Approximation Theoretical Questions for SVMs

Ingo Steinwart
LA-UR 07-7056

October 20, 2007

Ingo Steinwart LA-UR 07-7056 Approximation Theoretical Questions for SVMs



Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Informal Description of the Learning Goal

» X space of input samples
Y space of labels, usually Y C R.

» Already observed samples

T = ((X1,Y1)7--~7(Xn7y”)) € (X xY)

» Goal:
With the help of T find a function f : X — R which predicts
label y for new, unseen x.
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Introduction

Statistical Learning Theory: an Overview
Support Vector Machines

lllustration: Binary Classification

» Problem:

The set X is devided into two unknown classes X_1 and Xj.
» Goal:

Find approximately the classes X_1 and Xj.

IHllustration:

Left: Negative (blue) and positive (red) samples.
Right: Behaviour of a decision function (green) f : X — Y.
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Formal Definition of Statistical Learning

» Basic Assumptions:

P is an unknown probability measure on X x Y.

T = ((x1,91),--,(xn,¥n)) € (X x Y)" sampled from P".
Future (x, y) will also be sampled from P.

L:Y xR — [0,00] loss function that measures cost L(y, t) of
predicting y by t.

vV vy VvYyYy

» Goal:
Find a function f1 : X — R with small risk

Rop(fr) ::/X Ly frl)) dP(x.y)

» Interpretation:
Average future cost of predicting by fr should be small.
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Questions in Statistical Learning |

» Bayes risk:
Rip:=inf{ R p(f) | f: X — R measurable } .

A function attaining this minimum is denoted by f"p.
» Learning method:
Assigns to every training set T a predictor f : X — R.

» Consistency:
A learning method is called universally consistent if

Rep(fr) — Rip in probability (1)
for n — oo and every probability measure P on X x Y.

» Good news:
Many learning methods are universally consistent.
First result: Stone (1977), AoS
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Questions in Statistical Learning Il

» Rates:

Does there exist a learning method and a convergence rate
ap "\, 0 such that

ErepRip(fr) —Rip < Cpan, n>1,

for every probability measure P on X x Y.

» Bad news: (Devroye, 1982, IEEE TPAMI)

No! (if |Y| > 2, |X| = o0, and L “non-trivial™)
» Good news:

Yes, if one makes some “mild?!" assumptions on P.

Too many results in this direction to mention them.
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Reproducing Kernel Hilbert Spaces |

» k: X x X — Ris a kernel
< there exist a Hilbert space H and a map ¢ : X — H with

k(x,x") = (®(x), d(x")) for all x,x" € X.

< all (k(xi,x;))7;—; are symmetric and positive semi-definite.
» RKHS of k: the “smallest” such H that consists of functions.
» “Construction”: Take the “completion” of

n
{Za,-k(x,-,.) neNay,...,a, ER xq,. .., X, EX}
i=1

equipped with the dot product
(Do ik, ) Do Aik(55.)) = D0 D" illk(x.5).
i=1 j=1 i=1 j=1

» Feature map: ¢ : x — k(x,.).
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Reproducing Kernel Hilbert Spaces Il

» Polynomial Kernels:
For a>0and m e N let

k(x,x") == ({(x,x") + a)", x,x' € R? .
» Gaussian RBF kernels:
For o > 0 let
ko'(XaX,) = eXp(fO'ZHX - X,H%)? X,X, € Rd :

The parameter 1/0 is called width.

» Denseness of Gaussian RKHSs:
The RKHS H, of k, is dense in L,(1) for all p € [1,00) and
all probability measures 1 on RY.
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Support Vector Machines |

» Support vector machines (SVMs) solve the problem

n

. 1
fr = arg min AFIG + n Z L(yi, F(x1)) (2)
i—1

H is a RKHS,
T = ((x1,1)---,(xn,¥n)) € (X x Y)"is a training set,
A > 0 is a free regularization parameter,
L:Y xR —[0,00) is a convex loss, e.g.
> hinge loss: L(y,t):= max{0,1— yt}
> least squares loss: L(y,t):= (y — t)>

vVvyVvVvyy

» Representer Theorem:
The unique solution is of the form frx = Y7 ; ajk(x;,.).
Minimization actually takes place over {a1,...,a,}.
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Introduction
Statistical Learning Theory: an Overview
Support Vector Machines

Support Vector Machines Il

Questions:

v

Universally consistent?

» Learning rates?

» Efficient algorithms?

» Performance on real world problems?
>

Additional properties?
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Statistical Analysis of SVMs An Oracle Inequality
COI]SE(‘[IQHCES

An Oracle Inequality: Assumptions

Assumptions and notations:
» L(y,0)<1forallyeY.
» L(y,.): R—[0,00) convex and has a minimum in [—1,1].
» f:=max{—1,min{1,t}}.
» L is locally Lipschitz:
‘L(Y7t)_L(y7t/)‘§’t_t,|a yEY,t,t’G[—l,l].
This yields
Ly, T) < |L(y,?) = L(y,0)| + L(y,0) < 2
» Variance bound:

9 e0,]]and V>2VF: X - R:
Ep(Lof—Loffp)> < V- (Ep(Lof—Lofp))’
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Statistical Analysis of SVMs An Oracle Inequality
COI]SE(‘[IQHCES

Entropy Numbers

Let S: E — F be a bounded linear operator and n > 1. The n-th
(dyadic) entropy number of S is defined by

2nfl
en(S) = inf{a >0:3x1,...,%n1:SBg C U (xi + EBF)}.
i=1
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Statistical Analysis of SVMs An Oracle Inequality
COI]SE(‘[IQHCES

An Oracle Inequality

Oracle Inequality (slightly simplified)
> H separable RKHS of measurable kernel with |/k|| ., < 1.
» Entropy assumption: 3p € (0,1) and a > 1:

Ereeppei(id: H— L(Tx)) < ai™%,  i,n>1

» Fixan fo € H and a By > 1 such that ||Lo fy]|, < By,

Then there exists a constant K > 0 such that with probability P"
not less than 1 — e™™ we have

Rip(fra) —Rip < 9K +Rip(fh) —Rip)
‘92,,>2_P_119+19P +3(72 VT)z_lg n 30ByT
APn

+K

n n
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

A Simplification

Consider the approximation error function
A = i < f 2 f — * )
(A) = min{Allfl[}; + Rep(f) = RLp

and the (unique) minimizer fp y.
= For fo := fp \ we can choose By =1+ 2 @

Refined Oracle inequality

a2p)2_,,_£9+19,,+607 A(N)
APn n A
2V1\55

+3( nT)HJrg’O—T

RL,P(?T,)\) — ip < 9A(N) + K(

n
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

Consistency

Assumptions:
> L(y,t) <c(l+t9) forally e Yand teR.
> His dense in L4(Px)

= A(\) — 0 for A — 0.

= SVM is consistent whenever we chose A, such that

Ap — O

supni, < 0.
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

Learning Rates

Assumptions:
» There exists constants ¢ > 1 and (3 € (0, 1] such that

A(N) < e)f, A>0.
Note: =1 — fL*’PeH.

» L is Lipschitz continuous (e.g. hinge loss).

= Choosing A\, ~ n™ we obtain a polynomial learning rate.
Zhou et al. (20057)
Some calculations show that the best learning rate we can obtain is

ing 28 s
n~ MM G se e
It is achieved by

—min{-2 1
Ap ~ N min{ 531 sE—p— o orTr )
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

Adaptivity

For T = ((x1,)1)- -, (xn, ¥n)) define m:= |n/2] + 1 and

T = ((X17}/1)7"'?(Xm7ym))
T, = ((XerlaYerl)a"'a(Xna}/n))'

» Split T into T1 and T».

» Fix an n~2 net A, of (0, 1].

» Training: Use Ti to find f1; \, A € A

» Validation: Use T, to determine a A7, € A, that satisifes

Rim(Fring,) = min Re1(Frin)-
n

= This yields a consistent learning method with learning rate

—minf28. B
n~ MM G se et oee )
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

Discussion

» The oracle inequality can be generalized to regularized risk
minimizers.

» The presented oracle inequality yields fastest known rates in
many cases.

» In some cases these rates are known to be optimal in a
min-max sense.

» Oracle inequalities can be used to design adaptive strategies
that learn fast without knowing key parameters of P.

Question: Which distributions can be learned fast?
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Statistical Analysis of SVMs An Oracle Inequality
Consequences

Discussion I

Observations:
» Data often lies in high dimensional spaces, but not uniformly.
» Regression: target is often smooth (but not always).

» Classification: How much do classes “overlap”?
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Observations

The relation between RKHS H and distribution P is descibed by
two quantities:

» The constants a and p in
1 .
]ETXNp)n(e,'(id H— L2(TX)) < ai 2, iyn>1.
» The approximation error function

AR = min (A FI + Rep(F) = Ri p)

Task:
Find realistic assumptions on P such that both quantities are small
for commonly used kernels.
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Entropy Numbers

Consider the integral operator Ty : Lo(Px) — L2(Px) defined by

Tif(x) ::/Xk(x,x’)f(x’) Px(dx)

Question:
What is the relation between the EW's of T, and

ETXNp;e,'(id H— LQ(T)()) ?

Question:
What is the behaviour if X € RY but Py is not absolutely
continuous with respect to the Lebesgue measure?
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Approximation Error Function

» For the least squares loss we have
A = inf AlIFIF -+ IIf = el py)-
fEH ) 2( X)
» For Lipschitz continuous losses we have have

. 2 *
AN < flg}:/\HfHH +If = pllLipy)-

Smale & Zhou 03:
In both cases the behaviour of A(A) for A — 0 can be
characterized by the K-functional of the pair (H, Ly(Px)).

Questions:
What happens if X € R but Px is not absolutely continuous with
respect to the Lebesgue measure?
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Introduction

Observations:
» The Gaussian kernel is successfully used in many applications.
» It has a parameter ¢ that is almost never fixed a-priori.

Question:
How does o influence the learning rates?
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Appproximation Quantities for Gaussian Kernels

» For H, being the Gaussian kernel with width o the entropy
assumption is of the form

_i )
ETXNP;ef(id tHy — Lo(Tx)) < a,i 20, i,n>1.
» The approximation error function also depends on o

As(\) = inf A1, +Rup(f) — Rip.
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Oracle Inequality

Oracle inequality using Gaussian kernels

Rep(fra) —Rip < 9NIRIF, +Rep(h) — Rip)

+K(‘3)§’)>2_,,_119+19F,+3(72V7)2_119+3OBO(0)T
APn n n

Usually o becomes larger with the sample size. Task:
Find estimates that are good in ¢ and i (or \), simultaneously.
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

An Estimate for the Entropy Numbers

Theorem: (S. & Scovel, AoS 2007)
Let X C RY be compact. Then for all e >0 and 0 < p < 1 there
exists a constant c; , > 1 such that

(A=p)dte)d 1
ETXNp;e,'(id tH— L2(TX)) < CepO 2p "2

This estimate does not consider properties of Px.

Questions:
How good is this estimate?
For which Px can this be significantly improved?

Ingo Steinwart LA-UR 07-7056 Approximation Theoretical Questions for SVMs



The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Distance to the Decision Boundary

> n(x):= P(y = 1|x).
» X_1:={n<1/2} and X; :={n > 1/2}.
» For x € X C RY we define
d(X,Xl), if x e X_1,
A(x) = ¢d(x,X_1), ifxeX, (3)
0 otherwise,

where d(x, A) denotes the distance between x and A.

Interpretation:
A(x) measures the distance of x to the “decision boundary”.
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

Margin Exponents

» Margin exponent:
dec > 1 and o > 0 such that

Px(A(x) < t) < ct*, t>0.

Example:
» X C R? compact, positive volume.
» Px uniform distribution.
» Decision boundary linear or circle.
= a=1.
This remains true under transformations
» Margin-noise exponent:
dc > 1 and B > 0 such that

|2n — 1| Px(A(x) < t) < ct*, t > 0.
Interpretation:

A A - .
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The Single Kernel Case
Approximation Theory for SVMs Gaussian Kernels

A Bound on the Approximation Error

Theorem: (S. & Scovel, AoS 2007)

» X C R? compact.
» P distribution on X x {—1,1} with margin-noise exponent .

» L hinge loss.
dcgr>0and ¢y >0V o >0and A >0 3 f* € H, satisfying
1F*lloc <1 and
)\Hf*H%_,U + RL’p(f*) — Rt,P < CdyT)\Ud + Edﬁ C(T_/6 .

Remarks:

» Not optimal in A.
» How can this be improved?
» Better dependence on dimension?!
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Conclusions

Conclusion

» Oracle inequalities can be used to design adaptive SVMs.
» For which distributions do such adaptive SVMs learn fast?

» Bounds for entropy numbers
» Bounds for approximation error
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