σ wj Hj0   =   1   .

        For regression with distinct predictors this has the form

       w     =       arg     min        [       w 
tσ  w   +  (   Σ |wj| ε(xj)  ) 

2  
]     , w* = 0             

                                    w 
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subject to   ( 1 ) ; which was     Σj wj  hi(xj ) = 0       for    i =1,2 ....q     and      Σ wj   =   1 .

( for nondistinct predictors, |wj| in the objective function above must be replaced by  |  sum of wi 

over all i for which the predictor xi  equals xj  |   and  Σ is over the equivalence classes of  

equal predictors.)  In all cases, for optimal w  the  local complexity   LC    =     w tσ  w    +   R(w)     

is an upper bound on the mean squared error of the estimator  F ( w )  and this bound is the best 

possible.   Furthermore if  v  is any suboptimal solution satisfying the constraints with v* = 0, then  

an upper bound on the mean squared error of  F ( v)  is given by  v tσ  v  +   R(v)  .

In addition the solution for nontrivial ε(x) is fundamentally different from LWR of Section II- A. 

             For regression, when the local model is exact  ( ε(x) = 0 ),  this is just local Kriging for 

the homoscedastic i.i.d. noise case. The result says that local Kriging may be extended to inexact  

models by requiring unbiasedness for exact submodels and  minimaxing mean squared error.
----------------------------------------------------------------------------------------------------------------
proof of Theorem I : Write  f(x)  =   f ( x ; a )  + ζ (x)  where  |ζ (x)|  < ε(x)  in V. Then  Yj =  aoHjo 

+ a1 Hj1 +..... + aqHjq    +  S θ j (t) ζ (t) dt1 dt2 .....dtd        +       Nj .    

(Use ao for  f(0) interchangeably  here. They are equal since ε(0) = 0. Sums in i or j will start at i 

= 1, j = 1.)  Then by routine calculation
 

    (4)    E ((F(w)- f(0) )
2
 |  θ 1, θ 2, .......θ k)   =    w

t
N w

               + {Σ ai ( Σ wj Hji )  +  ( Σ wj Hj0   -  1) ao   +    w*   +    S Σwj θ j (t) ζ (t) dt1..dtd }
2          

Now if the i’th constraint in (1G) fails to hold  the maximum of the above is infinite. (Pick f’s of the 

form ai hi(x) with larger and larger ai . ) Hence w must satisfy (1G). For w satisfying (1G) the 

                                                                       
maximum of the expectation is achieved by taking    N   =   σ   and taking 

  f ( x )  =  ζ (x)  =   sgn(w*)sgn (Σwj θ j (x) )  ε( x )    .    (sgn(z) = +1 for z > 0, -1 for z < 0)

        For the regression case with distinct predictors the proof is the same except  we take f as 

any function bounded in absolute value by   ε( x )  in  B  which satisfies 
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     f ( xj )  = sgn(w*) sgn ( wj )  ε( xj )    .   ( sgn(w*) sgn ( Σwi )  ε( xj )  for nondistinct  

                                                                               predictors with Σ over all i with xi = xj )

Now, in minimizing these maxima for w satisfying (1*) (or (1)), we clearly must have w* = 0 and 

so the form of the argmin has been established.

        Finally we compare the solution in the distinct predictors regression case to LWR assuming 

a linear f(x;a), squared error loss for LWR and nontrivial analytic  ε( x ) and  analytic Kh ( ||x|| ) 

with fixed  h. The solution to LWR is that of a linear system with coefficients analytic in the 

design matrix X while the system obtained by setting to 0 the w gradient of the objective 

function,  LC   =    wtσ  w   +  (   Σ |wj| ε(xj)  ) 
2 

,  has jumps. Hence the estimate of f(0) by LWR 

is meromorphic in X  while the   F ( w )  of the Theorem is not.  QED.                                                          
----------------------------------------------------------------------------------------------------
        To obtain solutions  replace the |x| function by  η ln (2 cosh (x/η) )    (with η suitably small) . 
                                                            
Then any  differientiable optimization technique could be used to find w with accuracy easily 

quantified in terms of η. Approximate solutions v are thus generated and valid bounds are 

obtained by evaluating the objective at  v  using the true |x| function. This same trick (called 

smoothing) can be used in all context cases to be presented. 

           Solutions in the regression case for w are easily obtained by quadratic programming (QP):  

write  wj = wj+  -  wj-,  change  |wj|  to  wj+ +  wj-  in the objective function and include further       

                                                                    

constraints that  wj+  and   wj-  are nonegative.                                            

           Here are some applications of the above obtained  with civil engineers who are calibrating 

pavement profiling devices (vans with on-board lasers to estimate road profile and signal 

processing computers to translate road profile into ride quality) based on ride roughness 

measurements on a set of control paved sites. ( The software was developed using  smoothing 

by Brad Jones; quadratic programming solutions in this paper were suggested by Dave Einstein.)
                                               

     Consider Graph 1 of the local solution at increments of .05. The 6 data points (denoted by 

solid triangles) are characterized by x coordinates which are the roughness levels ( in units of 
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100 IRI ( International Roughness Index)) as outputed by the device ICCS495R at each of 6 sites. 

These are not the true roughness levels since the device measures only certain frequency 

components (indeed very accurately) of the road profile while ignoring others. The y coordinates 

are unbiased estimates of the actual roughness levels for the corresponding sites as determined 

by  measurement of the site road profiles with  manual (time consuming) procedures followed by  

ride computer simulations. It is assumed that the manual procedures yield independent 

measurement errors with a true standard deviation of .03 (or less). Now, if the device now 

measures a roughness xo on a newly paved roadway, a predicted true roughness is desired for 

the new pavement together with a root mean square error( RMSE) ( or upper bound thereof) for 

the prediction. This RMSE ( or bound thereof) should be mathematically guaranteed based on 

reasonable mathematical assumptions and not just an estimate as roughness quality 

measurements which are used to determine levels of highway contractor compensation are 

subject to legal challenge. This RMSE is local as it need only be valid when the device outputs xo.

       Ordinary least squares (assuming the unknown function is actually linear) with fixed 

controls is linear in the y values and (hence) furnishes (a bound) on RMSE which depends only 
                                                                        
on the  control values {xi} and is probabilistically meaningful before the y measurements are 

taken into account and hence is valid for confidence analysis of all the measurements in the 

common frequentist's sense. However if the regression curve ( called profiling correlation curve 

by pavement researchers) is nonlinear many(e.g.adaptive spline) curve estimation ( and even 

robust linear) methods are (locally) nonlinear in the y values and RMSE( or bounds thereof) can 

only be estimated ( and often only globally). Even the linear method of smoothing splines which 

yields a global estimate f(x) minimizing 

                      Σ ( Yj  - f(xj) )
2 +      γ S (f ’’(x))

2
       with γ  prespecified,

                                                                       
requires Bayesian assumptions to produce a confidence statement. ( recall Section II-C)  Local 

learning is (globally nonlinear but) locally linear in the Y's. It is finite sample locally optimal(among 
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all other locally linear curve estimation methods, varying with each xo) and furnishes guaranteed  

RMSE at xo in the frequentist's sense for regression with fixed controls xj. Consider the results:       

For the local bounds we assumed ε(x)= x
2
. Hence the RMSE bounds hold when the true curve is 

twice differentiable with second derivative bounded in absolute value by c=2.Thus a high degree 

of non-linearity could be present . The upper curve in Graph 2 represents the worst case local 

error of ordinary least squares under the ε( x )  = x
2
 assumption ( obtained by evaluating the 

achievable bound  for the suboptimal weights vj corresponding to the ordinary least squares 

solution ).The lower curve represents the RMSE( bound) if the device were truly linear (ε( x ) = 

.5cx2 = 0 ). Amazingly the middle curve (obtained after convex optimization by the quasi-Newton 

method with initial weights vj  and using smoothing parameter η = .02 ), which is an upper bound 

for the worst case for the local theory method under the ε( x )  = x
2
 assumption, is very close to 

the lower (ideal) curve inside or close to the control interval ( .8  -  1.7 ).

      The method is optimally  “downweighting” the predictors which are “far” from the query. This 

high degree of robustness is  somewhat surprising and demonstrates the  power of numerical  

optimization. Of course this is only a low dimensional problem where there naturally might exist 

points close enough to a given query for accurate estimation in the frequentist sense.The rest of 
                                                                         
this paper treats the local problem with side information on f(x) that in essence reduces 
                                                                            
dimensionality so that the methods can be proven to yield similar advantages in high dimensions.              

     As for training points far from the query Graph 3 demonstrates the advantages of using           

boundedness information ( in only one dimension). Here the IRI data was provided at three sites. 

It was assumed that the true IRI of a query is between .6 and 1.2 and Theorem V of the next 

section was applied (expressing max and min in terms of | | and smoothing by changing |x|  as 

above) . For each curve  the first label is σ and the second is  c  (contextual linear method with 

ε( x ) = .5cx2 ) or slr (standard least squares regression). For the high noise case the contextual 

RMSE is substantially better than the standard  linear predictor RMSE reasonably close to the 
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data cluster. This indicates potential accuracy in  classification problems where σ  varies from .2 

to.5. 

IV. Estimation for Linear and Approximately Linear  Functions 
                        
     A. Some Results with Rotational Invariance to the Design Set ;  relationships  to 
                   ridge regression, an application to stock price prediction
 
                   Now we consider the setting of an approximate (exact when ε(x) = 0) linear target 

function in V but with side information that the function takes values in a given bounded interval 
                                                                       
or has a certain bound on its oscillation in V.  We will later describe a large class of naturally 

occurring examples where the side information leads to large reduction in mean squared error 

for the contextual estimator compared to that with standard local linear prediction. For these 

examples there is the same high degree of robustness in the presence of considerable 

nonlinearity for the contextual estimator in high dimensions as for the context free road quality 

estimator in one dimension of the last section.  Our first result gives a robust extension of 

penalized local linear regression when nonlinearity is present as well as a theory for the correct 

choice of penalty parameter and new error bounds, optimality properties and interpretations for 

ridge regression by a gradient regularization.     

    Theorem II   Let the linear parametric family be given by f ( x ; a )  = ( a1, a2,.....ad ) . x  + ao

for   x  in R
d 

.  Let V be a ball of  radius r centered at 0 which contains the predictors { xj }.  X  is 

the  k  x  d+1 design matrix. Assume that  f(x)  is within ε(x) of some family member  f ( x ; a ) in

                                                                     
V  where ε(x) = κ||x||2     (κ = c/2 where c is a bound on the magnitude of all directional second  

derivatives; see section II-B).      Assume mean zero noise having covariance N with known 

upper bound σ. Use squared error loss. C  is the condition that | f(x) - f(z) |  < 2 M for x and z in 

V. Recall  w = (w1, w2, ..... wk )
t
. 

               The following is an upper bound on mean squared error of  F(w) in the general (κ > 0) 

case for given w  with  C(w)  = Σ wj  - 1 = 0  and w*  =  0.  It may be minimized in w  to give 
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near minimax optimality:
                                                        

             LC (w)      =           w 
tσ  w      +    B(w)

                   with    B(w) =       {   (M/r +  κ r) A        +      κΣ |wj|  ||xj||
2
  } 

2 
       if      κ   <   M r -2 

                                                                                                                                                                                                                       

                                                 { 2(κM)
1/2

 A          +    κΣ |wj|  ||xj||
2 

}
2
 
 
             if      κ  >  Mr -2  

where   A  = A(w)  =    ||Σ  wjxj ||   and   wk  =  1   -    Σj<k wj .                               

                                                                                                             
                 If  f is linear in V (κ = 0), the optimal strategy  (3) for squared error loss takes the form 
                                                                    

                  w  =  arg  min  [  w 
tσ  w  + ( MA/r )2  ] 

  ,            w* =0 ,  C(w) = 0.        

                                    w                                                                                         
                                                                                                                                                                        

The solution wt is the first  row of    Xt  ( (M/r)
2 
XXt  + σ   )

-1     
normalized to have sum one:                    

                  wt    =    n  (1, 1,...1) ( (M/r)
2 
XXt  + σ   )

-1
      

                                     where   1/ n   =    (1, 1,...1) ( (M/r)
2 
XXt  + σ  )

-1
 (1, 1,...1)

t
 .                   

Also the minmax value  LC  of (3)  is given by  

                 LC    =    (  ΣΣ ( (M/r)
2 
XXt  + σ   )

-1

ij
  ) 

-1
        -         (M/r)

2          
                  

and  F(w) may be expressed as the constant term in a gradient regularization where the penalty 

(or ridge) parameter , λ = (r/M)
2 

, has a rigorous minimax justification:

                F(w)   = (1, 0,...0)  (  Xt σ -1X   +   (r/M)
2Io   )

-1
 Xt σ -1 

Y                                           

where Io equals the identity matrix I but with 0  in the  upper left corner.

---------------------------------------------------------------------------------------------------------------------
proof of Thm. II: With notation from the proof of Theorem I we rewrite (4) using the linear family 
                                                                                                                                        

         E ((F(w)-(f(0))
2
 | x1,... xk) =  w

t
N w  +  {Σ ai (Σ wj xj)i + w* + C(w) ao + Σwj ζ (xj)}

2. 

For each fixed w*, w we want first an upper bound on the maximum over a  of the absolute 

value of the quantity inside the brackets subject to (2) holding for a and some f satisfying  C  . In 

this case there is no restriction on ao since it has no effect on the change in f. Hence the 
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minimax value is infinite unless C(w) = 0 which is the condition imposed on  wk. We only need to 

maximize the magnitude of  Σ ai (Σ wj xj)i   over this set of a’s and, since this set is clearly 

symmetric from the following characterization, pick its sign to be the same as that of w*. Then 

add   +  κΣ |wj|  ||xj||
2 

 ( note the interval generated by these two numbers contains  Σwj ζ (xj) ) 

to it  inside the brackets to obtain the upper bound. It is then clear that w* = 0 makes this upper 

bound smallest for given w. The condition on a for which (2) holds for some f satisfying  C   is

         | (a1,a2, .....,ad) * x |   <      M  +  κ||x||2         whenever ||x|| < r .

                          ( reason: if condition is satisfied then pick f = max{ min{a.x, M}, -M}; if violated at  

                            y then any f satisfying (2) takes values at +y, -y which differ by more than 2M)
                                                                        
The characterization of all such a’s is a classical real algebraic geometry problem which is    

equivalent to  || (a1,a2, .....,ad) ||    <    ||x||
-1

M   +   κ||x||    for  ||x|| < r . The solution is  

      || (a1,a2, .....,ad) ||    <      2( κM )
1/2 

            if    κr2 > M 

                                               r
-1

 M  +  κr               else                                                                    

The maximization is achieved by multiplying the latter bound by A  and adding (inside the 

brackets)  κΣ |wj|  ||xj||
2
  to obtain the mean squared error upper bound. The exact linear case 

best bound ( solution to (3)) follows by setting κ = 0.  

             For the exact case the algebraic expressions for   wj   follow by setting equal to 0 the 

gradient of the augmented Lagrange objective function   wt σ w 
 + ( MA/r )2   

+  λ C(w)  . First 

rewrite this as  wt σ w  +  (M/r)
2 

 wt XXt w   -  (M/r)
2
(C(w)+1)

2   
+  λ C(w)  which we can do  

since    ||Σ  wjxj || 
2 

=   wt XXt w  -   ( Σ wj )
2  

. Now take the gradient  and we obtain σ w   +  

                                                                     

(M/r)
2 XXt w  =  n 1 with 1 a column vector of k ones and  n the normalizing constant  which 

makes  wt 1 = 1.  Solving for  w  we get   wt  =   n 1t    ( (M/r)
2 
XXt  + σ   )

-1 
  =   

 n (1, 0,...0) Xt ( (M/r)
2 
XXt  + σ   )

-1
 . The expression for  LC  follows by a simple plug-in.
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       We now show that this form is actually a gradient regularization. (The proof is with  help  

from Alex Kheifets and Dan Klain.) In particular we show that  the normalized  first row of                       

Xt ( (M/r)
2 
XXt  + σ   )

-1 
is the first row of G = ( Xt σ -1X   +   (r/M)

2Io  )-1
 Xt σ -1 :

       First consider the matrix equation ( Xt σ -1X + (r/M)
2I )-1 (r/M)

2
Xt σ -1  ((M/r)

2 
XXt  + σ   )

 

 
= ( Xt σ -1X + (r/M)

2I  )-1  ( Xt σ -1X + (r/M)
2I ) Xt   =   Xt , yielding the “exchange” identity              

            (  Xt σ -1X   +  (r/M)
2I   )-1

 Xt σ -1  =  (M/r)
2
Xt   ( (M/r)

2 
XXt  + σ   )

-1   
.

Now let Jo =  I  -  Io . Write G  =    (  Xt σ -1X   +  (r/M)
2I    -  (r/M)

2Jo   )
-1
 Xt σ -1                          

                                                                                                      

  =   ( I  -  (r/M)
2 (  Xt σ -1X  + (r/M)

2I  )
-1 Jo )

-1
(  Xt σ −1X  + (r/M)

2I   )
-1
Xt σ -1. Note

 (1, 0,...0) ( I   -   (r/M)
2
(  Xt σ -1X + (r/M)

2I )
-1Jo) = (1 - (r/M)

2
(Xt σ -1X  + (r/M)

2I )
-1

11)     

multiplied by (1, 0,...0) or (1, 0,...0) ( I  -  (r/M)
2 (  Xt σ -1X  + (r/M)

2I  )
-1 Jo )

-1  
equals

(1 - (r/M)
2
(Xt σ -1X  + (r/M)

2I )
-1

11)
-1 

(1, 0,...0). Applying this to the latter expression for G  we 

get first row of G  =  (1, 0,...0)G  = (1 - (r/M)
2
(Xt σ -1X  + (r/M)

2I )
-1

11)
-1 

multiplied by the first 

row of  (  Xt σ -1X  + (r/M)
2I   )

-1
Xt σ -1, which by the “exchange” identity is

(M/r)
2
(1 - (r/M)

2
(Xt σ -1X + (r/M)

2I )
-1

11)
-1

 times the first row of
 
Xt ( (M/r)

2 
XXt  + σ   )

-1
.

      Finally, since  Io (1, 0,...0)t   =   0,   the first row sum of  G is   (1, 0,...0)G  (1, 1,...1)t  =  

(1, 0,...0)G X (1, 0,...0)t  =  (1, 0,...0)( Xt σ -1X + (r/M)
2Io )

-1
 (Xt σ -1X + (r/M)

2Io ) (1, 0,...0)t

  = (1, 0,...0) I (1, 0,...0)t  = 1. Hence the first row of  G  is already properly normalized. QED
                                   

---------------------------------------------------------------------------------------------------------------------
                                                                              

             QP  may be used to minimize   LC (w)  by writing  wj = wj+  -  wj-,  changing  |wj|  to  

wj+ +  wj-  in the objective, including further constraints that wj+  and  wj-   are nonegative and  

treating A as a variable with the constraints  A > 0 and   A
2
 >   ||Σ  wjxj || 

2
 .
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                     For the exact case we could  find the LWR least squares fit of the data subject to  

the quadratic  inequality constraint  ata -  ao
2
  < (M/r)

2 
( which we have called “constrained” 

regression) that ensures the context assumption for (just) the linear family in V and compare  ao 

( contextual  LWR estimator ) to  F( w ) from Theorem II.  The estimators are not the same (ao is 

a nonlinear estimator). In fact we gave simple examples in section II-C where  ao is inferior to  

F( w ) no matter how we nontrivially weight the residuals . But penalized regression ( gradient 

regularization) is a linear method and has the same form as  F( w ) for estimating at the query 

provided the penalty ( ridge) parameter  λ = (r/M)
2
.  Note that this penalty parameter does not in 

general equal the Lagrange multiplier value µ for the appropriate constrained regression  ( where 

ata -  ao
2
  < (M/r)

2
)  even when the constraint is active    ( consider the first example of  section 

II-C when the data are ( .5, 0), (1, 1.5) ); λ = r = M = 1 but  µ = .25 ) .
 
              We give a simple application  to stock price prediction of ridge regression with the 

minimax interpretation presented here. Suppose our predictor data consists of vectors xj each of 

whose components are features like price/earnings ratio, % increase in sales over previous 

year, etc. at a past  time T for the j’th stock in a set of k securities. The observed response yj is 

the log of the ratio of the price of j at  T + ∆T to that at time T. Now we wish to estimate f(x), the 

expected log price ratio for a time  ∆T from now for a given stock of interest with current 

predictor vector x. We assume f(x) is (nearly) linear in x. Suppose the compounded change 

(trend) of each stock with predictor vector x is exp(µx∆T) = (mβx) ∆T where m represents the 

compounded change/yr. of the market as a whole and βx is the compounded change/yr. relative 

to the market for the particular stock. Financial theory argues that for very small time increments 

δ T the relative change in stock price δ S / S  is normal with mean µxδ T  and variance σx
2 δ T and 

then proves [19,p.275]  that the log ratio is normal with mean f(x) = µx∆T -  σx
2∆T/ 2 and variance 
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σx
2 ∆T for arbitrary time increments ∆T. In general we can apply our theory below with only  an  

upper bound on the covariance of the log  ratio for the family of stocks ( to appear elsewhere). 

For the moment just  assume the prices of the family of stocks  considered are approximately 

stochastically independent (for∆T > 3 m.) and have approximately equal volatilities σx = σ   which 

can be estimated.  It is reasonable to assume bounds on βx over time intervals ∆T = 1/4 - 1 year. 

Suppose we assume 1/ βο  <  βx  < βο. Then |f(x) - f(y)| < 2∆T ln(βο) and we apply the ridge 

regression above with  M = ∆T ln(βο). An analysis has been carried out with 6 dimensional 

feature vectors  ( to appear elsewhere, computational support provided by Boniface Nganga). 

We show a typical comparison of m.s.e. in predicting log ratio for the stock PDX using 83 similar 

stocks . The components of the predictor vectors were standardized and the predictor vector of 

PDX was subtracted from all predictor vectors. r = 2.886, σ2 = .102. Table 0 shows the ratio of 

m.s.e. bounds (efficiency) using Theorem II (exact linear case) for the usual estimator (M infinite)  

and the ridge estimator for 3 bounds βο on βx and 3 values of ∆T.

              Table 0     Efficiency

                    ∆T       1.00          .50           .25

           βο         

          1.82             1.09           1.17         1.31

          1.29             1.41           1.70         2.10

          1.20             1.70           2.09         2.55

               Next we give a solution to (3) in the exact linear case and an upper bound on mean 

                                                                         

squared error for the general case when the function f is known to take values in a given 

interval. Here the solution always differs from penalized or constrained least squares.

Theorem III  Use the same assumptions and the same notation as in Theorem II  except  that  C  is 

the condition:  f (V)  is contained in [v,y].  Let   C  =  C(w)    =     Σ wj  - 1     and   A  = A(w)  =   

 ||Σ  wjxj ||.    Then, if the true  f is linear in V (κ = 0 so ε( x ) = 0 ),  the  optimal strategy  (3) for 
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squared error loss takes the form 

    (5)    w  =  arg  min  [    w 
tσ  w   + ( max {  |(y-v)C/2 | , (y-v)A/2r   }  )2  ] 

                     

                              w                                                                                         

with  w*  =  -(v+y)C/2. Furthermore the quantity inside the square brackets is an upper bound on 
                                                                        
mean squared error for any suboptimal w.

         The following is an upper bound on mean squared error in the general (κ > 0) case for 

given w with w*  =  -(v+y)C/2 . It may be minimized in w to provide near minimax optimality.

                    LC (w)   =  w 
tσ  w   

+   B(w)

                                                                          

             with     B(w)  =              (  ((y-v)/2r + κr)A + κΣ |wj|  ||xj||
2
  )2         if  κr

2 
<  (y - v)/2  

    (6)                                           (  (2 κ( y - v ) )
1/2

A  + κΣ |wj|  ||xj||
2
  )2

      if  κr
2 

>  (y - v)/2

                                                                                      when  |C| < A max { 1/r , ( ( y - v )/2κ )
-1/2

}  

    

                                                   ( (y - v)|C|/2  +  A
2
κ/|C|   + κΣ |wj|  ||xj||

2
  )2

    otherwise  

--------------------------------------------------------------------------------------------------------------------
proof of Theorem III: Using the notation from the proof of Theorem I we rewrite (4) using the

basis of linear functions  as
                                                                  

  E ((F(w)-(f(0))
2
 | x1,... xk) =  w

t
N w  +  {Σ ai (Σ wj xj)i + w* + C ao + Σwj ζ (xj)}

2. 

                                                                        
For each fixed w we want first an upper bound on the maximum over a  of the absolute value of 

the quantity inside the brackets subject to (2) holding for a and some f satisfying  C . This we 

achieve by maximizing the magnitude of   Σ ai (Σ wj xj)i + C ao + w*  subject to (2) ( for some a 

and f  satisfying  C )  and  adding  κΣ |wj| ||xj||
2 

 to the maximizing magnitude inside the brackets.  

So we need to characterize a such that (2) holds for  the given  a and some f  satisfying  C  .  
                                                                          
(This is the associated classical real algebraic geometry problem.) Then we need to maximize the 

magnitude of   Σ ai (Σ wj xj)i + C ao + w*  over this set of a’s. The condition on a for which (2) 

holds for some f satisfying  C   is
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   | (a1,a2, .....,ad) * x |   <   min {  ao - v  +  κ||x||2  ,  y -  ao +   κ||x||2   }    whenever ||x|| < r .

This is equivalent to   || (a1,a2, .....,ad) ||    <    ||x||
-1

min {  ao - v   ,  y -  ao } +   κ||x||  

for  ||x|| < r . Now minimizing the right hand side of this latter inequality  over  0< ||x|| < r we get  

                                                                         

   || (a1,a2, .....,ad) ||   <   U(ao)    =  2( κ( ao - v ) )
1/2 

        v < ao <  min { (v + y)/2 , v +κr
2
 }

                                                        2( κ( y - ao ) )
1/2 

        max { (v + y)/2 , y - κr
2
 } < ao < y

                                                        r
-1

 ( ao - v )  +  κr         v +κr
2   <    ao    <   (v + y)/2

                                                        r
-1

 ( y - ao )  +  κr        (v + y)/2   <   ao     <     y - κr
2      

.

(This is the solution of the associated real algebraic geometry problem.)
                                                                   

            Now  to maximize the magnitude of   Σ ai (Σ wj xj)i + C ao + w*  over this set of a’s for 

given ao we pick (a1, .....,ad) with length U(ao) and pointing in the direction of  +  or -  Σ wj xj    

(+ if   w*  +  C ao is positive and - otherwise).This is equivalent to taking  the maximum of  the 

two quantities: ( A U(ao)  +  w*  +  C ao ), ( A U(ao)  -  w*  -  C ao ) .

          We now optimize over ao. Note that U(ao)  (hence also A U(ao)) is symmetric about ao =        

(v + y)/2 and has a decreasing continuous slope in (v , y) except at ao = (v + y)/2.  Let us first 

consider maximizing   A U(ao)  + w* + C ao:

                                                                             

          1.  Suppose C is nonegative but  <  A/r . Then if  κr
2 

<  (y - v)/2  the max occurs at 
 
              (y + v)/2 since the right hand slope of  A U(ao)  is -A/r  at this point  while if         

               κr
2 

>  (y - v)/2   the max still occurs at   (y + v)/2  since the right hand  slope of 

               A U(ao)  at this point is  -A( ( y - v )/2κ )
-1/2 

which is  < -A/r . 

          2.  Suppose C is nonegative but  >  A/r . If C < A( ( y - v )/2κ )
-1/2

then the max 

              again occurs at (y + v)/2. Otherwise the max occurs at  ao which solves

                                                                       

              C =  A( ( y - ao )/κ )
-1/2

.
      

( i.e. when C is just minus the slope of  U(ao) )

            Summarizing 1. and 2. and performing some easy but lengthy calculations when C > 0  
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      max  {A U(ao) + w* + C ao}   =  w* + (y + v)C/2   +      ((y-v)/2r + κr)A          if  κr
2 

<  (y - v)/2  

                                                         w* + (y + v)C/2   +      (2 κ( y - v ) )
1/2

A      if  κr
2 

>  (y - v)/2

                                                                     as long as  C < max { A/r , A( ( y - v )/2κ )
-1/2

}

                                                    =   w* +  yC   +A
2
κ/C                                 

                                                                

                                                                     as long as C > max { A/r , A( ( y - v )/2κ )
-1/2

}

         Suppose now C is negative. By  symmetry  the max is the value at (y + v)/2 given by the 

first two formulas above as long as C > min { -A/r , -A( ( y - v )/2κ )
-1/2

}.Otherwise  we  solve    

-C =  A( ( ao - v )/κ )
-1/2    

and obtain  w* + vC   - A
2
κ/C    as the max value.

       Now consider maximizing   A U(ao)  - w* - C ao. This is achieved simply by changing C to 

                                                                       
-C  and w* to -w* in the analysis for maximizing A U(ao)  + w* + C ao. After summarizing over all 

possibilities the following is an expression for the maximizing magnitude. 

         | w* + (y + v)C/2 |  +      ((y-v)/2r + κr)A          if  κr
2 

<  (y - v)/2  
                                          

         | w* + (y + v)C/2 |  +      (2 κ( y - v ) )
1/2

A      if  κr
2 

>  (y - v)/2

                                                                                         |C| < max { A/r , A( ( y - v )/2κ )
-1/2

}

       max { w* +  yC   +A
2
κ/C , - w* - vC   + A

2
κ/C }      C > max { A/r , A( ( y - v )/2κ )

-1/2
}            

                                                                 

       max { w* + vC   - A
2
κ/C,   - w* - yC   - A

2
κ/C }       C < - max { A/r , A( ( y - v )/2κ )

-1/2
}

Since w* is only present in these terms of the upper bound the optimal w* can be found at this 

point in the derivation before minimizing over w. Indeed for fixed w all four of the above 

formulas are minimized at w*  =  -(y + v)C/2. The last two formulas can now be simplified to:      

(y - v)|C|/2  +  A
2
κ/|C| . The bound (6) now follows easily and the solution in the exact case (5) 

follows by taking κ equal 0. QED.
---------------------------------------------------------------------------------------------------------------------
         To use quadratic programming first introduce the same variables and constraints for the 

objective function of Theorem III  as for Theorem II. Then choose the smaller of two minima of the 
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objective function - one with the additional constraint  A
2
 <  max { 1/r2 , ( ( y - v )/2κ )

-1
} C

2
 and 

one with A
2
 >   max { 1/r2 , ( ( y - v )/2κ )

-1
} C

2
. 

        As V is a ball about 0 and ε(x) = κ||x||2  the bounds of the preceding two theorems are 

invariant to rotations. 

                                                                         
     B.Scale Invariant Versions which may Outperform Shrinkage and Regularization;
                 differences from lasso regression

     We now give a version of our minimax results where V is a rectangular region containing  0  
                                                                         
and the predictors  { xj }. If V is dilation by a fixed factor of the smallest rectangular region 

containing 0 and the predictors, then the estimators in Theorems IV and V below ( in  the exact 

linear case and in general for certain  ε( x ) ) will be invariant to the scale of the design data and 

hence may outperform regularization and shrinkage methods (which weight components equally) 

in situations where the physical meaning of scale is not understood  while still maintaining the 

same high efficiency ( as we shall see in Sec. C) with respect to the standard and near neighbor 

methods. ( They are however no longer rotation invariant. The standard Gauss method is both 

rotation and scale invariant.) We use a general  ε(x) in a rectangular region V which ,for the 

approximate linear case, converts the associated real algebraic geometry problems into the 

types one encounters in linear programming. Because the following bounds are shown to be 

valid for a large class of  ε(x)’s they are not as sharp as the previous rotation invariant ones 

where   ε(x) = κ ||x||
2
.

 Theorem IV   Let the  parametric family be  f ( x ; a )  =  ao     +     ( a1, a2,.....ad ) . x . Let V  =     

[ m, m+r ] =  [m1, m1 + r1] x [ m2, m2 + r2 ] x .............. x [ md, md + rd]  be a rectangular region 

containing 0 and the predictors. Assume f(x)  is within ε(x) of some family member  f ( x ; a ). 

Use squared error loss. Let e be the maximum value of  ε(x) for x in V. C  is the condition that 

f(x) satisfies | f(x) - f(z) |  <  2M in V.

                     The following is an upper bound on mean squared error of  F(w) in the general 
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(ε(x)> 0) case for given w with  Σ wj  = 1 and w*  =  0. It may be minimized over such w to

provide an approximately minimax-optimal solution. 

                                 LC (w) =    w 
tσ  w   +   B(w)

                       with  B(w)    =   (2(M + e) max { | ( 1/ri )( Σ  wjxj )i | } + Σ |wj| ε(xj) )
2   

                               

                                                                    i       

If  f is linear in V (ε(x)= 0), the optimal strategy  (3) for squared error loss takes the form 

         w  =  arg  min  [  w 
tσ  w  +  4M

2
(max { | ( 1/ri )( Σ  wjxj )i | })

2  
 
  ] 

  ,        w* =0 .        

                           w                                       i                                                                

 where   wk  =  1   -    Σj<k  wj.

-----------------------------------------------------------------------------------------------------------------        
proof of Theorem IV:  We write (in a different parametric form where  hi(0)  is nonzero) f(x) = ao  

+  ( a1, a2,.....ad ) . ( x - m)  +  ζ (x)  with  |ζ (x)| < ε(x) in V. Note f(0)   =   ao  -  Σaimi . Consider 

 E ((F(w)-(f(0))
2
 | x1,...)   =   w

t
N w + {Σ ai ( (Σ wj xj)i - Cmi  ) + w* + Cao + Σwjζ (xj)}

2. 

Here C = C(w)  = Σ wj  - 1. Since there is no restriction on ao  the maximum over a’s satisfying 

(2) with f satisfying C will be infinite unless C =0 which yields the condition on wk. If  f satisfies 

C and (2) then for some a    
                                                                   

  |  ( a1, a2,.....ad ) . ( x  -  y ) |   <   |  ao   +   ( a1, a2,.....ad ) . ( x - m )   -   f(x) |   +                                     

       

              | f(y)     -    ao    -    ( a1, a2,.....ad ) . ( y - m ) |    +    | f(x)  -  f(y) |      <      2e    +   2M

for all x and y in V. (Unlike the case in the proof of  Theorem II  not all such a’s arise when we 

considers f’s that satisfy  C and (2). This set of a’s is a bit bigger than necessary  and  hence  

the result may  not  be as  “tight”  as that  in  Theorem II.)  The preceding set of inequalities in x 

and y  has the real algebraic geometry solution -    Σ |ai| ri   <  2(M + e) .   Now the maximum 

error for given w is obtained by  maximizing |Σ ai ri ( (Σ wj xj)i / ri) + w* | and adding Σ |wj|ε(xj) 
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to it inside the above brackets.  The solution is clearly to put all of the “weight”  |ai| ri = 2(M + e) 

on the component  i  maximized in the theorem statement and pick the sign of ai appropriately 

according to the sign of w*. Clearly this maximized quantity is smallest for fixed w when w* = 0.  
                                                                         
The upper bound  follows and the optimal bound in the exact case is proven by setting e = 0.QED 
-----------------------------------------------------------------------------------------------------
       The estimator of this theorem (and the next), found by minimizing the upper bound on MSE, is 

invariant to a change in scale of the predictors if ε(x) = h ( (x)1/ r1, (x)2/ r2,......(x)d/ rd  ) and 

the region V is the smallest rectangular region containing 0 and the predictors or a contraction or 

dilation by a fixed factor thereof.

              Under the latter condition with ε(x) = 0 consider generalizations of penalized  regression

  min (( Xa  -  Y)tσ −1( Xa  -  Y )  +   λ ( r1|a1|
q
   + ..... rd |ad|

q
 )       or constrained linear regression

  min  ( Xa  -  Y)tσ −1( Xa  -  Y )       such that      r1|a1|
q
   + ..... rd |ad|

q
  < s .  For q=1: s may be 

interpreted as the maximum oscillation of the linear target function in V; both are scale invariant to 

the predictors, are nonlinear in the y’s and are commonly referred to as lasso regression. Hence 

our linear method is fundamentally different from lasso regression. Since we have shown that 

ridge regression by  gradient regularization is locally minimax (expressing λ in terms of  M),we 

believe that the minimax method (exact case) of Theorem IV is the “correct’’ scale invariant  

analog  (not the lasso) of ridge regression by gradient regularization. In section II-C a simple one 

dimensional example was given where the minimax method outperformed constrained lasso.    
                                                                     

      For QP introduce the wj+ and wj-  and  their constraints in the objective function of Theorem 

IV exactly as for Theorem II. Then replace the max  term by variable A and add the 2d constraints 

A    >    +  ( 1/ri )( Σ  wjxj )i . 

                                                                                                                                          
  Theorem V   Assume the conditions of Theorem IV except that C  is the condition that  f ( x ) 

takes values in [v,y] for all x in V .  Let  C = C(w)  = Σ wj  - 1.  The following is an upper bound 

on mean squared error of  F(w) in the general (ε(x)> 0) case for given w with w*  =  -(v+y)C/2. 
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It may be minimized in w to give approximate minimax optimality.

             LC (w) = w 
tσ w  +  B(w)     with

 B(w) = (max{|((y-v+2e)/2)C - (y-v+2e)Amin|, |((y-v+2e)/2)C - (y-v+2e)Amax| }  + Σ |wj| ε(xj) )
2   

             

                                                                  
 where  Amin  =  min { ( 1/ri )(  (Σ  wjxj )i  -  Cmi  ) }     or  0   whichever is smaller , 

                               i

              Amax = max  { ( 1/ri )(  (Σ  wjxj )i  -  Cmi  ) }      or  0   whichever is greater. 

                              i
             

 If  f is linear in V , the optimal strategy  (3) for squared error loss takes the form w* = -(v+y)C/2,               
                                                                         

    w = argmin [w 
tσ w  +  (max { | ((y-v)/2)C  -  (y-v)Amin | ,  | ((y-v)/2)C  -  (y-v)Amax | })2]

                  w
------------------------------------------------------------------------------------------
proof of Theorem V: Again, as in the last proof, we write (in a different parametric form where  

hi(0)  is nonzero) f(x) = ao  +   ( a1, a2,.....ad ) . ( x - m )  +  ζ (x)    with  |ζ (x)| < ε(x) in V. Note 

now that f(0)   =   ao  -  Σaimi.  If  f satisfies C  and (2) with some a then that  a  satisfies  

                                                                           

                 v - e  <   ao  +    ( a1, a2,.....ad ) . ( x - m )    <  y + e    for all x in B.

(Unlike the case in the proof of  Theorem III not all such a’s arise when considering f that satisfy  
                                                                      
C  and (2). This set of a’s is a bit bigger than necessary and hence the result may not be as 

“tight” as that in Theorem III but it holds for a more general class of  ε(x) ‘s.)    Our algebraic 

geometric argument is now to write the preceding inequalities in x in the equivalent  form 

         Σ ri max {ai, 0}      <    y + e - ao        and          Σ ri min {ai, 0}      >   v  - ao - e . 

Now by some simple algebra we may rewrite (4) in terms of  the parametrization as 

 E ((F(w)-(f(0))
2
 | x1,..) =    w

t
N w  +  {Σ ai ( (Σ wj xj)i - Cmi  ) + Cao +  w* + Σwjζ (xj)}

2. 

                                                               

The bracket term will be bounded  by maximizing  |Σ ai ( (Σ wj xj)i - Cmi  ) + Cao + w* | and 

adding Σ |wj| ε(xj) to it inside the brackets. Now write the former as  |Σ ai ri Ai  + Cao + w* |  
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where Ai  = ( 1/ri ) ( (Σ wj xj)i  - Cmi ). (The idea of the construction is to attach all of 

the“weight” ai ri, which is either   y + e - ao or  v - e - ao , to at most two i’s. ) For fixed ao (lying 

in [v - e , y + e] ) the maximum is achieved by one of the following choices for (a1,a2, .....,ad) 

where at most two components are nonzero:

     1.   ai = ( y + e - ao)/ ri    for one i  when Amax  >  0  and  where i = arg max A i                                   

          ai = ( v - e - ao)/ ri     for one i  when Amin   <  0  and  where i = arg min A i                                    

         

          Otherwise   ai  = 0 .  ( If   Amax   or  Amin   is 0  then one or no  ai‘s  are nonzero. )

                                                                    

         Then the value is   | Cao  + w* + ( y + e - ao) Amax   + ( v - e - ao) Amin | .   

     2.   ai = ( v - e - ao)/ ri    for one i  when Amax  >  0  and  where i = arg max A i                                    

           ai = ( y + e - ao)/ ri     for one i  when Amin   <  0  and  where i = arg min A i                                   

         

          Otherwise   ai  = 0 .  ( If   Amax   or  Amin   is 0  then one or no  ai‘s  are nonzero.          

          Then the value is   | Cao  + w* + ( v - e - ao) Amax   + ( y + e - ao) Amin |  .  

Now we maximize each of the two values over ao and take the max of the max’s. Since what is 

inside  |  | is linear in ao we take the max over the following 4 quantities obtained by taking  ao  =  

y + e  in 1. and 2.  and then  ao  =  v - e   in 1. and 2.:

     | w* + C( y + e )  - ( y - v + 2e ) Amin |        ,       | w* + C( y + e)  - ( y - v  + 2e ) Amax |,                         

    | w* + C( v - e)  + ( y - v + 2e ) Amax |     ,         | w* + C( v - e )  + ( y - v + 2e ) Amin |

Since w* will only appear in the max of the preceding 4 terms we can determine it at this point: 
                                                                    
Indeed for any fixed w the max of the first and fourth such terms is minimized when w* is half  

way between the zeros of these two terms, i.e. at w*  =  -(v+y)C/2,  as is also the max of the 
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second and third terms.Using this w* we can reduce the max of the four terms to the max of 

            |((y-v+2e)/2)C - (y-v+2e)Amin|      ,           |((y-v+2e)/2)C - (y-v+2e)Amax| 

Adding Σ |wj| ε(xj)  yields the expression for LC (w) .  For the exact case we let  e = 0. QED.  

-----------------------------------------------------------------------------------------

    For QP write the objective  as  ( w+ -  w- ) 
tσ ( w+ -  w- )  +  ( A  +   Σ (wj+ +  wj-)ε(xj)  )

2

and minimize subject to  wj+ > 0,      wj- > 0,         A  >  - ((y-v+2e)/2)C  and  A  >  ((y-v+2e)/2)C,

 A  >  - (y-v+2e) {C/2  -   ( 1/ri )(  (Σ  (wj+ -  wj-) xj )i  -  Cmi  ) }   and

 A  >   (y-v+2e) {C/2  -   ( 1/ri )(  (Σ  (wj+ -  wj-) xj )i  -  Cmi  ) }   for  i= 1,2,..d.  Here  C = C (w)   

=   Σ (wj+ -  wj-)       -      1 .

        C.The Predominance of  Examples with  High Relative Accuracy of  the
             Contextual  Linear  Estimators  Compared to Standard Least Squares or 
            (in cases where scale is poorly understood) Regularization Methods

            We will now show that in high dimensions there are many locally  linear situations for 

which the  minimax estimators of Theorems II, IV (exact case) are much more efficient than both 

standard  least squares  applied to a set of  k  “close” points ( which is also the local Kriging 

estimator with  the exact local linear model) and the near neighbor average estimator ( which is 

the case of  wj  = 1/k ). Here relative efficiency is given by the ratio of mean squared errors 

without the unbiasedness restriction.(The same advantages can be shown for Theorems II, III, IV 

and V  in  approximately locally linear cases  if ε(x) is sufficiently small.)  We start with a simple 

artificial example for the close predictors whose construction leads to a large class of examples:

          Assume i.i.d. gaussian noise of unit variance and an  exact linear model in  R
d
  with 

oscillation bounded by 2 for x in the unit ball V.The predictor data falls into d groups, the first  d-1  

of which are described as follows - group i contains two vectors whose components are 0 

except for the i’th for which the values are 1and 1 - d
-1/2 

respectively. The d’th group consists of 

2s vectors whose first  d-1 components are 0 and half of whose d’th components are 1 and  the  

                                                                       34



other half  of  whose  d’th components are 1 - d
-1/2

. Note that for large d and large s the least 

squares predictor at 0 for the simple regression problem with the data of group i (i<d)has a (in all 

cases) variance  ~ 2d  while the corresponding estimator S for the d’th group has a (in all cases)

variance ~2d/s .( See [27] p. 11, equ. 3.8). So one might say that subproblems i (prediction from 
                                                                             
data in group i ) are “extremely hard” for i<d and subproblem d is only “moderately hard”  if s~d/2.  

      Now let us consider the mean squared errors of the 3 competing estimators. For the near 

neighbor average we plug w’j  = 1/(2d+2s -2) and our predictor data into the expression w’
tσ w’ 

 + ( MA/r )2  
 of Theorem II ( with r = 1, M = 2 )  to get a mean squared error ~ (18d -18 +16s2)/

(2d+2s -2)
2
, which is ~4/9 for s ~ d/2 . ( From the proof of Theorem II this bound is achieved.)

                For the standard least squares formula , using the facts that the weights satisfy the 

conclusions of Theorem I with ε(x) = 0 (recall the discussion in section II-A-3) and that the 

support subspaces of the d subproblems are orthogonal, one sees first that the weights 

associated with the design points in each subproblem satisfy  the constraints (1) for that 

subproblem except possibly the normalization constraint. Now if the design matrices of the 

subproblems all have full rank ( which holds for our example and in general with probability one 

when 2d+2s-2 such points are chosen at random wrt. an absolutely continuous measure) we 

may alter the weights by arbitrarily little so that the sum of the weights in each group is nonzero, 
the total sum remains unity and the other null constraints continue to hold for each group. We 

may now write the overall variance of the slightly altered estimator as

       Σ      Σ  wi
2
           =        Σ   αj

2 Σ  w’i
2
           where       Σ αj   =  1     

         j           i in group j                       j            i in group j                               j

and the  w’i in group j satisfy all the constraints (1) for that group. Now we may alter the  w’i  to 

                                                                 
make the inner sums as small as possible subject to the constraints. Now we minimize over the 

αj and the result is still arbitrarily close to the original minimum overall variance. Applying this 

                                                                                                                                          d-1

procedure to our particular subproblems we see that the overall   variance is   ~    2d Σαj
2
  +   

                                                                                                                                            1
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              d-1                                                                                                                        

2d( 1 -    Σαj
 
)
2
/s      which is greater than or equal  (by the Cauchy-Schwartz inequality)

                1
                             d-1                              d-1

        (2d / (d-1))(  Σ αj   )
2
  +   2d( 1 -    Σαj

 
)
2
/s      which is always greater than one if s < d.   

                               1                                 1

             Finally we give an upper bound on the mean squared error of the estimator of Theorem II 
                                                                       
by using weights  w’j  = 1/(2d -1) for the 2d-2 vectors in the first d-1 groups and weights given 

by   1/(2d -1) times the weight of the vector in the standard linear predictor S of  f(0)  for the d’th 

group. Denoting this estimator by  E  we may write 

          E   -  f(0)      =        ((2d-2) /(2d-1)) (W  - f(0) )   +    ( 1/(2d-1) ) ( S  - f(0) )

where  W  is is the estimator corresponding to weights 1/(2d -2) for the 2d-2 vectors in the first 

d-1 groups.  By plugging into the expression    w
tσ  w  + ( MA/r )2  

 of Theorem II ( with r = 1, M 

= 2 ) we see that the MSE  bound of W is ~ 9/(2d - 2). From the unbiasedness of S and its 

independence from W we get a bound on mean squared error for E  ~  9/(2d - 2) + 2d/s(2d - 1)
2
 .

So for appropriate choices of s the minimax estimator is O(d) more efficient than either 

local least squares or the near neighbor average. We note that if, in Theorem IV with V the unit 

cube, we use the expression w
tσ  w  +  4M

2
(max {| ( 1/ri )( Σ  wjxj )i |})

2 
to bound the mean 

                                                              

squared error of W  we would get  ~ 1/ (2d - 2)  +  16/ (d - 1)
2
 so that  the bound on MSE of E 

would be ~ 1/ (2d - 2)  +  16/ (d - 1)
2  

 +    2d / s ( 2d - 1)
2
. Hence the same advantages would 

apply to the scale invariant  local minimax estimator of Theorem IV.

      Now the existence of many more such examples is clear : if the predictor data can be 

partitioned into(nearly)orthogonal groups with most groups providing a very difficult prediction 

problem and a few furnishing a moderately difficult  challenge, then we may “weight” the 
                                                                          
subproblems appropriately to show that the rotation invariant minimax estimator may perform 

much better than the other two popular methods.

      Shrinkage and regularization( which includes principal components, partial least squares and 
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continuum regression; see [41], [42].)  are used to reduce dimensionality and hence increase 

accuracy when the relative magnitudes of the data coordinates are understood in physical or 

other scientific terms.  But when  the relative scales of the data components are collectively 

poorly understood as in many learning situations shrinkage and regularization become totally ad 

hoc. But our scale invariant versions will still have the same predominant improvement in 

accuracy over standard least squares when we combine regression problems as above but this 

time with disjoint supports instead of orthogonal supports(distinct components for each problem).

      Finally note that if the moderately difficult subproblems described above have significant 

nonlinearities while the predominant difficult subproblems had only small nonlinearities then the 

local minimax estimators would again have similar significant advantages so that one  expects 

significant robustness in the minimax solutions to high dimensional problems with context.

V. Using Boosting and Greedy Additive Expansions to estimate ε(x) and obtain   
                          local minimax estimators     

       We divide (jacknife) regression data into two groups - to the first we apply a machine 

algorithm which gives us a global estimate of the form (#) of the function to be learned (or 
                                                   N

         (#)                 f(x)     ~     Σ    cn gn( an
t
x )  

                                                   1                           perhaps an estimate of the f                      orm (             

w22222#) with different weights cn in different regions so as to 

perhaps an estimate of the form (#) with different weights cn in different regions so as to 

emphasize approximation accuracy in a weak neighborhood of 0  as in [22] ); now from the data 

in the second group we obtain a local estimate and accuracy bound which uses information 
                                                                   
learned from the first group by the machine. We derive a distance measure and modulus of 

accuracy which forces near linearity of the target function at close points and for which there  

may exist sufficiently many such close points.This should hold if the expansion is parsimonious, 

most of the gn(an
t 
x) are nearly linear, or (#) has much near redundancy in the projection 

directions. This distance measure appears to be robust in that  it changes little  when the model 

estimate varies. This can be made more precise in the following development:
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         We will only treat the case where the g’s in the expansion are functions of a one 

dimensional projection. The more general case could be similarily carried out as in the case of  

tree boosts but because partitioning reduces effective sample size we believe the fusion 

methods of the next section are more appropriate for tree learners, especially for Breiman’s 

random forests.Suppose f can be expressed (locally) exactly in the form (#) where the an are 

unit vectors. Consider kn , called the n’th coefficient of nonlinearity, as the smallest  constant 

such that the following local univariate approximation bound holds  for   cn gn(u)  -  

                    | cn gn(u)  -  bu - s |   <    kn u
2   

for some b,s and  -uo  <  u  <  uo .

                                                                        

Such a  kn always exists if  gn”(u) is continuous which we assume. If the predictor data has 

been sphered so that the sample covariance is the identity matrix, uo might be chosen as 2.0 ,for 

instance, so that the above inequality would hold for a high percentage of the projected data  uj  

=  an
t 
xj . The smaller  kn  the more linear cngn(u)  is and the larger the  components of “close” 

points may be in the an  direction.

Lemma I : Let  D( 0, x )  = { Σ kn (  an
t
x )

2 
} 

1/2
. Then f satisfies (2) for the affine family in   

V   =  { x : |an
t
x |  <  uo for n = 1, 2, ....N.}  where the modulus of accuracy ε(x) = D

2
( 0, x ). 

------------------------------------------------------------------------------------------------------------------

proof of Lemma I :  Determine bn, sn such that   | cn gn(u)  -  bnu - sn |   <    kn u
2   

for   

uo  <  u  <  uo. Then | f(x)  -  ( s1 + s2 + s3+.....   + b1a1
t
x  +  b2a2

t
x  +  b3a3

t
x  + .....) | <

| c1 g1( a1
t
x)     -    b1a1

t
x   -    s1 |  +   | c2 g2( a2

t
x)     -    b2a2

t
x    - s2 |     +      ........     <

                                                                 

k1 (  a2
t
x )

2    
+    k2 (  a2

t
x )

2  
  + ..........    =       D

2
( 0, x ).     QED.

---------------------------------------------------------------------------------------------------------------------
         Hence for regression predictor data in V  the local estimators and accuracy bounds from 

Theorem I  ( with the affine family and V = V ) or Theorems IV-V ( with V C V ) may be used with 

ε(x) = D
2
( 0, x )  if we can estimate D(0, x) and V. We propose the estimators 
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      D*( 0, x )  =   {   Σ kn*(  a*n
t
x )

2  
} 

1/2
,    

   
V *  =  { x : |a*n

t
x |   <  uo for n = 1, 2, ....N. } ,

                                                                                                                 
where   kn* and a*n come from the machine learned global (weak neighborhood) estimate of  f  

based on the first data group. One would expect  D* to be quite close to  D but this relationship 

requires further study. One only needs D* to be within a moderate factor of D. 

            We have shown that greedy additive expansions produce an ε(x) for local estimation. If   

there are only a few ridge directions in the expansion for which the corresponding ridge function 

is significantly nonlinear then ε(x) is small for the (many) predictors that are nearly orthogonal 

to these directions and hence local estimation will not suffer (as much as say for radially 

nonlinear functions) from the curse of dimensionality- i.e. we can expect a significant number of 

predictor data with small ε(x). When ε(x) is small for the predictors we get nearly the same

efficiency( in the squared error sense) as with linear estimation as the theorems II-V  indicate. 
           
  VI.    Fusion of Local Estimators ; Improved  Estimation for Classification and 
                                        Regression Forests 
           A.Combining the local estimators of a class of (possibly corrupted) experts,
                               Overcoming the Curse of Dimensionality  
 
          In this chapter (and only here) we assume exclusively the random predictor-response 

regression model, with xj = Xj and (Xj , Yj ) i.i.d., and want to learn f(0) = E(Y | X=0) by combining 

various conditional expectation estimates of Y from the data. Because many or all of these 

estimates are conditioned only upon information about projections of X we may only be able to 

learn a weighted sum of E( Y| X ε A i) for some maximally “informative” collection { A i}. We try to  

make this clearer with the description and  random forest example that follow.  

        Suppose we have m experts, each with a model chosen independenty of the training data, 

who attempt  to (approximately) solve  (3) as follows:  Expert i chooses a neighborhood  U i in

Rd of the query 0 and considers only the training predictors xj belonging to V i.V i has the form of 

a cylinder in Rd generated by a neighborhood Ui of 0 in a di dimensional subspace Ai of  Rd , i.e.

U i consists of the set of all points whose orthogonal projection onto Ai lies in Ui. The expert then 

considers  local minimax estimation of fi(0), where  fi(x) := E (Y | the projection of X onto Ai is x), 
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using the predictor data whose projectioins onto Ai lie in Ui . He then applies one of the optimal 

bounds in Theorems I - V using the affine family of approximands with his own εi(x).  Let N i  be 

the set of indices of the predictors in U i. Denote by {xij} the projections of  predictors in U i onto 

Ai (which  lie in Ui ). We  write Yj  = fi(0)  +  ai . xij  +  ζ ij  +  N
i
j    where j varies over the indices  

in N i. The error in the affine representation of  fi  at predictor xij , ζ ij, is assumed to be bounded 

in absolute value by  εi(xij)  (which would be κi||xij||
2
 if he is using Theorem II or III); εi could be 

chosen either by appropriate modeling or large enough to include low dimensional nonlinear 

submodels since the results would then be robust to the size of the nonlinearity as  in the road 

roughness examples.                                                                      

          Now  let’s assume that the target function fi(x) satisfies appropriate conditions in a set Vi 

(containing {xij} ) of one of the theorems I-V and expert i uses an estimator 

             Fi  = w*i +  Σj wij Yj           ( wij  =  0 if  j is not in N i ), where the w*i, wij  satisfy the   

appropriate constraints guaranteeing the error bound     LiC (wi)    =    wi 
tσ  i wi      +     Bi(wi)          

of Theorem I  (where   Bi(wi) =   R(wi)), orTheorems II- V. Each σ  i is diagonal and is an 

upperbound in the semidedinite order for the diagonal covariance N
i
. Denote by σ

i
j  the bound on 

the standard deviation of  N
i
j. Hence we are fixing the constraints of expert i according to the 

corresponding theorem but we do not further require that he minimize his own error bound 

leaving open the possibility of jointly optimizing a bound obtained by combining (fusing) the 

experts.   

       Before comparing and combining the experts’ accuracies  we need to compare their degree 

of conditioning with respect to the query. An expert who takes Ai  =  Rd is estimating f(0) while 

another who chooses Ai  =  R2  is (possibly more accurately) estimating Y conditioned on a d-2 

dimensional event.  We assume an information measure I(A) is defined on subsets A  containing 

the query. The appropriate A  for expert i  is A i = { x:  the projection of x onto Ai is 0 }. Indeed he 
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is estimating fi(0) =  E( Y | X ε A i ). We use I (A i ) = di + 1 = codim (A i ) + 1 = dim (Ai) + 1 but 

others may also be justified. By convention, for di = 0 (Ai = {0} ), the expert estimates E(Y). So in 

this case there is one unit of conditioning information. 

        Since we are combining experts an extension of the concept of the conditioned event 

A  is a probability measure P on the class  of such events. Now define conditional expectation   

E ( Y | P ) =  S  E( Y| X ε A ) dP (A ) and information  I (P ) = S   I(A) dP (A ) via expectation with 

respect to that measure.The conditioned event P  is synonomous with the measure itself and is a 

random choice of  A  with respect to the probability measure. Finding exact mathematical 

requirements for the validity of this proposal is an interesting question; we justify the method in 

our setting as follows: We put a finite discrete probability measure α on the subsets having 

probability αi for event A i  (with  αi > 0 and  Σαi  =  1). Then E (Y |  α )   =   Σ αi E ( Y | X ε A i ).  

Now the degree of conditioning of (a “master” expert who estimates) this quantity  is the 

extension of I(A) to the space of probability measures specified given by I (α) = Σ  αi  I (A i ). 

The goal is to  estimate a conditional expectation with high information and with high accuracy.
  

           We consider the accuracy question first. Let  F  =   Σ  αi Fi   for given probabilities αi .                  

Write the mean squared error E { ( F - E (Y | α))
2
 } as follows- 

   E { ( Σi αi ( Σj wij ai . xij   +  ( Σj wij   -  1)fi(0) + w*i    + Σj wij ζ ij    +  Σj wij N
i
j )  )2 }.

                                                                                                                            
Now  the sum of the first 4 summands ( out of 5 total) in the coefficient of  αi  above  is bounded 

in absolute value by   Bi ( wi ) 
1/2 

. This follows by examining the bracket term in (4) for the  

regression case  in the proof of the appropriate Theorem I, II, III, IV or V.  Taking the expectation 

above, using the mean 0 property of each  N
i
j , one obtains a bound on this expectation given by

                                                                

         E { ( Σi  Σj Σr  Σs  αiαrwij wrs N
i
j N

r
s ) }       +   ( Σ αi   Bi(wi) 

1/2  )2 .
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Apply the independence and only the terms with j =s remain. It is now routine  to see that the 

expectation is bounded by

 E { ( Σi  Σj Σr   αi αr |wij| |wrj| |N
i
j| |N

r
j| ) }  +   ( Σ αi   Bi(wi) 

1/2  )2  which by the Cauchy 

inequality is bounded by    ( Σi  Σj Σr   αi αr |wij| |wrj| σ
i
j σ

r
j )    +   ( Σ αi   Bi(wi) 

1/2  )2 .

Hence the mean squared error for the estimate of  E (Y |  α )  is bounded by

            G(w, α) =   Σj  ( Σi   αi  |wij|  σ
i
j  )2   

 +   ( Σ αi   Bi(wi) 
1/2  )2 .

If expert i uses Theorem I  the above result holds also when he uses a model involving  nonlinear 

functions of xij - i.e.  Yj  = fi(0)  +  ai . h(xij)  +  ζ ij  +  N
i
j  ; in fact it clearly  holds for any such   

(linear or nonlinear) case where each expert i limits himself to affine estimators  Fi  for which the 

worst  bound on squared bias has a known form  Bi(wi), e.g. as will be with Theorem VI  where

Yj  =   g(xij)  +  ζ ij  +  N
i
j   with  fi(0) = g(0) for g in a ball  of  a reproducing  kernel Hilbert space. 

                 So one solution to the fusion problem would be to minimize the sum of  G(w, α) and a 

penalty term which is a suitable convex increasing function of the quantity 1/ I (α).         

                (B)                                     min                       G(w, α)  +  h(1/ I (α))                                               
 

                                           α: Σαi  =  1,    0 <  αi  
      wi constrained by appropriate theorem, wij   = 0  if  j  does not lie in Ni 

The objective function in (B) is not jointly convex in w, α but is convex in each with the other 

fixed so alternating convex minimization methods could be applied. For the two class probability 

of class 2 problem  we propose a form for h which is a function of w and α (so  (B)  is no 

longer biconvex): Let F be truncated to always take values in [0, 1]. The bounds on mean square 

error clearly remain valid. Let λ be  positive and β  be a small positive number in (0, 1). Then the 

penalty h is given by
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                                                                                                               1 / Fβ
(1- F)

β    

              h   =    h ( 1/ I (α), w)        =        λ ( 1/ I (α)    -     1/(d+1) )                             .

 When  F is very close to 0 or 1 the penalty becomes very small and  G(w, α) dominates the 

minimization. This is justified by noticing that, if F is sufficiently close to 0 or 1 and the error 

bound  G(w, α) is sufficiently close to 0, then F is close to f(0) with a probability nearly one. On 

the other hand, if F sufficiently far from 0 or 1 and β is sufficiently small, then the penalty term is 

essentially  λ ( 1/ I (α)  -   1/(d+1) ) where λ  represents the information-accuracy trade-off 

coefficient.

              It is assumed in the analysis that each expert has a correct model. We now derive a 

solution to the fusion problem when each expert’s model may be wrong with a small probability 

πo (independent of other experts and the predictor data it is applied to). Assume each expert 

uses one of the models of Theorems I - V. Then a corrupted expert can be modeled simply by 

changing his εi(x) to an appropriate default εi*(x). For the two class problem this default εi*(x) 

will be set equal to 1 except at x=0 where it is 0. In the following, if expert i is incorrect then use 

the above default εi*(x) and write the bias term in his bound as  Bi*(wi). ( These * bias terms are 

are explicit for Theorems I, IV and V  but may be easily derived in the other two cases. Recall he 

chooses a model independent of the data xij. )  Then  G(w, α)  becomes 

     Σj  ( Σi   αi  |wij|  σ
i
j  )2 

   +  (Σ αi  Bi(w’i) 
1/2   

 +  
 Σ αi  Ji ( Bi*(w’i) 

1/2  -   Bi(w’i) 
1/2 ))2

where the random variables Ji are i.i.d. Bernoulli (πo).Taking the expectation we get the bound  

G*(w, α) subject to corruption wth probability πo:

 G*(w, α)    =     Σj  ( Σi   αi  |wij|  σ
i
j  )2       

 +     πo (1-πo) 
 Σ αi2  (Bi*(w’i) 

1/2  -   Bi(w’i) 
1/2 )2

                                                        
 +     (Σ αi  Bi(w’i) 

1/2   
 +   πo Σ αi ( Bi*(w’i) 

1/2  -   Bi(w’i) 
1/2 ))2  .

Then  G*(w, α)  is used in  (B)  to obtain the fusion bounds and estimators under 
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corruption, which may be computed as functions of πo to provide an operating characteristic.

Furthemore one may deduce easily from theorems I, IV,V  that, if each εi(x) is bounded above by 

the default εi*(x),   Bi(wi) < Bi*(wi) and   G*(w, α)  is increasing in  πo. ( For the two class 

problem this is the case provided that  εi(x) < 1.) So a solution for  πo will produce a bound for all 

smaller  πo as well. Hence in practice we need only bound  πo above.

         The fusion solution under corruption provides a method of potentially overcoming the curse 

of dimensionality: Imagine that each expert  presents an analysis of a coresponding feature for a 

very large set of features. Suppose there are a moderately large number of truly predictive 

features and one feature that appears more predictive than the others in the training data but that 

does not generalize. Such spurious features will occur for a fixed sample size with higher 

frequency as the dimensionality(number of features) increases. An exhaustive analysis of all 

features with respect to the training data may yield the spurious feature (this feature might also 

dominate in (B)  ). But our corrupted version will prevent any feature from having too much 

influence. This is also a main idea in Breiman’s random forests [6] where the weighting of the 

experts is uniform. Our theme is to find an optimal weighting while protecting against 

overweighting any one expert.

    B. Random Forests for Microarray Classification  
                                            
                          Tree learners [5,6] can be viewed as piecewise linear function estimators 

where a linear piece may be viewed as an expert:  First  a  linear  feature  is  chosen  and  the
                                                                       
training  data  is  divided  optimally  into  two  groups  by  binary   thresholding  the  values
                                                                        
under the feature mapping of the predictor vectors in the training set  by optimizing some 

splitting criterion ( such as the Gini criterion below). Each of the two groups is then split by 

choosing a new splitting feature and then optimally dividing, etc. A group is not split further when

the responses of the members are sufficiently close (in some distance) to a mean, median or 

other linear fit of the responses of the whole group, where the fit uses  the splitting features  
                                                                    44



which define the group. For instance, in our probability of class membership example,  where the 

responses are 0 or 1 we might stop splitting only when the group ( also called a node of the 

tree) has responses all 0’s or all 1’s. This occurs when the Gini criterion is used: For each node 

S0, the Gini index G(S0) = 1- po
2  - p1

2  where  pi  is the relative frequency of response i in G(S0).

For a given threshold, yielding groups S1 and S2, the Gini criterion is (n1G(S1) + n2 G(S2))   / no  

with ni  = #Si. This is then minimized over possible thresholds. Once the Gini criterion is not less

than G( S0) for any threshold it can be proved that the node must have responses all 1 or all 0. 

        Once the tree is constructed (no more splitting possible) a test vector is run down the tree 

using the various features and thresholds applied to the test vector until it lands in a terminal 

node. The value for the test vector is the linear prediction at the test point furnished by the linear 

fit for the node. In our example using the Gini criterion below it is the common value for the group  

since the linear fit of the responses we actually used had weights summing to one.        

      Because trees partition the sample data into many nodes, each consisting of a much smaller 
                                                                         
subsample, they often generalize poorly since a locally linear prediction is based on the smaller 

subsample. Random forests [6] generate many trees( a forest) each constructed by choosing 

optimal splitting features at each node from a random subset of features( of a predeiermined size 

and structure for all of the trees in the forest). A test vector is run down the trees in the forest  

and the average of the terminal predictions( in our example the common nodal values) is used as 

the estimate. In the classification case one chooses class by taking the majority vote of the trees. 

Although the optimal classification is often achieved the average vote may inaccurately estimate 
                                                                             
the probability of correct classification, a quantity that is of primary interest in medical diagnosis 
                                                                      
and treatment of disease. Also in the general regression case Breiman has mentioned that more 

accurate estimators than a simple average need to be developed. (We believe that we have 

solved this problem with our fusion estimators (B) and  versions for corrupted features.)

        For a given query vector we may view the prediction furnished by the terminal node of tree  

i  as that of expert i.  Let di is the depth of the terminal node of tree i . Ni is the set of predictors 
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in its terminal node and  Ai  is the di dimensional subspace spanned  by the features defining the 

node and  Ui  is the neighborhood in Ai characterized by the thresholds defining the node.                         

        We now will apply the above (B) to our probability estimation setting. Since the responses 

and predictors have already been used in the trees’ construction the results would, strictly 

speaking, hold only for new training predictors and responses which were independently 

generated. So if we divide the predictor data into two (equal) subsets,forming the trees with one 

and running the others down the trees, then form  the various Ni from the latter, we may fuse 

these experts. With many dimensions and a large forest, spurious features  may yield an 

occasional tree that incorrectly models in  the terminal node for the query but that has a very 

low error bound. So we modify (B) for corruption.  

        In our preliminary experiment we use the full sample (with the test point left out), basing the

prediction on the same x’s used to grow the forest, in order to demonstrate the technique with a 

very small data set. We apply the techniques to microarray data from the University of Pittsburgh 

simulator. Sixteen patients, the first 8 in Group A (1) and the second 8 in Group B (0), provide 

arrays ( 120 dimensional feature vectors) each providing  fluorescence measurements of the 

same 120 genes. Twenty of the genes were differentially expressed ( had mean difference 

between groups, Table 1 gives the fluorescences for these 20 to 2 significant figures). The 

remaining were randomly generated with the same distribution for each group. For each of the 

16 patients 12,500 trees were generated using the remaining 15 patients. At each node a 

random subset of features consisting of 8 components ( genes) was used and the component 

yielding the smallest possible Gini criterion was chosen as splitting feature. The  vote as a 

fraction of class 1 votes for the whole forest is given in column 1 of Table 2. ( Software for 

random forests  was developed by Len Russo.) 
     

                                                                 46



     Table 1          G roup    A                                                      Group     B                      
   3.9   -1.9    5.6    9.9    9.9    7.5    7.1    7.6         11.   11.   11.   12.   11.   11.  12.  12.
    28.    24.    27.    31.     31.   20.    23.    25.         15.   18.   15.   15.   18.   17   17  17
   15.    16.    12.     24.    18.    15.    26.   13.          12.   10.    9.6  9.9   9.6   10  10   10              
   34.    28.   28.      32.    34.    37.    25.   24.          22.   22.   22.   20.   21.   22  21   22
   32.    29.   31.      32.    32.    25.    36.   25.          24.   25.   22.   24.   23.   24  24   24
   26.    34.   21.      21.    29.    22.    20.   20.          18.   18.   20.   19.   19.   18  18  19
   14.    5.0   11.      16.    4.8    11.    12.   4.7          15.   17.   16.   16.   17.   16  17  17
   26.    27.   28.      19.     16.   26.    32.   19.          15.   16.   15.   15.   17.   15  16  15
   25.    28.   19.      29.     27.   27.    24.   28.          28.   28.   29.   30.   30.   30  29  30
   32.    31.   28.      26.    36.   26.    39.   36.           24.   25.   22.   23.    24.   24  24   25  
   16.   16.    25.     19.      29.   27.    20.   21.          14.   14.   14.   13.   14.   12  15   12
   29.   19.    17.     18.      21.   20.    16.   30.          31.   31.    31.   32.   31.   32   31  29
   26.   17.    17.     13.      27.   21.    27.   29.          15.   16.   15.   14.   17.   14   14  13
   11.   15.    11.     19.     8.6    10.    12.   19.          22.   22.   20.   23.   21.    21  22   21
   13.    8.5    9.1    18.     9.0    8.6    17.   13.          20.   20.   18.   23.   20.    20  20  20
   28.    27.    33.    33.     29.    26.    23.   23.          20.   19.   19.   21.   20.    24  20   23

   19.    17.    16.    24.    10.    18.     20.   24.          26.   25.   24.   24.   25.    26  26  26
   17.     5.      9.     21.      5.    14.     14.   11.          20.    20.  19.   22.   20.    20  22  19
   28.   23.    35.    31.     26.    29.     26.   31.          22.    22.   21.   23.   21.    21  23  22
   22.   17.   17.     19.     28.    22.     20.   25.         16.    16.   16.    14.   16.    16  15  15            

       As is explained in [7] random forests work well when there is a “high” probability that  a   

“strong” variable  ( in our example one of the 20  components with group mean difference) is 

chosen at some node while there is a “small” probability that only “weak” variables ( the 

remaining 100 components) are selected at every node. We add to this reasoning that in small 

sample problems there is nonnegligible probability that one of the weak components will be 

spuriously strong ,i.e. exhibit a good but meaningless separation ( of the 16 patients) by chance 

at some node. This could however only occur in a ( nonnegligible but) relatively small fraction of 

the forest. By considering corruption of experts we account for this influence.

      Carrying out the optimization with  (B) for practical datasets will be continued in further work. 

Here we omly give an initial set of weights for (B) (corrupt version) for the constrained  

optimization and compute the terms in the objective function:Let πo = .02 be probability of  corrupt 

expert, take σ =.25I  and (for fast computation)  use  the linear solution wi of Thm. II (M=.5) ; so 

Bi(wi)
1/2  

 = (2ri)
-1

 ||Σ  wij xij ||  and it is easy to get the bound  Bi*(wi) 
1/2  =  Bi(wi) 

1/2 +  Σ |wji| .               

( ri  is the  distance to the furthest  xij , πo  was an estimate of the probability of a near perfect 

separation for at least one noise gene in two random subsets of 8  genes). For thresholds .06, 
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.055,.05,.045,.04,.035, we thin the  forest grown for each patient q ( forming an “orchard” ) by 

removing those trees for which the  full bound in Thm.II applied to the terminal node exceeded the 

threshold. We find .04 to be the smallest threshold such that each corresponding orchard 

contained at least 100 trees. Then, for the orchards corresponding to .04, we use the uniform 

weighting for the α’s in each bound as starting point for the optimization. (The next step would 

be to  perform alternating steepest descent using all of the trees in the forest.) The resulting 

estimates and bounds appear in Table 2. The “forest” column is Breiman’s average estimate.The 

“fusion” columns represent F, the probability estimate, and G*(w, α), the associated square error 

bound under corruption in (B). h is the penalty value based on the degree of conditioning and F.

Table 2        Probability of Group A membership            Local Sq. Error Bound                 Patient

 λ = .1,  β = .25    forest    fusion     kernel                       fusion            h            kernel   
                                                                           
                             0.86      1.00        0.87                         0.042        0.000         0.064                1
                             0.91      0.88        1.00                         0.034        0.029         0.066                2
                             0.89      1.00        1.00                         0.043        0.000         0.061                3
                             0.86      1.00        0.87                         0.042        0.000         0.086                4
                             0.79      0.89        0.96                         0.035        0.028         0.063                5
                             0.89      0.89        0.86                         0.035        0.028         0.054                6
                             0.86      1.00        0.90                         0.042        0.000         0.056                7
                             0.95      1.00        1.00                         0.042        0.000         0.070                8
                             0.18      0.20        0.10                         0.031        0.033         0.038                9
                             0.15      0.08        0.08                         0.037        0.026         0.039               10
                             0.17      0.00        0.05                         0.042        0.000         0.040               11
                             0.09      0.00        0.06                         0.042        0.000         0.039               12
                             0.13      0.00        0.01                         0.042        0.000         0.042               13
                             0.17      0.00        0.02                         0.042        0.000         0.042               14
                             0.11      0.00        0.00                         0.042        0.000         0.042               15
                             0.07      0.07        0.01                         0.037        0.025         0.041               16

VII. Estimation for General Nonlinear Functions: Error Bounds and Improved                   
                          Estimators for Kernel Vector Machines

      Although many naturally ocurring situations can be handled by the contextual estimators of  

section IV, there are cases that do not fit those described in section IV-C. So we apply our 

proposal to the more general vector machine model: If a dictionary of functions  is the set of 

translates of a kernel  K x’  =  K ( x’,  ) which generates a reproducing kernel Hilbert 

space (denoted by RKHS; treated rigorously in subsection A)  and if  f is within ε(x)  of a 
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(possibly infinite) weighted sum of dictionary elements which is bounded by M in RKHS norm, 

then, as we shall show, a dimensionality reduction occurs for the minimax analysis. Hence a 

query-based local minimax counterpart to Tikhonov’s regularized kernel and Vapnik’s global 

support vector surface estimation is derived. 
                                                                        
     The vector machine(VM) set up may be described as follows.(See [32].) Let K(u,v)  be a 

positive semidefinite, piecewise continuous, bounded, nonnegative, symmetric function on the 

cartesian product of a compact subdomain V of R
d
 with itself. Assume  further that  K(u,v)  

                                                                          
is  positive  at  diagonal  points  (u,u).  Let  us  map  each  x  in  our  predictor  space  to  

Φ(x) = ( λ1
1/2φ1(x), λ2

1/2φ2(x), .....,  λi
1/2φi (x), ..... ) ε Φ   (maybe infinite dimensional) where λi

 
, φi 

are the eigenvalues and orthonormal eigenfunctions of  the integral operator with kernel K(u,v) : 

S
V  

K(u,v)g(v)dv. The task is now to employ affine estimation using the linear span of the 

                                                                        
mapped predictor data {Φ(xj)}, i.e.use functions of the form  co    +   ( c1Φ(x1) + c2Φ(x2) + ....... ) * 

Φ(x)  for x in R
d
. By Mercer’s theorem Φ(x).Φ(y) = K(x,y) so that all computations in Φ  can 

easily be done using the kernel function K(x,y).

        The  vector machine methodology can be equivalently presented by staying in R
d
 and using 

functions which lie in the RKHS . In fact the Φ(x) above will correspond to the function  K( x, - ).  

We adopt this approach here since  it makes the treatment of  ε(x) and some of the context 

assumptions more natural and it is indeed functions on R
d
 that we are trying to estimate. (See  

[37].) The various loss functions used in that setting correspond to various approaches-hinge 

loss-Vapnik’s support vector machine [43],  squared error loss-least squares vector machine 

[32],etc.... The details begin in our first subsection. 

       A.  Finite Sample Minimax  Bounds for Local Estimation by Sums of Kernels
                                                                    

          Consider the pre-hilbert space of models f( x; a ) =   Σ  ax’ K(x’, x) where  the sums are 

initially over  finitely  many  x’  and  where K(u, v)  is  a  piecewise  continuous,  bounded,

symmetric, nonnegative kernel function on V x V, positive  at  diagonal  points  (u,u), and for 
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which the matrix K(xi, xj) is positive (semi) definite for any finite (non) distinct {xi} C V. Define an 

inner product   [ f ( x; a ) , f ( x; b ) ]   =  Σ  Σ  ax’   bx’’  K(x’, x’’) .    Now extend this to form  

a real Hilbert space by completion. For any g in the constructed Hilbert space g can 

be identified with the pointwise limit of a sequence of models in the pre-hilbert space which 

converges to g in the constructed Hilbert space.  It can easily be shown that      [ g ,  K( u, - ) ]  = 

g(u)   where g(u) is the value of the associated pointwise limit at u.  Hence the space is called a 

reproducing kernel Hilbert space (RKHS). Consider the set of models f ( x; a ) in this space  with 
                                                                   
RKHS norm ||  ||  bounded by M ( a now varies in an abstract infinite dimensional space). We 

assume f(x) is within  ε(x) of one of these. Unlike  some of the dictionaries described previously 

( [20],[3]) one can not reasonably  assume that f is exactly a weighted sum of the form (#) of 

kernel translates since the kernel width remains fixed and the norms are bounded by M ; hence 

ε(x) enters into the analysis.
                                                                                                      
      One of the main techniques in the minimax derivation in this setting is the simplification of the 

problem using functional analysis in Hilbert space. This is best motivated by seeing what it does 

for  the global penalized  estimation problem with known diagonal noise matrix. Here ( as in [37a]) 

we minimize empirical loss with a Tikhonov regularization penalty term and use the minimizing 

model as estimate (see section II-C.) i.e. find minimizing g’s ( if they exist) in the RKHS for

         Q(g)   =  1/k  Σ σj
-2  L ( Yj , g( xj )  )       +    γ  || g ||

2              
 with (throughout section VII) || ||

equal RKHS norm and k distinct predictors {xi} C V. Now consider any g in the RKHS and write 

        g(x)   =      Σ   ai K(xi, x)    +    p(x)           where p(x) is orthogonal to each  K(xj, x) .

Let  g+(x)    =    Σ   ai K(xi, x) .   By the reproducing property  g(xj) =  g+(xj) for each j. 

                             

Also     || g+ ||
2 

<  || g ||
2
.  Therefore 

 
Q(g) > Q(g+) . 

                                                                         
                  Hence finding a solution (if it exists) to the global penalized estimation problem 

reduces to searching for the best  (minimizing Q(g) ) estimator g which is a linear sum of k 

kernels each centered at one of the sample predictors. This is called the “Representer” Principle. 
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In fact the above proof  shows that this principle holds more generally when Q(g)  =        

H(g(x1), g(x2),...g(xk))  +    γ  || g ||
2 

.

                For squared loss the solution exists and is called the Tikhonov regularization ([37]). In 

matrix notation this is the minimum of  k
-1

(Ka -Y)tσ 
-1

(Ka -Y) + γ at K a  wrt. a, the vector of 

coefficients of the k kernels, where σ  is the diagonal matrix  of {σj
2} and K =  K(xi, xj). The 

solution may be written   a   =   ( kγ I + σ 
-1

K )
-1 σ 

-1
Y.  Note this formula is also the associated  

                                                                     
Tikhonov regularization  for any positive definite σ  since the representer theorem clearly holds 

for   Q(g)   =   k
-1

(g -Y)tσ 
-1

(g -Y) + γ|| g ||
2 

   with g = (g(x1), g(x2),...g(xk))t.  ( If we include a 

constant in the estimator g(x) =  b +Σ  ai K(xi, x), let  L ( y, g(x)) = ( 1 - y g(x) )+ and consider 

classification problems with responses 1 or -1, one obtains a quadratic programming problem 

when minimizing Q(g) with ||g|| defined as the RKHS norm of g-b. The solution corresponds to 
                                                                        
Vapnik’s support vector hyperplane. In most cases the results of classifying by either Vapnik or 

Tikhonov methods  is similar. See [37], [39]. In these references  +1,-1 are used for the classes 

instead of 0,1 as we use. Their formulas are obtained easily from ours; eg. when σj =1/2 making  

σ = I above gives their formula for the kernel coefficients.)
                                                                                                                                                                        
          Now in the proof of our following  Theorem VI below the key step will be to maximize

           (7)        L ( g(0),  Σ wj g(xj) )    subject to    || g ||
  
<  M   .

                                        

Now consider any g in the RKHS   with   || g ||
  
<  M and write  ( with xo = 0 )

     g(x)   =   ao K(xo, x)  +  Σ  ai K(xi, x)   +   p(x)    where p(x) is orthogonal to each  K(xj, x) .

                                                                         

Let  g+(x)    =    ao K(xo, x)  +  Σ   ai K(xi, x).     By the reproducing property  g(xj) =  g+(xj) for  

                                                                              

each  j  and   || g+ ||
  
<  M.   So   L ( g(0),  Σ wj g(xj) )   =    L ( g+(0),  Σ wj g+(xj) ) .                                    

               Hence (if a solution exists) the constrained loss maximization problem, where the  loss 
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is measured  between the target at the query and a smoother applied to the target at the training 

predictors, reduces to searching over linear sums of  k+1 kernels each centered at one of the 

training predictors or at the query. Thus we have established what we call the maximum 

“Representer” Principle. Clearly this principle holds more generally for   Q(g)  =  

H(g(xo),g(x1),...g(xk))   subject to  || g ||
  
<  M  

 
.

            We now  show how to solve (3)  (approximately for general ε(x) and exactly with an 

explicit formula for ε(x) = 0 ) when a bound  M on  || f(x;a) || is assumed for the approximating 

                                                                         
model. In fact, for the exact case, the optimal weight vector w is of the form of a Tikhonov 

regularization  where our minimax theory has determined the regularization parameter  γ  as a 

function of M and hence our  minimax error bound provides a local  error estimate for the 

appropriate Tikhonov regularization. For simplicity we state and prove the result for distinct 

predictors. It holds more generally for non-distinct predictors with the objective function 

modification mentioned in Thm. I. 
                                                     
         Theorem VI ( Minimax Query-Based Vector Machine)  Let f(x)  be within  ε(x) in V of some 
                                                                    
member of the  family { f (x ; a) generated by K(x’,x): the RKHS norm of f(x;a) is less than or 

equal to M}. Assume distinct predictors and mean zero covariance upperbounded noise. Use  

squared error loss. Consider the matrix  K  = ((  K( xi, xj )  ))  : i,j = 0,1, 2,.....k . (V is compact and 

contains  the  query  point xo  which  we  are  taking  as  0  but  the  results  obtained  are  the 

same for any query point. ).   Set  wo = -1 ( w has now k+1 components)  , σoj
2  =  σio

2  = 0   ,  

σ  equal the k+1 by k+1 matrix  formed by adding a 0’th row and 0’th column of 0’s to the noise 

covariance matrix upper bound, and the k+1 dimensional vector  u = ( 1,0,0...0)t .  Let 

                                    

         L (w) =    wt σ w   +  B(w)      where   B(w)   =     ( M 
( wt K w)

1/2
    +     Σ |wj| ε(xj) )

2    
                

                                                 
and let the local complexity   

                                 L    =       1 /  [ ut ( σ  +   M
2
 K )

-1
 u ]  .     
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Then the mean squared error of  F ( w ), where w* = 0,  is  bounded by   L (w) which is 

greater than or equal L . For  ε(x) = 0, if   w  = arg  min  L(w) and w* = 0, then  L (w)  is just 

the local complexity L   and this is the best possible bound ( solution to (3)) on mean squared 

error  under this assumption. Finally,  in the latter case,

                     w  = - [(σ + M
2
K )

-1
u] /  [ ut ( σ  +   M

2
 K )

-1
 u ]   

and, for known noise covariance σ, this just gives the Tikhonov regularization at xo for 

                                                                               

the global estimation problem  with the regularization paremeter  γ  =  k
-1

 M
-2

. Hence  L  is a best 

bound on the mean squared sampling error of  the global vector machine estimator at xo. Also L  

                                                                          
may be computed as a function of of M and w may be chosen using the bound  L (M)  as 

operating characteristic.  In summary just as Bayesian justifications for Tikhonov regularization 

exist (see[37]) justifications via classical minimax statistical theory have here been established.                
-----------------------------------------------------------------------------------------------------
proof of Theorem VI:  Let all sums be from 0 to k . Adding 0’s to N as with σ we write

     (8)      E ((F(w)-f(0))
2
 | x1,..) =   wt N w + {  Σ wj g( xj)   + w* +    Σwjζ (xj)  }

2                   

with  |ζ (x)| < ε(x) and where g lies in the RKHS and has norm less than or equal M. Since the set 

of such g’s is invariant under negation, the bracket term above will be bounded in absolute value 

by maximizing  | Σ wj g( xj) |  subject to the given condition on g and adding   |w*|    + Σ |wj| ε(xj)

to it inside the brackets. It now is clear  that the optimal w* = 0. Such g exists because it 

maximizes (7)  when  L  is squared error loss  since we may  obtain the maximum value  of  | Σ 
wj g( xj) |   by maximizing  | Σ ai ( Σ wj Kij )|  = | at K w |  subject to  at K a  <  M

2 
as follows: we 

may restrict a  to lie in the range of the map defined by the matrix K. The constraint region is now  

nondegenerately ellipsoidal. Then the simple optimization problem  may be solved by noting that 

the maximizing  a  will also minimize   at K a   subject to   at K w = s  for some value of s. So a is 

a  critical point of   at K a      -     2λ(at K w - s)        where  λ  is a Lagrange multiplier which 
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implies   Ka  =  λK w   and   at K = λwt K .  Since  at K a  =  M
2 

at the optimizing a ,  λ2 ( wt K w)  

=  M
2
 and  the maximum  | at K w |  =  M

 
( wt K w)

1/2
. This yields the upper bound  L (w). For  

ε(x) = 0  we minimize  wt (σ + M
2
K ) w  subject to wo = -1. Since K0 0 is positive it is easy to 

see that σ + M
2
K is nonsingular. A routine Lagrange argument now yields w = -[(σ + M

2
K )

-1
u]/  

[ ut ( σ  +   M
2
 K )

-1
 u ]  and    the minimum is just    L    =       1 /  [ ut ( σ  +   M

2
 K )

-1
 u ] .       

  
           

                   To show that the solution when ε(x) = 0 is just the global regularization solution for a 

particular regularization parameter value rewrite  L(w)  where the vector w and  matrices σ 

and K  are now k-dimensional ( i.e. remove the 0th rows,columns, etc.)  as follows 

                     L (w) =    wt σ w     +      M
2
( wt K w

  
+ K(xo,xo)   - 2

 
 wt  ko )

                                                                                                                                    
where ko is the vector with components K(xo,xi). Now set the gradient wrt. w to 0 obtaining

           w  =    M
2
 (σ + M

2
K )

-1
 ko     or      F ( w )   =  wt Y   =  kot ( M

-2 I + σ 
-1

K )
-1 σ 

-1
Y  .

The global estimator at  xo is   kot a where  a   =  ( kγ I + σ 
-1

K )
-1 σ 

-1
Y  is the associated 

Tikhonov solution obtained earlier. But  kot a   is  the minimax  estimator  F  when γ = k-1
M

-2
. QED. 

------------------------------------------------------------------------------------------------
       From the theorem we see that, as in the linear estimation case, the local estimate is the same 

as the global estimate when there are no context assumptions and ε(x) is 0. Researchers who 

use vector machines and have heuristics for determining the regularization paremeter  value γ  

(and hence equivalently M ) as a function of the kernel and the data now have a mean squared 

error bound  at any query point for the global estimator. This bound could then be used to 

determine the kernel K( , ) for a  local analysis using an information measure as in section C. The 

local bound on error appears to be new and is indeed local since it varies with the query point. 

     The choice of M remains a key challenge. But with context assumptions appropriate choices 

of M are possible as we now demonstrate:  We apply our local estimation method to functions 

f(x) which take values between 0 and 1 and which are within ε(x), in the full given 
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neighborhood V, of an h(x) which is a member of the  RKHS associated  with the fixed kernel 

K(x’,x). Denote by RKHS( A ) the RKHS of functions on A generated by kernels centered at some 

a in A. We also want f(x) to possess an approximate appropriate  degree of smoothness 

depending on the kernel bandwidth. We will incorporate the smoothness and the range ( of f in 

[0,1] ) context into the family  { f(x;a) } and remove the restriction that the RKHS norm is bounded. 

For many kernels (e.g.rectangular, gaussian) RKHS(A) is dense in L2 (A) so we need to restrict 

the admissible linear combinations of kernels. A natural class of functions is the restrictions to V 

of  the cone of positive finite linear combinations, PK(V), of kernels centered at points in V. 

So let { f(x;a) } be   PKB(V) =  {g(x) in PK(V):g(x) < 1 in V } . This is a special case ( α = 0 )  

of a more general classes of approximands, which admit  tight error bounds with our approach  

and are given by {f(x;a)} = PKα(V) = { α + (1-α)g1  -αg2 : gi in PKB(V) }  where α lies in [0, 1].

                                                                    
         A direct method to get a bound for (3) with such {f(x;a)} would require a maximization step 

which is 2 linear programs with arbitrarily many variables: indeed, for α = 0, from (8) for given w 

we would maximize | Σ wj g( xj) + w* | for g in PKV(B) or equivalently a sup of  | at K1 w + w* | 

over abritrarily long positive vectors a  = ( ar ) and corresponding arbitrary points zr in V  where 

K1 =  ((  K( zr, xj )  )), K2 =  ((  K( zr, zq )  )) and subject to the additional constraints that  at K2   

have components not exceeding one. ( The general α case is similar.)This would then have to be 

approximately solved for varying w to get a near minimum. Furthermore the procedures have to  

be repeated for various neighborhoods and kernels according to our upcoming proposals.

             Hence we consider an approximation with a closed form answer which will lend itself to 

our proposals. We seek the smallest ball centered at 0 in RKHS(V)  that contains PKα(V)  -  α.  

Let F*(w) be our estimator. We will get a bound on local estimation error  by applying Theorem VI 

using a dimension free bound MV on the norm of the g’s in  PKα (V) -  α  in the present context.   

(We can also extend the analysis easily when locally estimating f(x) which takes values in [v,y].)

Theorem VII (Vector Machine with Context)   Assume the hypotheses of Theorem VI except that 
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f(x)  takes  values  in  [0,1]  and  is  within ε(x)  of  g(x)  in  V  where  g  is  in  PKα(V). Then the

estimator F*(w), which equals  F(w)  except  w* =  -α Σ wj,  has mean squared error bounded 

by L(w) of TheoremVI  (which equals L  in the exact case provided w = arg min L(w) and                      

w* =  -α Σ wj )  where we take 

 M  =  M
V
 =   ( α2 + (1-α)2) 1/2  (  max

xεV
 min

yεV
 K(y, x) ) −1/2    >   sup

PKα(V)
 ( || g(x) - α ||  ) 

                       
For such M we call F*(w) the contextual Tikhonov estimator. A good choice for α is .5 (which 

is assumed in Section B.) since it minimizes  M
V
 as a function of α. In fact, for any M  greater 

than or equal the right hand side of the above inequality, the same result holds. 
-----------------------------------------------------------------------------------------------------
proof of Theorem VII :  Rewrite the right hand side of (8), where g is in PKα(V), as

        wt N w + { Σ wj  ( (1-α)g1( xj)  -αg2( xj) )    +    w*   +   α Σwj   +    Σwj ζ (xj)  }
2           

where  gi is in PKB(V). Now write (1-α)g1( xj)  - αg2( xj) as h(xj) above where h = g - α. Then  h  

                                                                                                                                               

has norm bounded by any  M  >  supPKα(V) ( || g(x) - α ||  )  . By the proof of TheoremVI, for any 

such M, a bound on the error is L(w)  provided the constant term in { “ }  =  w*  + α Σ wj    =   0.  

This holds also for the minimizing w. To prove the  inequality  first note that, for g  in PKα(V),                     

    || g(x) - α ||
   

=  { (1-α)2 || g1(x)||
2   

+
   α2||g2(x)||

2   
-  2α (1-α)(g1, g2 ) }

1/2
  <  { (1-α)2 ||g1(x)||

2     

 

            
+

   
 α2||g2(x)||

2  
}
1/2 

< ( α2 + (1-α)2)1/2
 sup

PKB(V)
 ( || g(x) || )

   
since (g1, g2 ) is non-negative

                                                                                    
by the non-negativity of both the kernel and the kernel coefficients for  g’s in PKB(V). Next we 

bound ||g||  for g in PKB(V):  Note that g(x) =  Σ ai K(zi, x)   <  1 and hence              

|| g(x) ||
2 

   =   Σ aj ( Σ ai  K(zi, zj) )   <    Σ aj .  Now both the kernel and the aj’s are nonneg- 

ative so  1  >  g(x)  =   Σ aj K(zj, x)  >  ( Σ aj ) ( minj  K(zj, x) )   >  ( Σ aj ) ( miny  K(y, x) ) .

So   1   >   (Σ aj)(maxx miny  K(y, x))  or   || g(x) ||   <    (Σ aj)
1/2 

  <    (maxx miny  K(y, x))
-1/2.   

QED. ( We thank Alex Kheifets for pointing out two inequalities which lead to the above bound.)
 --------------------------------------------------------------------------------------------------------------------
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         It is interesting to see the geometry of RKHS(V) behind this theorem: For α = 0 we are 
                                                                                   
imbedding the truncated cone PKB(V) in a ball centered at the origin. For α = 1/2 we are 

imbedding the differences of 2 truncated cones, (1/2)(PKB(V) - PKB(V)), in a  ball yielding

a better bound since the latter ball has radius at most  2
-1/2 

 times that of the former ball. 

Finally, according to the proofs of  Theorem VI and Theorem VII, the maximum Representer 

Principle yields a simple strategy with the given bounds.  Research is still ongoing to determine 

how well  M
V  

approximates  supPKα(V) ( || g(x) - α ||  ).  It is conjectured to be very  accurate in 

the Gaussian cases proposed  below when the kernel bandwith is at least half the  radius of V.

         One way to apply the above theorem is to use it for different  neighborhoods V and 

approximands with RKHS norm bounded by  MV ,which is a function of  the neighborhood V, and 

then minimize the upper bound of the theorem  L(w)   as a function of V . For class  2 
                                                                         
probability functions in an RKHS on a bounded neighborhood of the query point we now present  

this approach in section B for any given kernel K( , ). Then, in section C, we  use the associated 

minimax error bound to determine K( , )  by optimizing an information measure.
              
       B. An Improved Estimator for Learning Class Membership Probabilities on a 
             Vector Machine with a Given Kernel 

          We first remark that the two theorems in the previous section are valid when the target     
                                                                          
function is defined only at the points xo, x1,...xk but there exists an extension f(x) to all of V

which satisfies the hypotheses of the theorem. If the kernel has a sufficiently small bandwidth 

then a reasonable assumption is that the extension is in PK1/2(V) or in other words the 

approximand can be assumed to take the same values as the target at xo, x1,...xk and hence in 

all of V. ( The more general case of extensions within ε(x) of the approximands is 

straightforwardly similar. We do not present it to keep notation simple.)  Note that overlapping 

neighborhoods may require extensions which don’t agree on the  intersection although they must 

agree at the common predictors and query. With this in mind we proceed to apply Theorem VII to 

estimating class 2 probability. ( A similar analysis applies when the target is known to take 
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values in any bounded interval.)
                                                                      
             Assume the probability function we are estimating is defined only at the sample points 

and query but, for each Vi in a class of  compact neighborhoods  {Vi}, it has an extension to Vi  

of the exact form  hi  in  PK1/2(Vi) . The hi’s may be different on the intersection of different 

neighborhoods as long as they agree at the predictors and query common to that intersection. 

Now apply the local Theorem VII on Vi , i.e. use only the predictors in  Vi forming kernel matrix Ki .

This determines a bound L i  on mean squared error  

                            Li    =       1 /  [ ut ( σ  +   MVi
2
 Ki )

-1
 u ] 

One expects that the  MVi will increase as the neighborhoods increase (this is a conjecture; we 

only have a proof for Gaussian or  rectangular kernels) so that there will be a tradeoff between
                                                                       
sample size and  function complexity as Vi increases. The improved Tikhonov estimator 

of  f(xo)  is the estimator described above for V = Vr  corresponding to the index r for which  L r 

= L* = min Li  and the latter quantity is a bound on the mean squared error for any class 2 

probability function  whose extension to Vr  is in PK1/2 ( Vr  ). This bound should often be much 

better that that of the contextual Tichonov estimator  for which all of the predictors are used but 
                                                                      
for which the  ball of approximands is much bigger than that for a smaller neighborhood.  

              In the case of a Gaussian kernel with covariance Σ , K(x’, x) = exp{-.5(x -x’)
t
Σ−1(x -x’)},              

a good choice of neighborhoods is-

                    Vi   =   Vi ( Σ )   =    {  x :  (x -xo)
t
Σ−1 (x -xo)  <  νi  }           i=1,2,....k.

where the order statistic νi is the i’th smallest value in the set {(xj-xo)
t
 Σ−1 (xj-xo): j=1,...k }.

Then, by a straightforward calculation, we obtain MVi     =   2
-1/2

exp{ .25νi } .
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        C. Determination of Optimal Local Kernel Shape for Learning Class 
             Membership Probabilities on Vector Machines without Cross Validation 
                                                                 
                 Consider a kernel K and collection V K of  compact neighborhoods {Vi(K)} of xo which 

may vary with K. We assume that K ( x’, x) has the form of a probability density as x varies in R
d
  

with parameter x’ and K is defined on all of   R
d
 x R

d
 . Such kernels include the Gaussian density, 

( det(2πΣ))
-1/2 

exp{-.5(x -x’)
t
Σ−1(x -x’)},   where x’  represents the location parameter.  We define 

the local information criterion of  any  PK1/2( Vi(K))  by the Fisher information of the kernel K 

which we denote by   I (K):

        I (K )   =    S  trace{(grad( ln K ( x’, x) ) (grad( ln K ( x’, x) ))
t  }  K ( x’, x)  dx

where grad represents the x’ -gradient. This is just the trace of the Fisher information matrix for 

the d-parameter family of densities  K ( x’, x). In fact for the Gaussian density it reduces to  I (K) 
                                                                            
= trace {  Σ−1 } which we denote also by  I (Σ).            

          Let us continue the analysis assuming the density is Gaussian, using Σ instead of K in the 

notation.  Assume Σ and V Σ varies over bandwidths(covariances) for which the probability 

function has the appropriate extensions to members of V Σ . Let L*Σ  be the error bound of the 

improved Tickonov estimator when the covariance is Σ. (Use the same neighborhoods as in B.)  

          We can now state a local kernel shape strategy of Neyman-Pearson type as            
                                                                    
                 (  Eg )             Σ        =          arg              min             L*

Σ ’
 

                                                                                     Σ’ : I (Σ’ )  >  η                 

                           ( minimum error  for given information )

where η is a minimum information bound.

                                    In carrying out the paradigm in the Gaussian density kernel case for a 

particular application it may be important to further limit the domain of possible covariances Σ. For 

example if we want to keep bandwidth above some value in all directions we may restrict Σ to 
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have the form Σ + µ I. This will prevent the estimate from overly depending on the projection of 

the data in a single direction. Also we see that carrying out this strategy in the Gaussian case

by finding a near solution to (3) at each step would require enormous linear programs as w 

varies while using the contextual bounds requires only calculating   MVi   which in the Gaussian 

density case is given by   MVi     =  2
-1/2

exp{ .25νi } ( det(2πΣ))
1/4

 .

                                                                       
                There  are  several  challenges  in  implementing  this  strategy  with  data. 

Further research work is necessary before practical  implementations and evaluations can be 

produced of the algorithms proposed here. We do present a preliminary application of the 

contextual Tikhonov estimator and bound  to bioinformatics in the next section where we have 

just used a heuristic procedure to determine Σ. 
                                                                           
         D.  Estimation of Class  Membership Probabilities with Error Bounds for 
                        the Microarray Example 
 
               Kernel vector machines have already been used to classify microarray data (see [33]).  

 We reanalyze the microarray data from the University of Pittsburgh simulator using the local 

minimax kernel estimation bound obtaining estimates of probability of correct classification.(Phil 

O’Neil developed and implemented the software for this project.) Since research is still ongoing to 

determine the accuracy  for MV   and to practically implement the improved estimator and the 

shape  finding algorithms, we present only an application of  Theorem VII. Local minimax 

estimation of each patient’s probability of membership in Group A was performed using linear 

combinations of  Gaussian kernels centered at the predictors of the 15 other patients (leave-one-

out method).The kernels were degenerate with a one dimensional distribution in the direction of 

the eigenvector with the largest eigenvalue of the (120 dimensional) sample covariance of the 

other 15 patients. The standard deviation σ was taken to be 1/3  the diameter of the projection of 

the 15- predictor dataset in that direction. Using the bound of Theorem VII with α = .5 ,  this 

would correspond approximately to using MV = 2
-1/2

e
9/16

 = 1.23  for the contextual Tikhonov 

estimator with α = .5.                                           
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          The probability estimates are in Table 2. The fifth column represents the (worst case) 

bound on the mean squared error of the probability estimated. The probability estimates were 

obtained after the data mining phase. The correct classes entered the calculation only after 

weights were furnished relative to each patient not left out. These weights were summed over 

those in Group A and the result equaled the probability estimate. Finally we note that the vector 

machine estimation procedure, as we have just applied it to the microarray data, is rotation 

invariant  to the training set. 

VIII. Remarks on Solutions for General Loss Functions :

                   For the global estimation using the methods reviewed in sections II A. and II B.  but 

without the “Kh (D(0,xj)) “ factors and where the sum is over all the predictors,more general loss 

                                                                            
functions have (and should have) been used. For instance, with noises belonging to the 

exponential family, maximum likelihood is equivalent to a particular loss function which may be 

non quadratic.   The same need exists to consider more general loss functions  for the local 

application (with the “ Kh (D(0,xj)) “ factors ) . But with our method the loss is only needed at the 

point  ( f(0) , F( w ) ). In the case of  independent  responses and bounded noise,  F( w ) is near 

normal or at least  more  bell-shaped distributionally than any of the Yj’s which are the first 

components in the loss function contributions in the other methods. Hence, in this case (which 
                                                                        
occurs for just modest sample sizes), the squared error loss is appropriate since our method 

“superimposes” all information at the query point . Nevertheless our results need to be extended 

to more general loss functions when unbounded noise and hence extreme outliers are present 

and then nonlinear modification of the estimators is appropriate using sensitivity  and influence. 

IX. Locally Quadratic and higher order Models: Problems of Real Algebraic   
      Geometry with further Applications to Learning and Inverse Problems

                Let us consider equation (4) and the notation of section III. which can be understood in 

both the inverse problem or regression setting (using δ functions for the θ j ’s and Σ |wj| ε(xj) 

instead of  R(w) in deriving the bounds). The bounds( using  our method) would be determined 
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by first characterizing the set of (ao,a1,    ......, aq) for which there is an f  satisfying C and (2)   

(or a slightly larger set of a’s ) . This is the real geometry problem (real algebraic geometry  if  the 

{ hi(x) }  are algebraic functions).  Next we maximize the objective function | Σ ai ( Σ wj Hji ) + 

C ao +  w* | with respect to such a’s. This maximum value is then added to  R(w)   inside the 

brackets to get the bound for each w. In all the cases we consider the set of a’s is convex and 

the maximization problem is one of determining the tangent hyperplanes for the boundary of this 

set which are also level surfaces for the objective function. 
 
               For learning applications, where one wants to estimate class 2 posterior probability, 

bounds for locally quadratic models in d-dimensions would be desirable. Suppose 

h1(x),.....,hq(x)  are the   q = 2d + d(d-1)/2  monomials of orders 1 and 2. Can we characterize 

                                                                     
the set of a’s for which   ao ho(x) + a1 h1(x)  +.....  + aqhq(x)  is in the unit interval whenever  x 

is in a given ball about 0? Furthermore can we characterize the hyperplanes tangent to its 

boundary and perform the appropriate maximization? We have done this for ( the less 

challenging learning case) d = 1and will publish the details elsewhere. This has applications in 

Markov chain Monte Carlo computation of P-values for exact tests of model validity in multifactor 

experiments (see[25]).         
                                                                  
                  It is of interest here to see how complicated the one dimensional quadratic case is. 

Inverse problems in one dimension contain some of the difficulties of higher dimensional learning 

problems because of the sparseness of the measurement information furnished ( as in the finite

Fourier moment problem of reconstructing  a function from limited spectral data). We thus carry 

out the analysis in the inverse problem setting when the target  f  is  (approximately) quadratic on 

an interval and known not to change by more than  M between any 2 points therein:

          We reconstruct the value of  f  at 0 from data consisting of noisy integrals of  f over V = 

[m, m+1] which contains 0. ( Reconstruction at an arbitrary point in an arbitrary interval can be 

done by a simple linear reparameterization.) All integrals are over V.  Write ( in a different 
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              f(x)  =  ao   +  a1( x - m )
2
  +   a2( x - m )   +  ζ (x)      with  |ζ (x)| < ε(x) in [m, m+1].

Then

  E {(F(w)- f(0) )
2
 | θ1,..}  =   w

t
N w +  {a1 Q1 + a2 Q2 + C ao + w* + SΣwjθj(t) ζ (t) dt }

2               

where      C =  Σ wj S θj(t) dt      -     1  ,    Q1  =   Σ wj S ( t - m )
2θj(t) dt     -     m2     and                        

Q2  =   Σ wj S ( t - m )θj(t) dt      +      m  .  

                                                 Since ao is arbitrary  C must be 0 for the minimax weights.

To get the minimax value in the exact quadratic case we determine the convex set  in 
                                                                       

(a1,a2) space for which  u(x) = a1x
2
 +a2x  has oscillation bounded by M on the unit interval.  

(This involves solving the simultaneous inequalities: | a1xi
2
 +a2xi -a1xk

2
 -a2xk | < M  for pairs (i,k) 

where xi,xk are 2 of the(2 or 3) critical and end points for u(x) in [0,1].)  In  general  we get

the bound by using the same set with M replaced by M + 2e where e is the maximum of ε(x) in V.

               We continue the analysis for the exact case.  In Fig. 2 the set is displayed with 6 

boundary curves with end points labelled by their coordinates. The expressions for the curves 

as functions of a1 are also included. This set is symmetric about the origin in a1, a2 space. So in 

maximizing |a1 Q1 + a2 Q2  + w*|  we can choose a1Q1+ a2Q2 to have the same sign as w*. 

Hence w* =0 will minimize the bound for any w’. So we need only maximize  |a1 Q1 + a2 Q2 |.      

                                                                                                                                                                 

For this we determine a tangent hyperplane to the boundary of the form a1Q1 + a2 Q2  =  +  t  

and use    wt σ w  
+  |t|

2   
for the best bound for fixed w’. ( In general case we add  R(w) to |t| 

before squaring.) If we traverse the boundary clockwise we calculate slopes between corners 

as functions of a1 :

    (-4M,4M)  to  (-M,2M)              slope    =    - (M/-a1)
1/2

    (-M,2M)     to  (M,0)                 slope  = -1
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    (M,0)       to    (4M,-4M)           slope  =    (M/a1)
1/2

   -   2    

    (4M,-4M)   to   (M,-2M)           slope  =     - (M/a1)
1/2

  
  (M,-2M)     to  (-M,0)                slope  = -1

  
  (-M,0)       to    (-4M,4M)         slope  =    (M/-a1)

1/2
   -   2   

                           
Given  Q1, Q2 we know the slope and hence we can identify either a point of tangency to one 

of the curves or at one of the corners. From this we can identify + t  and therefore |t|. So by a 

straightforward but extremely tedious calculation we find that the maximum of   |a1 Q1 + a2 Q2|   
is given by  B( M , Q1, Q2)  =                                                                                   

                                                                      

                                                   |M Q2|                                                                        if     Q1 =  Q2

                                                   |M Q2
2
/ Q1|                                                      if    .5 <  Q1/ Q2 < 1

                                                   |2M Q2 - M Q1| / ( 2  - ( Q1/ Q2))
2
                 if   1 <  Q1/ Q2 < 1.5

                                                   4M | Q1 -  Q2 |                                                             otherwise

For the upper bound on the minimax value we use B(M+2e, Q1, Q2)  +  R(w’). We restate this as         

     Theorem VIII   (Recovery of f(0) from integral data on [m,m + 1] )   Let the  parametric family be 

given by  f( x ; a) = ao  +  a1( x - m )
2
  +  a2( x - m ). Assume that,in  [m,m + 1] ,  f(x) is within 

ε(x) of some family member  f ( x ; a).   Use squared error loss. Assume C  is the condition that f 

has oscillation at most M on [m,m + 1]. Assume 
 

                     Σ wj S θj(t) dt    =   1    ,    w* = 0,

        LC(w) =      wt σ w    +
     

 {   B( M+2e , Q1, Q2)   +   S Σ | wjθj(t) | ε(t) dt   }
2

                                                                                                                   
                                     

               and

     lC(w) =       wt σ w   +
  
   

 
 {   B( M , Q1, Q2)   }

2        
  .
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Then the mean squared error of  F ( w )  is bounded above by   LC(w)  and   

                       min w  lC(w)         =     LC     ( = minmax value for (3) if  f  is quadratic).  

(To get  f(x0)  from data on [v,y] ( v< x0 <y ) change the coordinate using x’ = (x-xo)/(y-v) and

apply the method for m = (v-xo)/(y-v) to the data using weight functions  (y-v)θ j ((y-v)x’ + xo).)       

--------------------------------------------------------------------- 
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