Approximation Theoretical Questions for SVMs

Ingo Steinwart LA-UR 07-7056

October 20, 2007

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Informal Description of the Learning Goal

- ► X space of input samples
 - Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

$$T = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

► Goal:

With the help of T find a function $f : X \to \mathbb{R}$ which predicts label y for new, unseen x.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Illustration: Binary Classification

Problem:

The set X is devided into two *unknown* classes X_{-1} and X_1 .

Goal:

Find approximately the classes X_{-1} and X_1 .

Illlustration:

Left: Negative (blue) and positive (red) samples. *Right:* Behaviour of a decision function (green) $f : X \to Y$.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Formal Definition of Statistical Learning

Basic Assumptions:

- *P* is an *unknown* probability measure on $X \times Y$.
- $T = ((x_1, y_1), \dots, (x_n, y_n)) \in (X \times Y)^n$ sampled from P^n .
- Future (x, y) will also be sampled from *P*.
- ▶ $L: Y \times \mathbb{R} \to [0, \infty]$ loss function that measures cost L(y, t) of predicting y by t.

Goal:

Find a function $f_T : X \to \mathbb{R}$ with small *risk*

$$\mathcal{R}_{L,P}(f_T) := \int_{X \times Y} L(y, f_T(x)) dP(x, y) .$$

Interpretation:

Average future cost of predicting by f_T should be small.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Questions in Statistical Learning I

Bayes risk:

 $\mathcal{R}^*_{L,P} := \inf \big\{ \, \mathcal{R}_{L,P}(f) \mid f : X \to \mathbb{R} \text{ measurable } \big\} \, .$

A function attaining this minimum is denoted by f_{LP}^* .

Learning method:

Assigns to every training set T a predictor $f_T : X \to \mathbb{R}$.

Consistency:

A learning method is called universally consistent if

$$\mathcal{R}_{L,P}(f_T) \to \mathcal{R}^*_{L,P}$$
 in probability (1)

for $n \to \infty$ and *every* probability measure P on $X \times Y$.

Good news:

Many learning methods are universally consistent. *First result:* Stone (1977), AoS

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Questions in Statistical Learning II

Rates:

Does there exist a learning method and a convergence rate $a_n \searrow 0$ such that

$$\mathbb{E}_{T \sim P^n} \mathcal{R}_{L,P}(f_T) - \mathcal{R}^*_{L,P} \leq C_P a_n, \qquad n \geq 1,$$

for *every* probability measure P on $X \times Y$.

▶ Bad news: (Devroye, 1982, IEEE TPAMI) No! (if $|Y| \ge 2$, $|X| = \infty$, and L "non-trivial")

Good news:

Yes, if one makes some "mild?!" assumptions on P. Too many results in this direction to mention them.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Reproducing Kernel Hilbert Spaces I

• $k: X \times X \to \mathbb{R}$ is a **kernel**

: \Leftrightarrow there exist a Hilbert space H and a map $\Phi: X \to H$ with

$$k(x,x') = \langle \Phi(x), \Phi(x') \rangle$$
 for all $x, x' \in X$.

 \Leftrightarrow all $(k(x_i, x_j))_{i,j=1}^n$ are symmetric and positive semi-definite. **RKHS** of k: the "smallest" such H that consists of functions.

"Construction": Take the "completion" of

$$\left\{\sum_{i=1}^n \alpha_i k(x_i, .) : n \in \mathbb{N}, \alpha_1, \ldots, \alpha_n \in \mathbb{R}, x_1, \ldots, x_n \in X\right\}$$

equipped with the dot product

$$\left\langle \sum_{i=1}^{n} \alpha_i k(x_i, .), \sum_{j=1}^{m} \beta_j k(\hat{x}_j, .) \right\rangle := \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, \hat{x}_j).$$

• Feature map: $\Phi : x \mapsto k(x, .)$.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Reproducing Kernel Hilbert Spaces II

Polynomial Kernels:

For $a \geq 0$ and $m \in \mathbb{N}$ let

$$k(x,x') := (\langle x,x'
angle + a)^m, \qquad x,x' \in \mathbb{R}^d.$$

Gaussian RBF kernels:

For $\sigma > {\rm 0}$ let

$$k_{\sigma}(x,x') := \exp(-\sigma^2 \|x-x'\|_2^2), \qquad x,x' \in \mathbb{R}^d$$

The parameter $1/\sigma$ is called *width*.

▶ Denseness of Gaussian RKHSs: The RKHS H_{σ} of k_{σ} is dense in $L_{p}(\mu)$ for all $p \in [1, \infty)$ and all probability measures μ on \mathbb{R}^{d} .

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Support Vector Machines I

Support vector machines (SVMs) solve the problem

$$f_{T,\lambda} = \arg\min_{f \in H} \lambda \|f\|_{H}^{2} + \frac{1}{n} \sum_{i=1}^{n} L(y_{i}, f(x_{i})) , \qquad (2)$$

hinge loss: L(y, t) := max{0, 1 − yt}
 least squares loss: L(y, t) := (y − t)².

Representer Theorem:

The unique solution is of the form $f_{T,\lambda} = \sum_{i=1}^{n} \alpha_i k(x_i, .)$. Minimization actually takes place over $\{\alpha_1, \ldots, \alpha_n\}$.

Statistical Analysis of SVMs Approximation Theory for SVMs Conclusions Statistical Learning Theory: an Overview Support Vector Machines

Support Vector Machines II

Questions:

- Universally consistent?
- Learning rates?
- Efficient algorithms?
- Performance on real world problems?
- Additional properties?

An Oracle Inequality Consequences

An Oracle Inequality: Assumptions

Assumptions and notations:

- $L(y,0) \leq 1$ for all $y \in Y$.
- $L(y,.): \mathbb{R} \to [0,\infty)$ convex and has a minimum in [-1,1].
- $\check{t} := \max\{-1, \min\{1, t\}\}.$
- L is locally Lipschitz:

$$\left|L(y,t)-L(y,t')\right|\leq \left|t-t'\right|, \qquad y\in Y, t,t'\in [-1,1].$$

This yields

$$L(y, \check{t}) \leq |L(y, \check{t}) - L(y, 0)| + L(y, 0) \leq 2$$

Variance bound:

 $\exists \vartheta \in [0,1] \text{ and } V \geq 2 \ \forall f : X \to \mathbb{R}$:

$$\mathbb{E}_{P} \big(L \circ \breve{f} - L \circ f_{L,P}^* \big)^2 \leq V \cdot \big(\mathbb{E}_{P} (L \circ \breve{f} - L \circ f_{L,P}^*) \big)^{\vartheta}$$

An Oracle Inequality Consequences

Entropy Numbers

Let $S : E \to F$ be a bounded linear operator and $n \ge 1$. The *n*-th (dyadic) entropy number of S is defined by

$$e_n(S) := \inf \{ \varepsilon > 0 : \exists x_1, \ldots, x_{2^{n-1}} : SB_E \subset \bigcup_{i=1}^{2^{n-1}} (x_i + \varepsilon B_F) \}.$$

An Oracle Inequality Consequences

An Oracle Inequality

Oracle Inequality (slightly simplified)

- *H* separable RKHS of measurable kernel with $||k||_{\infty} \leq 1$.
- Entropy assumption: $\exists p \in (0, 1)$ and $a \ge 1$:

$$\mathbb{E}_{\mathcal{T}_X \sim \mathcal{P}_X^n} e_i(\mathrm{id}: H \to L_2(\mathcal{T}_X)) \leq a i^{-\frac{1}{2p}}, \qquad i, n \geq 1.$$

Fix an $f_0 \in H$ and a $B_0 \ge 1$ such that $\|L \circ f_0\|_{\infty} \le B_0$, Then there exists a constant K > 0 such that with probability P^n not less than $1 - e^{-\tau}$ we have

$$\mathcal{R}_{L,P}(\check{f}_{T,\lambda}) - \mathcal{R}_{L,P}^* \leq 9 \left(\lambda \|f_0\|_{H}^2 + \mathcal{R}_{L,P}(f_0) - \mathcal{R}_{L,P}^* \right) \\ + \mathcal{K} \left(\frac{a^{2p}}{\lambda^p n} \right)^{\frac{1}{2-p-\vartheta+\vartheta_P}} + 3 \left(\frac{72V\tau}{n} \right)^{\frac{1}{2-\vartheta}} + \frac{30B_0\tau}{n}$$

An Oracle Inequality Consequences

A Simplification

Consider the approximation error function

$$A(\lambda) := \min_{f \in H} \left(\lambda \|f\|_{H}^{2} + \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*} \right)$$

and the (unique) minimizer $f_{P,\lambda}$.

$$\implies$$
 For $f_0 := f_{P,\lambda}$ we can choose $B_0 = 1 + 2\sqrt{\frac{A(\lambda)}{\lambda}}$

Refined Oracle inequality

$$\mathcal{R}_{L,P}(\check{f}_{T,\lambda}) - \mathcal{R}_{L,P}^* \leq 9A(\lambda) + K\left(\frac{a^{2p}}{\lambda^p n}\right)^{\frac{1}{2-p-\vartheta+\vartheta_p}} + \frac{60\tau}{n}\sqrt{\frac{A(\lambda)}{\lambda}} + 3\left(\frac{72V\tau}{n}\right)^{\frac{1}{2-\vartheta}} + \frac{30\tau}{n}$$

An Oracle Inequality Consequences

Consistency

Assumptions:

- $L(y,t) \leq c(1+t^q)$ for all $y \in Y$ and $t \in R$.
- *H* is dense in $L_q(P_X)$

$$\implies$$
 $A(\lambda) \rightarrow 0$ for $\lambda \rightarrow 0$.

 \implies SVM is consistent whenever we chose λ_n such that

$$\lambda_n \rightarrow 0$$

 $\sup n\lambda_n < \infty$.

An Oracle Inequality Consequences

Learning Rates

Assumptions:

• There exists constants $c \ge 1$ and $\beta \in (0, 1]$ such that

$$A(\lambda) \leq c \lambda^{eta}, \qquad \lambda \geq 0.$$

Note: $\beta = 1 \implies f_{L,P}^* \in H$.

L is Lipschitz continuous (e.g. hinge loss).

 \implies Choosing $\lambda_n \sim n^{-\alpha}$ we obtain a polynomial learning rate. Zhou et al. (2005?)

Some calculations show that the best learning rate we can obtain is

$$n^{-\min\{\frac{2\beta}{\beta+1},\frac{\beta}{\beta(2-p-\vartheta+\vartheta p)+p}\}}$$

It is achieved by

$$\lambda_n \sim n^{-\min\{rac{2}{eta+1},rac{1}{eta(2-p-artheta+artheta p)+p}\}}$$

An Oracle Inequality Consequences

Adaptivity

For
$$T = ((x_1, y_1), \dots, (x_n, y_n))$$
 define $m := \lfloor n/2 \rfloor + 1$ and
 $T_1 := ((x_1, y_1), \dots, (x_m, y_m))$
 $T_2 := ((x_{m+1}, y_{m+1}), \dots, (x_n, y_n)).$

- Split T into T_1 and T_2 .
- ► Fix an n⁻² net Λ_n of (0, 1].
- ▶ **Training:** Use T_1 to find $f_{T_1,\lambda}$, $\lambda \in \Lambda_n$.
- ▶ Validation: Use T_2 to determine a $\lambda_{T_2} \in \Lambda_n$ that satisifes

$$\mathcal{R}_{L,T_2}(\check{f}_{T_1,\lambda_{T_2}}) = \min_{\lambda \in \Lambda_n} \mathcal{R}_{L,T_2}(\check{f}_{T_1,\lambda}).$$

 $\implies \text{ This yields a consistent learning method with learning rate} \\ n^{-\min\{\frac{2\beta}{\beta+1},\frac{\beta}{\beta(2-p-\vartheta+\vartheta p)+p}\}}.$

An Oracle Inequality Consequences

Discussion

- The oracle inequality can be generalized to regularized risk minimizers.
- The presented oracle inequality yields fastest known rates in many cases.
- In some cases these rates are known to be optimal in a min-max sense.
- Oracle inequalities can be used to design adaptive strategies that learn fast without knowing key parameters of *P*.

Question: Which distributions can be learned fast?

An Oracle Inequality Consequences

Discussion II

Observations:

- Data often lies in high dimensional spaces, but not uniformly.
- Regression: target is often smooth (but not always).
- Classification: How much do classes "overlap"?

The Single Kernel Case Gaussian Kernels

Observations

The relation between RKHS H and distribution P is described by two quantities:

▶ The constants *a* and *p* in

$$\mathbb{E}_{\mathcal{T}_X \sim \mathcal{P}_X^n} e_i(\mathrm{id}: H \to L_2(\mathcal{T}_X)) \leq a i^{-\frac{1}{2p}}, \qquad i, n \geq 1.$$

The approximation error function

$$A(\lambda) := \min_{f \in H} \left(\lambda \|f\|_{H}^{2} + \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*} \right)$$

Task:

Find realistic assumptions on P such that both quantities are small for commonly used kernels.

The Single Kernel Case Gaussian Kernels

Entropy Numbers

Consider the integral operator $T_k: L_2(P_X) \to L_2(P_X)$ defined by

$$T_k f(x) := \int_X k(x, x') f(x') P_X(dx')$$

Question:

What is the relation between the EW's of T_k and

$$\mathbb{E}_{T_X \sim P_X^n} e_i(\mathrm{id} : H \to L_2(T_X))$$
?

Question:

What is the behaviour if $X \subset \mathbb{R}^d$ but P_X is not absolutely continuous with respect to the Lebesgue measure?

The Single Kernel Case Gaussian Kernels

Approximation Error Function

For the least squares loss we have

$$A(\lambda) = \inf_{f \in H} \lambda \|f\|_{H}^{2} + \|f - f_{L,P}^{*}\|_{L_{2}(P_{X})}^{2}.$$

For Lipschitz continuous losses we have have

$$A(\lambda) \leq \inf_{f \in H} \lambda \|f\|_{H}^{2} + \|f - f_{L,P}^{*}\|_{L_{1}(P_{X})}.$$

Smale & Zhou 03:

In both cases the behaviour of $A(\lambda)$ for $\lambda \to 0$ can be characterized by the K-functional of the pair $(H, L_p(P_X))$.

Questions:

What happens if $X \subset \mathbb{R}^d$ but P_X is not absolutely continuous with respect to the Lebesgue measure?

The Single Kernel Case Gaussian Kernels

Introduction

Observations:

- ▶ The Gaussian kernel is successfully used in many applications.
- \blacktriangleright It has a parameter σ that is almost never fixed a-priori.

Question:

How does σ influence the learning rates?

The Single Kernel Case Gaussian Kernels

Appproximation Quantities for Gaussian Kernels

For H_{σ} being the Gaussian kernel with width σ the entropy assumption is of the form

$$\mathbb{E}_{\mathcal{T}_X \sim \mathcal{P}_X^n} e_i(\mathrm{id}: \mathcal{H}_\sigma \to L_2(\mathcal{T}_X)) \leq \mathsf{a}_\sigma \, i^{-\frac{1}{2p}} \,, \qquad i, \, n \geq 1.$$

• The approximation error function also depends on σ :

$$A_{\sigma}(\lambda) = \inf_{f \in H_{\sigma}} \lambda \|f\|_{H_{\sigma}}^2 + \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^*.$$

The Single Kernel Case Gaussian Kernels

Oracle Inequality

Oracle inequality using Gaussian kernels

$$\begin{aligned} \mathcal{R}_{L,P}(\check{f}_{T,\lambda}) - \mathcal{R}_{L,P}^* &\leq 9 \left(\lambda \|f_0\|_{H_{\sigma}}^2 + \mathcal{R}_{L,P}(f_0) - \mathcal{R}_{L,P}^* \right) \\ &+ \mathcal{K} \left(\frac{a_{\sigma}^{2p}}{\lambda^p n} \right)^{\frac{1}{2-p-\vartheta+\vartheta p}} + 3 \left(\frac{72V\tau}{n} \right)^{\frac{1}{2-\vartheta}} + \frac{30B_0(\sigma)\tau}{n} \end{aligned}$$

Usually σ becomes larger with the sample size. **Task:** Find estimates that are good in σ and *i* (or λ), simultaneously.

The Single Kernel Case Gaussian Kernels

An Estimate for the Entropy Numbers

Theorem: (S. & Scovel, AoS 2007) Let $X \subset \mathbb{R}^d$ be compact. Then for all $\varepsilon > 0$ and $0 there exists a constant <math>c_{\varepsilon,p} \ge 1$ such that

$$\mathbb{E}_{\mathcal{T}_X \sim P_X^n} e_i(\mathrm{id} : H \to L_2(\mathcal{T}_X)) \leq c_{\varepsilon,p} \, \sigma^{\frac{(1-p)(1+\varepsilon)d}{2p}} \, i^{-\frac{1}{2p}}$$

This estimate does not consider properties of P_X .

Questions:

How good is this estimate? For which P_X can this be significantly improved?

The Single Kernel Case Gaussian Kernels

Distance to the Decision Boundary

$$\eta(x) := P(y = 1|x).$$
X₋₁ := {η < 1/2} and X₁ := {η > 1/2}.
For $x \in X \subset \mathbb{R}^d$ we define
 $\Delta(x) := \begin{cases} d(x, X_1), & \text{if } x \in X_{-1}, \\ d(x, X_{-1}), & \text{if } x \in X_1, \end{cases}$

$$\Delta(x) := \begin{cases} d(x, X_1), & \text{if } x \in X_{-1}, \\ d(x, X_{-1}), & \text{if } x \in X_1, \\ 0 & \text{otherwise}, \end{cases}$$
(3)

where d(x, A) denotes the distance between x and A. Interpretation:

 $\Delta(x)$ measures the distance of x to the "decision boundary".

The Single Kernel Case Gaussian Kernels

Margin Exponents

Margin exponent:

 $\exists c \geq 1 \text{ and } \alpha > 0 \text{ such that}$

$$P_X(\Delta(x) \le t) \le ct^{lpha}\,, \qquad t>0.$$

Example:

- $X \subset \mathbb{R}^d$ compact, positive volume.
- P_X uniform distribution.
- Decision boundary linear or circle.

 $\implies \alpha = 1.$

This remains true under transformations

Margin-noise exponent:

 $\exists c \geq 1 \text{ and } \beta > 0 \text{ such that}$

$$|2\eta-1| P_X(\Delta(x) \leq t) \leq ct^{\alpha}, \qquad t > 0.$$

Interpretation:

T

The Single Kernel Case Gaussian Kernels

A Bound on the Approximation Error

Theorem: (S. & Scovel, AoS 2007)

- $X \subset \mathbb{R}^d$ compact.
- *P* distribution on $X \times \{-1, 1\}$ with margin-noise exponent β .
- L hinge loss.

 $\exists \ c_{d,\tau} > 0 \text{ and } \tilde{c}_{d,\beta} > 0 \ \forall \ \sigma > 0 \text{ and } \lambda > 0 \ \exists \ f^* \in H_{\sigma} \text{ satisfying } \|f^*\|_{\infty} \leq 1 \text{ and }$

$$\lambda \|f^*\|_{\mathcal{H}_{\sigma}}^2 + \mathcal{R}_{\mathcal{L},\mathcal{P}}(f^*) - \mathcal{R}_{\mathcal{L},\mathcal{P}}^* \leq c_{d, au}\lambda\sigma^d + ilde{c}_{d,eta}\,c\,\sigma^{-eta}\,.$$

Remarks:

- Not optimal in λ .
- How can this be improved?
- Better dependence on dimension?!

Conclusion

- Oracle inequalities can be used to design adaptive SVMs.
- ▶ For which distributions do such adaptive SVMs learn fast?
 - Bounds for entropy numbers
 - Bounds for approximation error