On the Approximation of Quadratic Forms
The Nyström Extension & Spectral Methods in Learning

Patrick J. Wolfe (joint work with Mohamed-Ali Belabbas)
School of Engineering and Applied Sciences
Department of Statistics, Harvard University

Approximation and Learning in Higher Dimensions
Texas A&M University, 19 October 2007
Outline
Approximation of quadratic forms in learning theory

1 Introduction: Spectral Methods in Learning
- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information

2 Nyström Approximation and Multi-Index Selection
- The Nyström extension as an approximation method
- Randomized multi-index selection by weighted sampling
- Deterministic multi-index selection by sorting

3 Numerical Results and Algorithmic Implementation
- Approximate sampling
- Low-rank kernel approximation
- Methods for nonlinear embeddings
1. Introduction: Spectral Methods in Learning
 - Spectral methods and statistical learning
 - Approximating a positive semi-definite kernel
 - Discriminating between data and information

2. Nyström Approximation and Multi-Index Selection
 - The Nyström extension as an approximation method
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting

3. Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings
Outline
Approximation of quadratic forms in learning theory

1 Introduction: Spectral Methods in Learning
- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information

2 Nyström Approximation and Multi-Index Selection
- The Nyström extension as an approximation method
- Randomized multi-index selection by weighted sampling
- Deterministic multi-index selection by sorting

3 Numerical Results and Algorithmic Implementation
- Approximate sampling
- Low-rank kernel approximation
- Methods for nonlinear embeddings
What role do spectral methods play in statistical learning?

- **Goal:** get relevant “information” about very large datasets in very high dimensional spaces
 - Image segmentation, low-dimensional embeddings, . . .
- **What is the “relevant” information contained in the data set?**
- **Spectral methods** reduce this question to finding a low-rank approximation to a symmetric, positive semi-definite (SPSD) kernel—equivalently, a quadratic form
- **They can be quite effective, and see wide use:**
 - Older methods: principal components analysis (1901), multidimensional scaling (1958), . . .
 - Newer methods: isomap, Laplacian eigenmaps, Hessian eigenmaps, diffusion maps, . . .
Let \(\{x_1, \ldots, x_n\} \) be a collection of data points in \(\mathbb{R}^m \). Spectral methods can be classified according to whether they rely on:

Outer characteristics of the point cloud (PCA, discriminants).

Here we work directly in the ambient space. Require spectral analysis of a positive-definite kernel of dimension \(m \), the extrinsic **dimensionality** of the data.

Inner characteristics of the point cloud (MDS, extensions).

Embedding requires the spectral analysis of a kernel of dimension \(n \), the **cardinality** of the point cloud.

The spectral analysis task typically consists of finding a rank-\(k \) approximation to a symmetric, positive semi-definite matrix.
How to Approximate an SPD Matrix, in Theory?
Finding a low-rank approximation is easy...

- An SPSD matrix G can be written in spectral coordinates

\[G = U \Lambda U^T, \]

where U is orthogonal and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is diagonal.

- The λ_i’s are the eigenvalues of G, ordered such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \geq 0$, and the u_i’s are the eigenvectors.

- For any unitarily invariant norm $\| \cdot \|$, we have that

\[
\arg\min_{\tilde{G}} \| G - \tilde{G} \| = \arg\min_{\text{rank}(\tilde{G}) = k} \| G - \tilde{G} \| = U \Lambda_k U^T =: G_k,
\]

where $\Lambda_k = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_k, 0, \ldots, 0)$.
How to Approximate an SPD Matrix, in Practice?
Finding a low-rank approximation is **hard**!

Changing to spectral coordinates is done using the Singular Value Decomposition of G, which requires $O(n^3)$ operations.

- On a Pentium IV 3GHZ desktop PC, with 1GB RAM, 512k Cache:
 - Extrapolating to $n = 10^6$, factoring G takes more than 4 months.
 - When n increases, G quickly becomes too large to be stored in memory.
This presents a practical problem for large data sets!

- A commonly used “trick” is to **sparsify** the kernel.
 - Fix $\varepsilon > 0$. If $G_{ij} \leq \varepsilon$, set $G_{ij} = 0$
 - Questions: How to choose ε? How accurate is the result?

- Alternative approach: discard some of the data.
 - How to construct a low-rank approximation using just some of the data? The **Nyström extension** provides an answer

- The basic idea is as follows:
 - Write $G = X^T X$, so that G is a **Gram matrix** for vectors X_1, \ldots, X_n.
 - Choose a subset I of vectors X_i and their correlations with *all* the other vectors to find a low-rank approximation \tilde{G}.
A Provably Good Low-Rank Approximation
Our main result on approximating quadratic forms

How to choose $I : |I| = k$ so as to minimize $\|G - \tilde{G}\|$?

- This is equivalent to asking: “How to choose the most informative part from our dataset?”—most informative being conditioned on our reconstruction scheme
- There are $\frac{n!}{k!(n-k)!}$ multi-indices—no hope of enumerating
- We define the following distribution on multi-indices:

$$p_{G,k} = \frac{\det(G_{I \times I})}{\sum_{|I| = k} \det(G_{I \times I})}$$

- Our main result will be to show that, for spectral decomposition $G = U\Lambda U^T$, we have in Frobenius norm:

$$\mathbb{E}\|G - \tilde{G}\| \leq (k + 1)(\lambda_{k+1} + \lambda_{k+2} + \ldots + \lambda_n)$$
Outline
Approximation of quadratic forms in learning theory

1 Introduction: Spectral Methods in Learning
 - Spectral methods and statistical learning
 - Approximating a positive semi-definite kernel
 - Discriminating between data and information

2 Nyström Approximation and Multi-Index Selection
 - The Nyström extension as an approximation method
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting

3 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings
The Nyström Extension
Simplify the problem

- Historically, the *Nyström extension* was introduced to obtain numerical solutions to integral equations.
- Let $g : [0, 1] \times [0, 1] \to \mathbb{R}$ be an SPSD kernel and (u_i, λ_i^u), $i \in \mathbb{N}$, denote its pairs of eigenfunctions and eigenvalues:
 \[
 \int_0^1 g(x, y) u_i(y) \, dy = \lambda_i^u u_i(x), \quad i \in \mathbb{N}.
 \]
- The Nyström extension approximates the eigenvectors of $g(x, y)$ by evaluation of the kernel at k^2 distinct points:
- Let $\{(x_m, x_n)\}_{m,n=1}^k \in [0, 1] \times [0, 1]$.
- Define $G(m, n) \equiv G_{mn} := g(x_m, x_n)$.
The Nyström Extension

Extend the solution

- We now solve a finite dimensional problem

\[
\frac{1}{k} \sum_{n=1}^{k} G(m, n) v_i(n) = \lambda_i^v v_i(m), \quad i = 1, 2, \ldots, k,
\]

where \((v_i, \lambda_i^v)\) represent the \(k\) eigenvector-eigenvalues pairs associated with \(G\).

- What do we do with these eigenvectors? We extend them to approximate \(\tilde{u}_i \approx u_i\) as follows:

\[
\tilde{u}_i(x) = \frac{1}{\lambda_i^v k} \sum_{m=1}^{k} g(x, x_m) v_i(m).
\]

- In essence: only use partial information about the kernel to solve a simpler eigenvalue problem, and then to extend the solution using complete knowledge of the kernel.
The Nyström Extension
In finite dimensions

The Nyström extension first solves a simpler eigenfunction/eigenvalue problem.

- How do we translate this to a finite dimensional setting?
- We approximate k eigenvectors of G by decomposing and then extending a $k \times k$ principal submatrix of G.
- We partition G as follows

\[G = \begin{bmatrix} A & B^T \\ B & C \end{bmatrix}, \]

with $A \in \mathbb{R}^{k \times k}$; we say that this partition corresponds to the multi-index $I = \{1, 2, \ldots, k\}$.

- Define spectral decompositions $G = U\Lambda U^T$ and $A = U_A \Lambda_A U_A^T$
The Nyström Extension

The approximation error

- The Nyström extension then provides an approximation for k eigenvectors in U as

$$
\tilde{U} := \begin{bmatrix}
U_A \\
B U_A \Lambda_A^{-1}
\end{bmatrix}; \quad A = U_A \Lambda_A U_A^T.
$$

- In turn, the approximations $\tilde{U} \approx U$ and $\Lambda_A \approx \Lambda$ may be composed to yield an approximation $\tilde{G} \approx G$ according to

$$
\tilde{G} := \tilde{U} \Lambda_A \tilde{U}^T = \begin{bmatrix}
A & B^T \\
B & BA^{-1}B^T
\end{bmatrix}.
$$

- The resultant approximation error is

$$
\| G - \tilde{G} \| = \| C - BA^{-1}B^T \|,
$$

the norm of the Schur complement of A in G.

On what fronts do we gain by using the Nyström extension?

- What is required is the spectral analysis of a kernel of size
 \(k \leq n \Rightarrow \) gain in space and time complexity.
- But we introduced another problem: how to partition \(G \)?

In other words, we have shifted the computational load from
eigenanalysis to the determination a “good” partition

- The latter problem is more amenable to approximation
- We give two algorithms to solve it, along with error bounds...
The Nyström Extension
A combinatorial problem

We now introduce the problem formally with notation:

- $I, J \subset \{1, \ldots, n\}$ are multi-indices of respective cardinalities k and l, containing pairwise distinct elements in $\{1, \ldots, n\}$.
- We write $I = \{i_1, \ldots, i_k\}$, $J = \{j_1, \ldots, j_l\}$, and denote by \bar{I} the complement of I in $\{1, \ldots, n\}$.
- Define $G_{I \times J}$ for the $k \times l$ matrix whose (p, q)-th entry is given by $(G_{I \times J})_{pq} = G_{ipjq}$. Abbreviate G_I for $G_{I \times I}$.
- The partitioning problem is equivalent to selecting a multi-index I such that the error

$$\| G - \tilde{G} \| = \| G_i - G_{\bar{I} \times I} G_i^{-1} G_{I \times \bar{I}} \| = \| S_C(G_I) \|$$

is minimized.
The Nyström Method and Exact Reconstruction
Recovery when rank(G_I) = rank(G) = k

When does the Nyström method admit exact reconstruction?

- If we take for I the entire set $\{1, 2, \ldots, n\}$, then the Nyström extension yields $\tilde{G} = G$ trivially.
- If G is of rank $k < n$, then there exist $I : I = |k|$ such that the Nyström method yields exact reconstruction.
- These I are those such that rank(G_I) = rank(G) = k.
 - Intuition: express G as a Gram matrix whose entries comprise the inner products of n vectors in \mathbb{R}^k.
 - Knowing the correlation of these n vectors with a subset of k *linearly independent* vectors allows us to recover them.
 - Information contained in G_I is sufficient to reconstruct G; Nyström extension performs the reconstruction.
- To verify, we introduce our first lemma...
Lemma (Crabtree-Haynsworth)

Let G_I be a nonsingular principal submatrix of some SPSD matrix G. The Schur complement of G_I in G is given element-wise by

$$
(S_C(G_I))_{ij} = \frac{\det(G_{i \cup \{i\} \times I \cup \{j\}})}{\det(G_I)}. \quad (1)
$$

This implies that for I such that $\text{rank}(G_I) = \text{rank}(G) = k$,

$$
S_C(G_I) = G_I - G_{i \times I} G_{i \times I}^{-1} G_{I \times i} = 0.
$$

- If $\text{rank}(G) = k = |I|$, then (1) implies that $\text{diag}(S_C(G_I)) = 0$
- Positive definiteness of G implies positive definiteness of $S_C(G_I)$ for any multi-index I, allowing us to conclude that $S_C(G_I)$ is identically zero.
Whether \(\text{rank}(G) = k \) or \(\text{rank}(G) > k \), we are faced with the task of selecting a multi-index \(I \) from amongst a set of \(\binom{n}{k} \) possibilities. This motivates our first algorithm for multi-index selection:

- **Observation**: Since \(G \) is positive definite, it induces a probability distribution on the set of all \(I : |I| = k \) as follows:

 \[
 p_{G,k}(I) \propto \det(G_I),
 \]

 with the normalizing constant being \(\sum_{I,|I|=k} \det(G_I) \)

- **Algorithm**: first sample \(I \sim p_{G,k}(I) \), then perform the Nyström extension on the chosen multi-index

Recall: if \(\text{rank}(G) = k \) and we seek a rank-\(k \) approximant \(\tilde{G} \), then \(\tilde{G} = G \) by our previous argument.
Our randomized algorithm for multi-index selection admits the following error bound in expectation:

Theorem (Randomized Multi-Index Selection)

Let G be a real, $n \times n$, positive quadratic form with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$. Let \tilde{G} be the Nyström approximation to G corresponding to I, with $I \sim p_{G,k}(I) \propto \det(G_I)$. Then

$$
\mathbb{E} \| G - \tilde{G} \| \leq (k + 1) \sum_{l=k+1}^{n} \lambda_l.
$$

(2)
Proof of the Randomized Multi-Index Result 1
Randomized algorithm for multi-index selection

Proof.

We seek to bound

$$\mathbb{E} \| G - \tilde{G} \| = \frac{1}{\sum_{I, |I|=k} \det(G_I)} \sum_{I, |I|=k} \det(G_I) \| S_C(G_I) \|.$$

Denote the eigenvalues of $S_C(G_I)$ as $\{\bar{\lambda}_j\}_{j=1}^{n-k}$; positive definiteness and subadditivity of the square root imply that

$$\| S_C(G_I) \| = \sqrt{\sum_{j} \bar{\lambda}_j^2} \leq \sum_{j} \bar{\lambda}_j = \text{tr}(S_C(G_I)).$$
Proof.

The Crabtree-Haynsworth Lemma yields

$$\text{tr}(S_C(G_I)) = \sum_{i \notin I} \frac{\det(G_I \cup \{i\})}{\det(G_I)},$$

and thus

$$\mathbb{E} \left\| G - \tilde{G} \right\| \leq \frac{1}{Z} \sum_{l,|l|=k} \sum_{i \notin l} \det(G_I \cup \{i\}),$$

(3)

where $Z = \sum_{l,|l|=k} \det(G_l)$ is the normalizing constant of $p_{G,k}(l)$.
Proof of the Randomized Multi-Index Result III
Randomized algorithm for multi-index selection

Proof.

Every multi-index of cardinality $k + 1$ appears exactly $k + 1$ times in the double sum of (3) above, whence

$$\mathbb{E} \| G - \tilde{G} \| \leq \frac{(k + 1)}{Z} \sum_{|I| = k+1} \det(G_I).$$ \hspace{1cm} (4)

The sum of the principal $(k+1)$-minors of G can be expressed as the sum of $(k+1)$-fold products of its ordered eigenvalues (Cauchy-Binet):

$$\sum_{|I| = k+1} \det(G_I) = \sum_{1 \leq j_1 < j_2 < \ldots < j_{k+1} \leq n} \lambda_{j_1} \lambda_{j_2} \cdots \lambda_{j_{k+1}}.$$
Proof.

It thus follows that

$$\sum_{|I|=k+1} \det(G_I) \leq \sum_{1 \leq j_1 < j_2 < \ldots < j_k \leq n} \prod_{i=1}^{k} \lambda_{j_i} \sum_{l=k+1}^{n} \lambda_l$$

$$= \sum_{|I|=k} \det(G_I) \sum_{l=k+1}^{n} \lambda_l.$$

Combining this relation with (4) above, we obtain

$$\mathbb{E} \|G - \tilde{G}\| \leq \frac{(k+1)}{Z} \sum_{|I|=k} \det(G_I) \sum_{l=k+1}^{n} \lambda_l = (k+1) \sum_{l=k+1}^{n} \lambda_l,$$

which concludes the proof.
We obtain an SPSD approximant \tilde{G} such that

$$\mathbb{E} \| G - \tilde{G} \| \leq (k + 1) \sum_{i=k+1}^{n} \lambda_i$$

in the Frobenius norm, as compared to the optimum

$$\| G - \tilde{G}_{opt} \| = \left(\sum_{i=k+1}^{n} \lambda_i^2 \right)^{1/2}$$

afforded by the full spectral decomposition.

Two practical issues:
- Complexity of sampling from $p_{G,k}(I) \propto \det(G_I)$
- Desire for deterministic rather than probabilistic result
We now present a low-complexity deterministic multi-index selection algorithm and provide a bound on its worst-case error.

Let I contain the indices of the k largest diagonal elements of G and then implement the Nyström extension. Then we have:

Theorem (Deterministic Multi-Index Selection)

Let G be a real positive-definite kernel, let I contain the indices of its k largest diagonal elements, and let \tilde{G} be the corresponding Nyström approximation. Then

$$\|G - \tilde{G}\| \leq \sum_{i \notin I} G_{ii}.$$ (5)
Proof of the Deterministic Multi-Index Result I
Deterministic algorithm for multi-index selection

We have sacrificed some power to obtain gains in the deterministic nature of the result and in computational efficiency:

\[\| G - \tilde{G} \| \leq \sum_{i=k+1}^{n} G_{ii} \text{ (sorting)} \text{ vs. } \mathbb{E} \| G - \tilde{G} \| \leq (k+1) \sum_{i=k+1}^{n} \lambda_i \text{ (sampling)} \]

The proof of this theorem is straightforward, once we have the following generalization of the Hadamard inequality:

Lemma (Fischer's Lemma)

If \(G \) is a positive-definite matrix and \(G_I \) a nonsingular principal submatrix then

\[\det(G_{I \cup \{i\}}) < \det(G_I)G_{ii}. \]
Proof of the Theorem.

We have from our earlier proof that \(\| G - \tilde{G} \| \leq \text{tr}(S_C(G_I)) \); applying Crabtree-Haynsworth in turn gives

\[
\| G - \tilde{G} \| \leq \frac{1}{\det(G_I)} \sum_{i \notin I} \det(G_{I \cup \{i\}}),
\]

after which Fischer’s Lemma yields \(\| G - \tilde{G} \| \leq \sum_{i \notin I} G_{ii} \). □

- In other work (Belabbas and W., 2007), we have shown this algorithm to perform well in an array signal processing context.
- Beginning with the case \(k = 1 \), it may be seen through repeated application of the theorem to constitute a simple stepwise-greedy approach to multi-index selection.
Remarks and Discussion
Comparison to known results

- Drineas et al. (2005) proposed to choose row/column subsets by sampling, independently and with replacement, indices in proportion to elements of \(\{ G_{ii}^2 \}_{i=1}^n \), and were able to show:

\[
\mathbb{E} \| G - \tilde{G} \| \leq \| G - G_k \| + 2\sqrt{2} \sum_{i=1}^n G_{ii}^2,
\]

- Our randomized approach yields a relative error bound
 Algorithmic complexity: \(\mathcal{O}(k^3 + (n - k)k^2) \)

- Our deterministic approach offers improvement if \(\text{tr}(G) \geq n \);
 complexity \(\mathcal{O}(k^3 + (n - k)k^2 + n \log k) \)

- Connections to the recently introduced notion of *volume sampling* in theoretical computer science.
Outline
Approximation of quadratic forms in learning theory

1 Introduction: Spectral Methods in Learning
 - Spectral methods and statistical learning
 - Approximating a positive semi-definite kernel
 - Discriminating between data and information

2 Nyström Approximation and Multi-Index Selection
 - The Nyström extension as an approximation method
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting

3 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings
Implementation of the Sampling Scheme

Sampling from $p_{G,k}$

- Sampling directly from $p_{G,k} \propto \det(G_l)$ is infeasible
- Simulation methods provide an appealing alternative
- We employed the Metropolis algorithm to simulate an ergodic Markov chain admitting $p_{G,k}(\cdot)$ as its equilibrium distribution:
 - The proposal distribution is straightforward: exchange one index from I with one index from \bar{I} uniformly at random
 - Distance to $p_{G,k}(\cdot)$ in total variation norm typically observed to be small after on the order of $50|I|$ iterations of the chain.
- We made no attempt to optimize this choice, as its performance in practice was observed to be satisfactory
A Metropolis Algorithm for Sampling from $p_{G,k}$

Implementation of the sampling scheme

INPUT: Data X, $0 \leq k \leq n$, $T > 0$, $k \times k$ sub-kernel $W^{(0)}$ with indices $I^{(0)}$

OUTPUT: Sampled k-multi-index I

for $t = 1$ to T do
 pick $s \in \{1, 2, \ldots, k\}$ uniformly at random
 pick $j'_s \in \{1, 2, \ldots, n\} \setminus I^{(t-1)}$ at random
 $W' \leftarrow \text{UpdateKernel}(W^{(t-1)}, X, s, j'_s)$

 with probability $\min(1, \frac{\det(W')}{{\det(W^{(t-1)})}})$ do
 $W^{(t)} \leftarrow W'$
 $I^{(t)} \leftarrow \{j'_s\} \cup I^{(t-1)} \setminus \{j_s\}$
 otherwise
 $W^{(t)} \leftarrow W^{(t-1)}$
 $I^{(t)} \leftarrow I^{(t-1)}$
end do
end for
First, we compare the different randomized algorithms for multi-index selection with one another, and with the method of Drineas et al. (2005):

- Three different settings for approximation error evaluation: Principal components, Diffusion maps, and Laplacian eigenmaps.
- We draw kernels at random from ensembles relevant to the test setting, and then average (though results do not imply a measure on the input space)
- For each kernel drawn, we further average over many runs of the randomized algorithm.
Approximate Principal Components Analysis
Randomized multi-index selection

- We drew 1000 50 × 50 SPD matrices of rank 12 from a Wishart ensemble.
- We show the error of several algorithms used to perform a low rank approximation (outputs averaged over 250 trials)
Approximate Diffusion Maps
Randomized multi-index selection

- We sample 500 points uniformly on a circle, and use the Diffusion maps algorithm to define an appropriate kernel for embedding.
- We measured the resultant approximation error, averaged over 100 datasets and over 100 trials per set.
Approximate Diffusion Maps
Deterministic multi-index selection

- At left, we plot the distribution of approximation error for fixed rank $k = 8$.
- The worst-case error bound of our deterministic algorithm can be clearly seen.
We used the Laplacian eigenmaps algorithm to embed the *fishbowl* dataset.
Summary

Approximation of quadratic forms in learning theory

Two alternative strategies for the approximate spectral decomposition of large kernels were presented, both coupled with the Nyström method:
- Randomized multi-index selection (sampling)
- Deterministic multi-index selection (sorting)

Simulation studies demonstrated applicability to machine learning tasks, with measurable improvements in performance:
- Low-rank kernel approximation
- Methods for nonlinear embeddings

Work supported by NSF-DMS and DARPA. Related activities in our Statistics & Informations Sciences Laboratory include:
- Exploiting variability in the space of speech sounds (DARPA)
- Color image acquisition, processing, and display (Sony Corp.)
- Statistical inference and algorithms for graphs and networks (NSF-DMS/MSBS, NSF-CISE/DHS)