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Informal Description of the Learning Goal

I X space of input samples
Y space of labels, usually Y ⊂ R.

I Already observed samples

T =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n

I Goal:
With the help of T find a function f : X → R which predicts
label y for new, unseen x .
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Illustration: Binary Classification

I Problem:
The set X is devided into two unknown classes X−1 and X1.

I Goal:
Find approximately the classes X−1 and X1.

IIllustration:
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Left: Negative (blue) and positive (red) samples.
Right: Behaviour of a decision function (green) f : X → Y .
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Formal Definition of Statistical Learning

I Basic Assumptions:
I P is an unknown probability measure on X × Y .
I T =

(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n sampled from Pn.

I Future (x , y) will also be sampled from P.
I L : Y × R → [0,∞] loss function that measures cost L(y , t) of

predicting y by t.

I Goal:
Find a function fT : X → R with small risk

RL,P(fT ) :=

∫
X×Y

L
(
y , fT (x)

)
dP(x , y) .

I Interpretation:
Average future cost of predicting by fT should be small.
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Questions in Statistical Learning I

I Bayes risk:

R∗
L,P := inf

{
RL,P(f ) | f : X → R measurable

}
.

A function attaining this minimum is denoted by f ∗L,P .
I Learning method:

Assigns to every training set T a predictor fT : X → R.

I Consistency:
A learning method is called universally consistent if

RL,P(fT ) → R∗
L,P in probability (1)

for n →∞ and every probability measure P on X × Y .

I Good news:
Many learning methods are universally consistent.
First result: Stone (1977), AoS
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Questions in Statistical Learning II

I Rates:
Does there exist a learning method and a convergence rate
an ↘ 0 such that

ET∼PnRL,P(fT )−R∗
L,P ≤ CP an , n ≥ 1,

for every probability measure P on X × Y .

I Bad news: (Devroye, 1982, IEEE TPAMI)
No! (if |Y | ≥ 2, |X | = ∞, and L “non-trivial”)

I Good news:
Yes, if one makes some “mild?!” assumptions on P.
Too many results in this direction to mention them.
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Reproducing Kernel Hilbert Spaces I

I k : X × X → R is a kernel
:⇔ there exist a Hilbert space H and a map Φ : X → H with

k(x , x ′) = 〈Φ(x),Φ(x ′)〉 for all x , x ′ ∈ X .

⇔ all (k(xi , xj))
n
i, j=1 are symmetric and positive semi-definite.

I RKHS of k: the “smallest” such H that consists of functions.
I “Construction”: Take the “completion” of{ n∑

i=1

αik(xi , .) : n ∈ N, α1, . . . , αn ∈ R, x1, . . . , xn ∈ X
}

equipped with the dot product〈 n∑
i=1

αik(xi , .),
m∑

j=1

βjk(x̂j , .)
〉

:=
n∑

i=1

m∑
j=1

αiβjk(xi , x̂j) .

I Feature map: Φ : x 7→ k(x , .).
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Reproducing Kernel Hilbert Spaces II

I Polynomial Kernels:
For a ≥ 0 and m ∈ N let

k(x , x ′) := (〈x , x ′〉+ a)m, x , x ′ ∈ Rd .

I Gaussian RBF kernels:
For σ > 0 let

kσ(x , x ′) := exp(−σ2‖x − x ′‖2
2), x , x ′ ∈ Rd .

The parameter 1/σ is called width.

I Denseness of Gaussian RKHSs:
The RKHS Hσ of kσ is dense in Lp(µ) for all p ∈ [1,∞) and
all probability measures µ on Rd .
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Support Vector Machines I

I Support vector machines (SVMs) solve the problem

fT ,λ = arg min
f ∈H

λ‖f ‖2
H +

1

n

n∑
i=1

L
(
yi , f (xi )

)
, (2)

I H is a RKHS,
I T =

(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n is a training set,

I λ > 0 is a free regularization parameter,
I L : Y × R → [0,∞) is a convex loss, e.g.

I hinge loss: L(y , t) := max{0, 1− yt}
I least squares loss: L(y , t) := (y − t)2.

I Representer Theorem:
The unique solution is of the form fT ,λ =

∑n
i=1 αik(xi , .).

Minimization actually takes place over {α1, . . . , αn}.
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Support Vector Machines II

Questions:

I Universally consistent?

I Learning rates?

I Efficient algorithms?

I Performance on real world problems?

I Additional properties?

Ingo Steinwart LA-UR 07-7056 Approximation Theoretical Questions for SVMs



Introduction
Statistical Analysis of SVMs

Approximation Theory for SVMs
Conclusions

An Oracle Inequality
Consequences

An Oracle Inequality: Assumptions

Assumptions and notations:
I L(y , 0) ≤ 1 for all y ∈ Y .
I L(y , .) : R → [0,∞) convex and has a minimum in [−1, 1].
I t̆ := max{−1,min{1, t}}.
I L is locally Lipschitz:∣∣L(y , t)− L(y , t ′)

∣∣ ≤ |t − t ′| , y ∈ Y , t, t ′ ∈ [−1, 1].

This yields

L(y , t̆) ≤
∣∣L(y , t̆)− L(y , 0)

∣∣ + L(y , 0) ≤ 2

I Variance bound:
∃ϑ ∈ [0, 1] and V ≥ 2 ∀f : X → R:

EP

(
L ◦ f̆ − L ◦ f ∗L,P

)2 ≤ V ·
(
EP(L ◦ f̆ − L ◦ f ∗L,P)

)ϑ
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Entropy Numbers

Let S : E → F be a bounded linear operator and n ≥ 1. The n-th
(dyadic) entropy number of S is defined by

en(S) := inf
{
ε > 0 : ∃x1, . . . , x2n−1 : SBE ⊂

2n−1⋃
i=1

(xi + εBF )
}
.
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An Oracle Inequality

Oracle Inequality (slightly simplified)

I H separable RKHS of measurable kernel with ‖k‖∞ ≤ 1.

I Entropy assumption: ∃p ∈ (0, 1) and a ≥ 1:

ETX∼Pn
X
ei (id : H → L2(TX )) ≤ a i−

1
2p , i , n ≥ 1.

I Fix an f0 ∈ H and a B0 ≥ 1 such that ‖L ◦ f0‖∞ ≤ B0,

Then there exists a constant K > 0 such that with probability Pn

not less than 1− e−τ we have

RL,P(f̆T ,λ)−R∗
L,P ≤ 9

(
λ‖f0‖2

H +RL,P(f0)−R∗
L,P

)
+K

( a2p

λpn

) 1
2−p−ϑ+ϑp

+3
(72V τ

n

) 1
2−ϑ

+
30B0τ

n
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A Simplification

Consider the approximation error function

A(λ) := min
f ∈H

(
λ‖f ‖2

H +RL,P(f )−R∗
L,P

)
and the (unique) minimizer fP,λ.

=⇒ For f0 := fP,λ we can choose B0 = 1 + 2
√

A(λ)
λ

Refined Oracle inequality

RL,P(f̆T ,λ)−R∗
L,P ≤ 9A(λ) + K

( a2p

λpn

) 1
2−p−ϑ+ϑp

+
60τ

n

√
A(λ)

λ

+3
(72V τ

n

) 1
2−ϑ

+
30τ

n
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Consistency

Assumptions:

I L(y , t) ≤ c(1 + tq) for all y ∈ Y and t ∈ R.

I H is dense in Lq(PX )

=⇒ A(λ) → 0 for λ → 0.

=⇒ SVM is consistent whenever we chose λn such that

λn → 0

sup nλn < ∞ .
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Learning Rates

Assumptions:
I There exists constants c ≥ 1 and β ∈ (0, 1] such that

A(λ) ≤ cλβ , λ ≥ 0.

Note: β = 1 =⇒ f ∗L,P ∈ H.
I L is Lipschitz continuous (e.g. hinge loss).

=⇒ Choosing λn ∼ n−α we obtain a polynomial learning rate.
Zhou et al. (2005?)
Some calculations show that the best learning rate we can obtain is

n
−min{ 2β

β+1
, β
β(2−p−ϑ+ϑp)+p

}
.

It is achieved by

λn ∼ n
−min{ 2

β+1
, 1
β(2−p−ϑ+ϑp)+p

}
.

But β, and (often also ϑ and p) are unknown!Ingo Steinwart LA-UR 07-7056 Approximation Theoretical Questions for SVMs
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Adaptivity

For T = ((x1, y1), . . . , (xn, yn)) define m := bn/2c+ 1 and

T1 := ((x1, y1), . . . , (xm, ym))

T2 := ((xm+1, ym+1), . . . , (xn, yn)) .

I Split T into T1 and T2.
I Fix an n−2 net Λn of (0, 1].
I Training: Use T1 to find fT1,λ, λ ∈ Λn.
I Validation: Use T2 to determine a λT2 ∈ Λn that satisifes

RL,T2(f̆T1,λT2
) = min

λ∈Λn

RL,T2(f̆T1,λ) .

=⇒ This yields a consistent learning method with learning rate

n
−min{ 2β

β+1
, β
β(2−p−ϑ+ϑp)+p

}
.

Reason: Estimation error for the validation step is of the order(V τ

n

) 1
2−ϑ

We do not need to know β, ϑ, or p to achieve this rate!
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Discussion

I The oracle inequality can be generalized to regularized risk
minimizers.

I The presented oracle inequality yields fastest known rates in
many cases.

I In some cases these rates are known to be optimal in a
min-max sense.

I Oracle inequalities can be used to design adaptive strategies
that learn fast without knowing key parameters of P.

Question: Which distributions can be learned fast?
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Discussion II

Observations:

I Data often lies in high dimensional spaces, but not uniformly.

I Regression: target is often smooth (but not always).

I Classification: How much do classes “overlap”?
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Observations

The relation between RKHS H and distribution P is descibed by
two quantities:

I The constants a and p in

ETX∼Pn
X
ei (id : H → L2(TX )) ≤ a i−

1
2p , i , n ≥ 1.

I The approximation error function

A(λ) := min
f ∈H

(
λ‖f ‖2

H +RL,P(f )−R∗
L,P

)

Task:
Find realistic assumptions on P such that both quantities are small
for commonly used kernels.
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Entropy Numbers

Consider the integral operator Tk : L2(PX ) → L2(PX ) defined by

Tk f (x) :=

∫
X

k(x , x ′)f (x ′) PX (dx ′)

Question:
What is the relation between the EW’s of Tk and

ETX∼Pn
X
ei (id : H → L2(TX )) ?

Question:
What is the behaviour if X ⊂ Rd but PX is not absolutely
continuous with respect to the Lebesgue measure?
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Approximation Error Function

I For the least squares loss we have

A(λ) = inf
f ∈H

λ‖f ‖2
H + ‖f − f ∗L,P‖2

L2(PX ).

I For Lipschitz continuous losses we have have

A(λ) ≤ inf
f ∈H

λ‖f ‖2
H + ‖f − f ∗L,P‖L1(PX ).

Smale & Zhou 03:
In both cases the behaviour of A(λ) for λ → 0 can be
characterized by the K-functional of the pair (H, Lp(PX )).

Questions:
What happens if X ⊂ Rd but PX is not absolutely continuous with
respect to the Lebesgue measure?
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Introduction

Observations:

I The Gaussian kernel is successfully used in many applications.

I It has a parameter σ that is almost never fixed a-priori.

Question:
How does σ influence the learning rates?
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Appproximation Quantities for Gaussian Kernels

I For Hσ being the Gaussian kernel with width σ the entropy
assumption is of the form

ETX∼Pn
X
ei (id : Hσ → L2(TX )) ≤ aσ i−

1
2p , i , n ≥ 1.

I The approximation error function also depends on σ:

Aσ(λ) = inf
f ∈Hσ

λ‖f ‖2
Hσ

+RL,P(f )−R∗
L,P .
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Oracle Inequality

Oracle inequality using Gaussian kernels

RL,P(f̆T ,λ)−R∗
L,P ≤ 9

(
λ‖f0‖2

Hσ
+RL,P(f0)−R∗

L,P

)
+K

( a2p
σ

λpn

) 1
2−p−ϑ+ϑp

+3
(72V τ

n

) 1
2−ϑ

+
30B0(σ)τ

n

Usually σ becomes larger with the sample size. Task:
Find estimates that are good in σ and i (or λ), simultaneously.
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An Estimate for the Entropy Numbers

Theorem: (S. & Scovel, AoS 2007)
Let X ⊂ Rd be compact. Then for all ε > 0 and 0 < p < 1 there
exists a constant cε,p ≥ 1 such that

ETX∼Pn
X
ei (id : H → L2(TX )) ≤ cε,p σ

(1−p)(1+ε)d
2p i−

1
2p

This estimate does not consider properties of PX .

Questions:
How good is this estimate?
For which PX can this be significantly improved?
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Distance to the Decision Boundary

I η(x) := P(y = 1|x).

I X−1 := {η < 1/2} and X1 := {η > 1/2}.
I For x ∈ X ⊂ Rd we define

∆(x) :=


d(x ,X1), if x ∈ X−1,

d(x ,X−1), if x ∈ X1,

0 otherwise,

(3)

where d(x ,A) denotes the distance between x and A.

Interpretation:
∆(x) measures the distance of x to the “decision boundary”.
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Margin Exponents

I Margin exponent:
∃c ≥ 1 and α > 0 such that

PX (∆(x) ≤ t) ≤ ctα , t > 0.

Example:
I X ⊂ Rd compact, positive volume.
I PX uniform distribution.
I Decision boundary linear or circle.

=⇒ α = 1.
This remains true under transformations

I Margin-noise exponent:
∃c ≥ 1 and β > 0 such that

|2η − 1|PX (∆(x) ≤ t) ≤ ctα , t > 0.

Interpretation:
The exponent β measures how much |2η − 1|dPX is concentrated
around the decision boundary.
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A Bound on the Approximation Error

Theorem: (S. & Scovel, AoS 2007)

I X ⊂ Rd compact.

I P distribution on X × {−1, 1} with margin-noise exponent β.

I L hinge loss.

∃ cd ,τ > 0 and c̃d ,β > 0 ∀ σ > 0 and λ > 0 ∃ f ∗ ∈ Hσ satisfying
‖f ∗‖∞ ≤ 1 and

λ‖f ∗‖2
Hσ

+RL,P(f ∗)−R∗
L,P ≤ cd ,τλσd + c̃d ,β c σ−β .

Remarks:

I Not optimal in λ.

I How can this be improved?

I Better dependence on dimension?!

Ingo Steinwart LA-UR 07-7056 Approximation Theoretical Questions for SVMs



Introduction
Statistical Analysis of SVMs

Approximation Theory for SVMs
Conclusions

Conclusion

I Oracle inequalities can be used to design adaptive SVMs.
I For which distributions do such adaptive SVMs learn fast?

I Bounds for entropy numbers
I Bounds for approximation error
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