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motivations

starting point of many learning schemes is a fixed data
representation
if prediction is the goal, black box solutions are acceptable
in many problems the primary goal is the identification of
the variables/measures relevant for prediction
it is often the case that variables are dependent
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learning theory setting

model: X × Y is endowed with a probability distribution

p(y , x) = p(y |x)p(x)

input space: X ⊂ Rd

regression: Y ∈ [−M, M]
classification: Y ∈ {−1, 1}

the distribution p is fixed but unknown

DATA: we are given a set of examples, i.e. (x1, y1), . . . , (xn, yn)
sampled i.i.d. according to p(y , x)
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Setting (cont.)

regression function: f ∗(x) = E [y |x ] minimizes

E(f ) = E
[
|y − f (x)|2

]

Bayes rule: fb(x) = sign(f ∗(x)) minimizes

R(f ) = P(yf (x) ≤ 0)

for any f
R(f )−R(fb) ≤

√
E(f )− E(f ∗)
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Hypotheses Space and Dictionary

The search for a solution is restricted to some space of
hypotheses H

dictionary: D = {ϕγ : X → R | γ ∈ Γ}
atoms or features: ϕγ

hypotheses space: H = {f |f = fβ =
∑

γ∈Γ ϕγβγ}

The atoms are not linearly independent,
the dictionary can be infinite dimensional,
the atoms can be seen as measures (features) on the input
objects in X ,
the solution is a weighted combination of the features
fβ(x) =

∑
γ∈Γ ϕγ(x)βγ
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Generalization and Selection

learning task

given (x1, y1), . . . , (xn, yn) find an estimator fn such that

fn(x) ∼ f ∗(x)

An Important Distinction
The problem of prediction/generalization is that of
estimating f ∗.
The problem of selection is that of detecting a meaningful
β∗ (with f ∗ =

∑
γ∈Γ β∗γϕγ).
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regularization for learning

learning can be seen as an ill-posed inverse problem and
regularization is the theory of choice to restore
well-posedness (Girosi and Poggio...)
in the recent years the genova gang explored the
connection between learning and inverse problems in a
series of works covering theory, algorithms and
applications.

Alessandro Verri Regularization Algorithms for Learning



regularization

a classical way to avoid overfitting: penalized empirical risk
minimization

βλ
n = argmin

β

(
1
n

n∑
i=1

|yi − fβ(xi)|2 + λpen(β)

)

different penalizations corresponds to different algorithms:

examples

tikhonov/ridge regression: pen(β) =
∑

γ∈Γ β2
γ

basis pursuit/lasso: pen(β) =
∑

γ∈Γ |βγ |
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elastic penalty regularization

we study the regularization scheme defined by

βλ
n = argmin

β

1
n

n∑
i=1

|yi − fβ(xi)|2 + λ(
∑
γ∈Γ

wγ |βγ |+ ε
∑
γ∈Γ

β2
γ)

 ,

(see Zou and Hastie’06)

Vector notation∥∥∥Ŷ − Φnβ
∥∥∥2

n
+ λ(‖β‖1,w + ε ‖β‖2

2)

- Ŷ = (y1, . . . , yn)
-Φn is n × Γ (possible infinite dimensional matrix).
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why a combined penalty?

pen(β) = λ(‖β‖1,w + ε ‖β‖2)

ε > 0 grouping effect in selection
ε > 0 strictly convex approximation to basis pursuit
more stable w.r.t. to noise in the measurements
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geometry of the problem

linear systems
we (approximately) solve

Ŷ = Φnβ

where Φ is n × Γ. We look for
the minimal pen(β) solution.
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theoretical analysis (de mol, de vito and rosasco ’07)

questions:

min{
∥∥∥Ŷ − Φnβ

∥∥∥2

n
+ λ(‖β‖1,w + ε ‖β‖2

2)}

Q1: statistical convergence of the algorithm

Q2: solution of the optimization problem
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assumptions

1 summability condition: Γ denumerable and, for some κ > 0,

∀x ∈ X
∑
γ∈Γ

|ϕγ(x)|2 ≤ κ.

2 there exists (β∗γ)γ∈Γ such that∑
γ∈Γ

wγ |β∗γ | < +∞ and f ∗(x) =
∑
γ∈Γ

ϕγ(x)β∗γ x ∈ X .
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iterative soft thresholding

let Φn be the n × Γλ matrix (with transpose ΦT
n ).

We can define an iteration β` converging to βλ
n

let β0 = 0,
for ` = 1, 2, . . .

β` =
1

C + λε
Sλ

(
(CI − ΦT

n Φn)β
`−1 + ΦT

n Ŷ
)
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thresholding function

Sµ (x) =


x − µ

2 if x > µ
2

0 if |x | ≤ µ
2

x + µ
2 if x < −µ

2
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generalized and distribution dependent solutions

generalized solution
βε solves

min{‖β‖1,w + ε ‖β‖2}

s.t. f ∗ =
∑
γ∈Γ

ϕγβ∗

elastic net distribution dependent solution

βλ solves
min{E

[
|fβ(x)− y |2

]
+ λpen(β)}

we also let f λ =
∑

γ∈Γ ϕγβλ
γ
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error analysis

Error decomposition for fixed λ > 0∥∥∥βλ
n − βε

∥∥∥
2
≤
∥∥∥βλ

n − βλ
∥∥∥

2︸ ︷︷ ︸
sample error

+
∥∥∥βλ − βε

∥∥∥
2︸ ︷︷ ︸

approximation error

,

• under some assumptions on the noise with probability greater
than 1− 4e−δ

∥∥∥βλ
n − βλ

∥∥∥
2
≤
∥∥∥βλ − β

∥∥∥
2

(
C
√

δ√
nλ

)
+

(
C
√

δ√
nλ

)

• The approximation error satisfies

lim
λ→0

∥∥∥βλ − βε
∥∥∥

2
→ 0
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convergence

if we choose λn s.t. λn
√

n →∞, when n →∞ then

E
[∥∥∥βλn

n − βε
∥∥∥

2

]
→ 0,

moreover we also have

E
[
E(f λn

n )− E(f ∗)
]
→ 0
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related work

many algorithms for sparse selection, (Mallat et al. - Gilbert
and Tropp OMP, Candes and Tao 06 - Dantzig estimator,
Donoho et al. - Basis Pursuit, Fuguereido and Nowak -
Projected Gradient, Freund and Shapiro- Boosting...)
many theoretical results on L2 regularization (Smale and
Zhou 05, Caponnetto and De Vito 05, Bauer et al. 06...).
Recently many results for sparsity based scheme. Mostly
in different settings - fixed design regression, signal
processing, linear coding - (Donoho ’85...Candes and Tao
05... Daubachies et al. 05...)
fewer results in the context of learning (Barron et al. 06,
Bunuea et al. 06, Koltchinskii 07...)
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application I: face detection

(Destrero, De Mol, Odone, Verri 07)
face detection integrated in a monitoring system in our department

data:image size 20x20, 2000 + 2000 training, 1000 + 1000 validation,
2000 + 2000 test.
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initial representation

overcomplete dictionary of rectangular features capturing the
local geometry of faces (Viola and Jones, 2004),

- features computed at at all locations, scales, aspect ratios:
roughly 64000 per image.
- highly correlated features

Alessandro Verri Regularization Algorithms for Learning



selected features

42 features extracted by a 2 stage selection scheme.
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results
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2 stages feature selection
2 stages feature selection + correlation

Viola+Jones feature selection using our same data
Viola+Jones cascade performance
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microarray data

in micro-array
classification the
number of samples
is much smaller
than the number of
genes expressions
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data sets

(Mosci, De Mol, Traskine, Verri 07)
Algorithms were tested on three datasets:

leukemia (patients 72 (38-34) , genes 7129)
lung cancer (patients 181 (91-90), genes 12533)
prostate cancer (patients 102 (51-51), genes 12533)
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lung cancer

λ = 0.07 test error # of intersection w.
(test set selected genes selected

λε size: 90) genes for bigger ε

0 0 22 100%

0.001 0 28 100%

0.0025 1 37 100%

0.005 1 54 100%

0.01 1 80 99%

0.1 1 247 96%

1 1 743 –

Previous: 8 genes with 91-98 % correct classification on test
(Gordon et al. 02)
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prostate cancer

λ = 0.06 test error # of intersection w.
(test set selected genes selected

λε size: 51) genes for bigger ε

0 5 19 95%

0.001 5 20 100%

0.0025 5 25 100%

0.005 4 31 97%

0.01 5 40 98%

0.1 6 85 94%

1 5 121 –

Previous: 5-8 genes with 82,9-95,7 % correct classification on
test using ranking and K-NN (Singh et al 2002).

Alessandro Verri Regularization Algorithms for Learning



open problems

approximation properties and connections with work in
signal processing
design good (data-dependent?) dictionary
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