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The Lebesgue inequality

A. Lebesgue proved the following inequality: for any
2π-periodic continuous function f one has

‖f − Sn(f)‖∞ ≤ (4 +
4

π2
ln n)En(f)∞,

where Sn(f) is the nth partial sum of the Fourier series of f
and En(f)∞ is the error of the best approximation of f by
the trigonometric polynomials of order n in the uniform
norm ‖ · ‖∞.
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1. Approximation. Redundant systems

We say a set of functions D from a Hilbert space H is a
dictionary if each g ∈ D has norm one (‖g‖ := ‖g‖H = 1)
and the closure of spanD coincides with H. We let Σm(D)
denote the collection of all functions (elements) in H which
can be expressed as a linear combination of at most m
elements of D. Thus each function s ∈ Σm(D) can be
written in the form

s =
∑

g∈Λ

cgg, Λ ⊂ D, #Λ ≤ m,

where the cg are real or complex numbers. For a function
f ∈ H we define its best m-term approximation error

σm(f) := σm(f,D) := inf
s∈Σm(D)

‖f − s‖.
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Orthogonal Greedy Algorithm

If H0 is a finite dimensional subspace of H, we let PH0
be

the orthogonal projector from H onto H0. That is PH0
(f) is

the best approximation to f from H0.
Orthogonal Greedy Algorithm (OGA). We define f0 := f .
Then for each m ≥ 1 we inductively define:
1). ϕm ∈ D is any element satisfying (we assume existence)

|〈fm−1, ϕm〉| = sup
g∈D

|〈fm−1, g〉|;

2).

Gm(f,D) := PHm
(f), where Hm := span(ϕ1, . . . , ϕm);

3).
fm := f − Gm(f,D).
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Examples

It is clear that for an orthonormal basis B of a Hilbert space
H we have for each f

‖f − Gm(f,B)‖ = σm(f,B).

There is a nontrivial classical example of a redundant
dictionary, having the same property: OGA realizes the best
m-term approximation for each individual function. We
describe that dictionary now. Let Π be a set of functions
from L2([0, 1]2) of the form u(x1)v(x2) with the unit L2-norm.
Then for this dictionary and H = L2([0, 1]2) we have for each
f ∈ H

‖f − Gm(f,Π)‖ = σm(f,Π).
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Incoherent dictionaries

We consider dictionaries that have become popular in
signal processing. Denote

M(D) := sup
g 6=h;g,h∈D

|〈g, h〉|

the coherence parameter of a dictionary D. For an
orthonormal basis B we have M(B) = 0. It is clear that the
smaller the M(D) the more the D resembles an
orthonormal basis. However, we should note that in the
case M(D) > 0 the D can be a redundant dictionary.
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First results

The first general Lebesgue type inequality for the OGA for
the M -coherent dictionary has been obtained in [Gilbert,
Muthukrishnan, Strauss, 2003]. They proved that

‖fm‖ ≤ 8m1/2σm(f) for m < 1/(32M).

The constants in this inequality were improved in [Tropp,
2004] (see also [Donoho, Elad, Temlyakov, 2004]):

‖fm‖ ≤ (1 + 6m)1/2σm(f) for m < 1/(3M).
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New results

The following inequalities has been obtained in [Donoho,
Elad, Temlyakov, 2007].
Theorem 1.1 Let a dictionary D have the mutual coherence
M = M(D). Assume m ≤ 0.05M−2/3. Then for l ≥ 1

satisfying 2l ≤ log m we have

‖fm(2l−1)‖ ≤ 6m2−l

σm(f).

Corollary 1.1 Let a dictionary D have the mutual coherence
M = M(D). Assume m ≤ 0.05M−2/3. Then we have

‖f[m log m]‖ ≤ 24σm(f).
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2. Learning Theory

Let X ⊂ R
d, Y ⊂ R be Borel sets, ρ be a Borel probability

measure on Z = X × Y . For f : X → Y define the error

E(f) :=

∫

Z
(f(x) − y)2dρ.

Consider ρ(y|x) - conditional (with respect to x) probability
measure on Y and ρX - the marginal probability measure
on X (for S ⊂ X, ρX(S) = ρ(S × Y )). Define fρ(x) to be the
conditional expectation of y with respect to measure ρ(·|x).
The function fρ is known in statistics as the regression
function of ρ.
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Setting

It is clear that if fρ ∈ L2(ρX) then it minimizes the error E(f)
over all f ∈ L2(ρX): E(fρ) ≤ E(f), f ∈ L2(ρX). Thus, in the
sense of error E(·) the regression function fρ is the best to
describe the relation between inputs x ∈ X and outputs
y ∈ Y . Now, our goal is to find an estimator fz, on the base
of given data z = ((x1, y1), . . . , (xm, ym)) that approximates
fρ well with high probability. We assume that (xi, yi),
i = 1, . . . ,m are independent and distributed accoding to ρ.
We note that it is easy to see that for any f ∈ L2(ρX)

E(f) − E(fρ) = ‖f − fρ‖
2
L2(ρX).
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Least Squares Estimator

It is well known in statistics that the following way of building
fz provides a near optimal estimator in many cases. First,
choose a right hypothesis space H. Second, construct
f
z,H ∈ H as the empirical optimum (least squares

estimator). We explain this in more detail. We define

f
z,H = arg min

f∈H
Ez(f),

where

Ez(f) :=
1

m

m
∑

i=1

(f(xi) − yi)
2

is the empirical error (risk) of f . This f
z,H is called the em-

pirical optimum or the Least Squares Estimator (LSE).
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Sparse approximants

Let D(n, q) := {gn
l }

Nn

l=1, n ∈ N, Nn ≤ nq, q ≥ 1, be a system of
bounded functions defined on X. We will consider a
sequence {D(n, q)}∞n=1 of such systems. In building an
estimator, based on D(n, q), we are going to use n-term
approximations with regard to D(n, q):

GΛ :=
∑

l∈Λ

clg
n
l , |Λ| = n. (2.1)

A standard assumption that we make in supervised learning

theory is that |y| ≤ M almost surely. This implies that we

always assume that |fρ| ≤ M .
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Boundedness assumption

Denoting ‖f‖B(X) := supx∈X |f(x)|, we rewrite the above
assumption in the form ‖fρ‖B(X) ≤ M . It is natural to restrict
our search to estimators fz satisfying the same inequality
‖fz‖B(X) ≤ M . Now, there are two standard in learning
theory ways to go. In the first way (I) we are looking for an
estimator of the form (2.1) with an extra condition

‖GΛ‖B(X) ≤ M. (2.2)

In the second way (II) we take an approximant GΛ of the
form (2.1) and truncate it, i.e. consider TM (GΛ), where TM

is a truncation operator: TM (u) = u if |u| ≤ M and
TM (u) = M sign u if |u| ≥ M . Then automatically
‖TM (GΛ)‖B(X) ≤ M .
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Hypothesis spaces I

Let us look in more detail at the hypothesis spaces
generated in the above two cases. In the case (I) we use
the following compacts in B(X) as a source of estimators

Fn(q) := {f : ∃Λ ⊂ [1, Nn], |Λ| = n, f =
∑

l∈Λ

clg
n
l , ‖f‖B(X) ≤ M}.

An important good feature of Fn(q) is that it is a collection of
sparse (at most n terms) estimators. An important
drawback is that it may not be easy to check if (2.2) is
satisfied for a particular GΛ of the form (2.1).
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Hypothesis spaces II

In the case (II) we use the following sets in B(X) as a
source of estimators

F T
n (q) := {f : ∃Λ ⊂ [1, Nn], |Λ| = n, f = TM (

∑

l∈Λ

clg
n
l )}.

An obvious good feature of F T
n (q) is that by definition we

have ‖f‖B(X) ≤ M for any f from F T
n (q). An important

drawback of it is that F T
n (q) has (in general) a rather

complex structure. In particular, applying the truncation
operator TM to GΛ we loose (in general) the sparseness
property of GΛ.
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Covering numbers

Now, when we have specified our hypothesis spaces, we
can look for an existing theory that provides the
corresponding error bounds. The general theory is well
developed in the case (I). We will use a variant of such a
general theory developed in Temlyakov (2005). This theory
is based on the following property of compacts Fn(q),
formulated in terms of covering numbers:

N(Fn(q), ε, B(X)) ≤ (1 + 2M/ε)nnqn. (2.3)

We now formulate the corresponding results. For a compact
Θ in a Banach space B we denote N(Θ, ε, B) the covering
number that is the minimal number of balls of radius ε with
centers in Θ needed for covering Θ.
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Approximation tools

Let a, b, be two positive numbers. Consider a collection
K(a, b) of compacts Kn in B(X) that are contained in the
M -ball of B(X) and satisfy the following covering numbers
condition

N(Kn, ε, B(X)) ≤ (a(1 + 1/ε))nnbn, n = 1, 2, . . .. (2.4)

The following theorem has been proved in Temlyakov
(2005). We begin with the definition of our estimator. Let as
above K := K(a, b) be a collection of compacts Kn in B(X)
satisfying (2.4).
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Penalized Least Squares Estimator

We take a parameter A ≥ 1 and consider the following
Penalized Least Squares Estimator (PLSE)

fA
z

:= fA
z

(K) := fz,Kn(z)

with

n(z) := arg min
1≤j≤m

(

Ez(fz,Kj
) +

Aj ln m

m

)

.

Denote for a set L of a Banach space B

d(Θ, L)B := sup
f∈Θ

inf
g∈L

‖f − g‖B .
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Lebesgue type inequality for PLSE

Theorem 2.1 For K := {Kn}
∞
n=1 satisfying (2.4) and M > 0

there exists A0 := A0(a, b,M) such that for any A ≥ A0 and
any ρ such that |y| ≤ M a.s. we have

‖fA
z
− fρ‖

2
L2(ρX) ≤ min

1≤j≤m

(

3d(fρ,Kj)
2
L2(ρX) +

4Aj ln m

m

)

with probability ≥ 1 − m−c(M)A.
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A particular case

It is clear from (2.3) and from definition of Fn(q) that we can
apply Theorem 2.1 to the sequence of compacts {Fn(q)}
and obtain the following error bound with probability
≥ 1 − m−c(M)A

‖fA
z
− fρ‖

2
L2(ρX) ≤ min

1≤j≤m

(

3d(fρ, Fj(q))
2
L2(ρX) +

4Aj ln m

m

)

.

(2.5)
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Comments

We note that the inequality (2.5) is the Lebesgue type
inequality. Indeed, in the left side of (2.5) we have an error
of a particular estimator fA

z
built as the PLSE and in the

right side of (2.5) we have d(fρ, Fj(q))L2(ρX) - the best error
that we can get using estimators from Fj(q), j = 1, 2, . . . .
We remind that by construction fA

z
∈ Fn(z)(q).

Let us now discuss an application of the above theory in the
case (II). We cannot apply that theory directly to the
sequence of sets {F T

n (q)} because we don’t know if these
sets satisfy the covering number condition (2.4). However,
we can modify the sets F T

n (q) to make them satisfy the
condition (2.4).
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Modified hypothesis spaces II

Let c ≥ 0 and define

F T
n (q, c) := {f : ∃GΛ :=

∑

l∈Λ

clg
n
l ,Λ ⊂ [1, Nn], |Λ| = n,

‖GΛ‖B(X) ≤ C2n
c, f = TM (GΛ)}

with some fixed C2 ≥ 1. Then, using the inequality
|TM (f1(x)) − TM (f2(x))| ≤ |f1(x) − f2(x)|, x ∈ X, it is easy to
get that

N(F T
n (q, c), ε, B(X)) ≤ (2C2(1 + 1/ε)nn(q+c)n.

Therefore, (2.4) is satisfied with a = 2C2 and b = q + c.
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Theory versus implementation

The above estimators (built as the PLSE) are very good
from the theoretical point of view. Their error bounds satisfy
the Lebesgue type inequalities. However, they are not good
from the point of view of implementation. For example,
there is no simple algorithm to find f

z,Fn(q) because Fn(q) is

a union of
(Nn

n

)

M -balls of n-dimensional subspaces. Thus,
finding an exact LSE f

z,Fn(q) is practically impossible. We
now use a remark from Temlyakov (2005) that allows us to
build an approximate LSE with good approximation error.
We proceed to the definition of the Penalized Approximate
Least Squares Estimator (PALSE).
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PALSE

Let δ := {δj,m}m
j=1 be a sequence of nonnegative numbers.

We define f
z,δ,Kj

as an estimator satisfying the relation

Ez(fz,δ,Kj
) ≤ Ez(fz,Kj

) + δj,m. (2.6)

In other words, f
z,δ,Kj

is an approximation to the least
squares estimator fz,Kj

.
Next, we take a parameter A ≥ 1 and define the Penalized
Approximate Least Squares Estimator (PALSE)

fA
z,δ := fA

z,δ(K) := f
z,δ,Kn(z)

with

n(z) := arg min
1≤j≤m

(

Ez(fz,δ,Kj
) +

Aj ln m

m

)

.
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Lebesgue type inequality for PALSE

The theory developed in Temlyakov (2005) gives the
following control of the error.
Theorem 2.2 Under the assumptions of Theorem 2.1 we have

‖fA
z,δ − fρ‖

2
L2(ρX) ≤ min

1≤j≤m

(

3d(fρ,Kj)
2
L2(ρX) +

4Aj ln m

m
+ 2δj,m

)

with probability ≥ 1 − m−c(M)A.
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Greedy algorithms in PALSE

Theorem 2.2 guarantees a good error bound for any
penalized estimator built from {f

z,δ,Kj
} satisfying (2.6). We

will use greedy algorithms in building an approximate
estimator. We now present results from Temlyakov (2005).
We will need more specific compacts F (n, q) and will
impose some restrictions on gn

l . We assume that
‖gn

l ‖B(X) ≤ C1 for all n and l. We consider the following
compacts instead of Fn(q)

F (n, q) := {f : ∃Λ ⊂ [1, Nn], |Λ| = n, f =
∑

l∈Λ

clg
n
l ,

∑

l∈Λ

|cl| ≤ 1}.

Then we have ‖f‖B(X) ≤ C1 for any f ∈ F (n, q) and
‖f‖B(X) ≤ M if M ≥ C1.
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Discretization

Let z = (z1, . . . , zm), zi = (xi, yi), be given. Consider the
following system of vectors in R

m:

vj,l := (gj
l (x1), . . . , g

j
l (xm)), l ∈ [1, Nj ].

We equip the R
m with the norm ‖v‖ := (m−1

∑m
i=1 v2

i )
1/2.

Then
‖vj,l‖ ≤ ‖gj

l ‖B(X) ≤ C1.

Consider the following system in H = R
m with the defined

above norm ‖ · ‖

G := {vj,l}
Nj

l=1.
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Relaxed Greedy Algorithm

Finding the estimator

f
z,F (j,q) =

∑

l∈Λ

clg
j
l ,

∑

l∈Λ

|cl| ≤ 1, |Λ| = j, Λ ⊂ [1, Nj ],

is equivalent to finding best j-term approximant of y ∈ R
m

from the A1(G) in the space H. We apply the Relaxed
Greedy Algorithm with respect to G to y and find, after j
steps, an approximant

vj :=
∑

l∈Λ′

alv
j,l,

∑

l∈Λ′

|al| ≤ 1, |Λ′| = j, Λ′ ⊂ [1, Nj ],

such that

‖y − vj‖2 ≤ d(y,A1(G))2 + Cj−1, C = C(M,C1).
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Estimator

We define an estimator

f̂z := f̂
z,F (j,q) :=

∑

l∈Λ′

alg
j
l .

Then f̂z ∈ F (j, q) and

Ez(f̂z,F (j,q)) ≤ Ez(fz,F (j,q)) + Cj−1.

We denote δ := {Cj−1}m
j=1 and define for A ≥ 1

fA
z,δ := f̂

z,F (n(z),q)

with

n(z) := arg min
1≤j≤m

(Ez(f̂z,F (j,q)) +
Aj ln m

m
).
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Error bound

By Theorem 2.2 we have for A ≥ A0(M)

‖fA
z,δ − fρ‖

2
L2(ρX) ≤ min

1≤j≤m
(3d(fρ, F (j, q))2 +

4Aj ln m

m
+ 2Cj−1)

(2.7)

with probability ≥ 1 − m−c(M)A.
In particular, (2.7) means that the estimator fA

z,δ is an
estimator that provides the error

‖fA
z,δ − fρ‖

2
L2(ρX) � (

ln m

m
)

2r
1+2r

for fρ such that d(fρ, F (j, q))L2(ρX) � j−r, r ≤ 1/2. We note
that the estimator fA

z,δ is based on the greedy algorithm and
it can easily be implemented.
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BCDD. Relaxed Greedy Algorithm

We now describe an application of greedy algorithms in
learning theory from Barron, Cohen, Dahmen, and DeVore
(2005). In this application one can use the Orthogonal
Greedy Algorithm or the following variant of the Relaxed
Greedy Algorithm.
Let α1 := 0 and αm := 1 − 2/m, m ≥ 2. We set f0 := f ,
G0 := 0 and inductively define two sequences {βm}∞m=1,
{ϕm}∞m=1 as follows

(βm, ϕm) := arg min
β∈R,g∈D

‖f − (αmGm−1 + βg)‖.

Then we set

fm := fm−1 − βmϕm, Gm := Gm−1 + βmϕm.
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Discretization

For systems D(n, q) the following estimator is considered in
Barron, Cohen, Dahmen, and DeVore (2005). Let as above
z = (z1, . . . , zm), zi = (xi, yi), be given. Consider the
following system of vectors in R

m:

vj,l := (gj
l (x1), . . . , g

j
l (xm)), l ∈ [1, Nj ].

We equip the R
m with the norm ‖v‖ := (m−1

∑m
i=1 v2

i )
1/2 and

normalize the above system of vectors. Denote the new
system of vectors by Gj . Now we apply either the OGA or
the above defined version of the RGA to the vector y ∈ R

with respect to the system Gj . Similar to the above
discussed case of the system G we obtain an estimator f̂j .
Next, we look for the penalized estimator built from the
estimators {f̂j} in the following way.
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BCDD. Estimator

Let

n(z) := arg min
1≤j≤m

(Ez(TM (f̂j)) +
Aj log m

m
).

Define
f̂ := TM (f̂n(z)).

Assuming that the systems D(n, q) are normalized in L2(ρX)
Barron, Cohen, Dahmen, and DeVore (2005) proved the
following error estimate.
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BCDD. Theorem

Theorem 2.3 There exists A0(M) such that for A ≥ A0 one
has the following bound for the expectation of the error

E(‖fρ − f̂‖2
L2(ρX)) ≤ min

1≤j≤m
(C(A,M, q)j log m/m

+ inf
h∈spanD(j,q)

(2‖fρ − h‖2
L2(ρX) + 8‖h‖2

A1(D(j,q))/j)). (2.8)

Let us make a comparison of (2.8) with (2.7). First of all, the
(2.8) gives an error bound for the expectation and (2.7)
gives an error bound with high probability. In this sense
(2.7) is better than (2.8). However, the condition
‖gn

l ‖B(X) ≤ C1 imposed on the systems D(n, q) in order to
obtain (2.7) is more restrictive than the corresponding
assumption for (2.8).
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