On the Approximation of Quadratic Forms The Nyström Extension & Spectral Methods in Learning

Patrick J. Wolfe (joint work with Mohamed-Ali Belabbas)

School of Engineering and Applied Sciences Department of Statistics, Harvard University

Approximation and Learning in Higher Dimensions Texas A&M University, 19 October 2007

> HARVARD ENGINEERING AND APPLIED SCIENCES

Introduction: Spectral Methods in Learning

- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information
- 2 Nyström Approximation and Multi-Index Selection
 The Nyström extension as an approximation method
 Randomized multi-index selection by weighted sampling
 Deterministic multi-index selection by sorting
- 3 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings

Introduction: Spectral Methods in Learning

- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information
- Nyström Approximation and Multi-Index Selection
 The Nyström extension as an approximation method
 Developming and multi-index selection
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting
- 3 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings

Introduction: Spectral Methods in Learning

- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information
- 2 Nyström Approximation and Multi-Index Selection
 - The Nyström extension as an approximation method
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting
- 8 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings

Spectral Methods in Learning The discrepancy between data and information

What role do spectral methods play in statistical learning?

- Goal: get relevant "information" about very large datasets in very high dimensional spaces
 - Image segmentation, low-dimensional embeddings, ...
- What is the "relevant" information contained in the data set?
- Spectral methods reduce this question to finding a low-rank approximation to a symmetric, positive semi-definite (SPSD) kernel—equivalently, a quadratic form
- They can be quite effective, and see wide use:
 - Older methods: principal components analysis (1901), multidimensional scaling (1958), ...
 - Newer methods: isomap, Laplacian eigenmaps, Hessian eigenmaps, diffusion maps, ...

Application of Low-Rank Approximations to Learning Inner and outer characteristics of the point cloud

Let $\{x_1, \ldots, x_n\}$ be a collection of data points in \mathbb{R}^m . Spectral methods can be classified according to whether they rely on:

Outer characteristics of the point cloud (PCA, discriminants). Here we work directly in the ambient space. Require spectral analysis of a positive-definite kernel of dimension *m*, the extrinsic dimensionality of the data.

Inner characteristics of the point cloud (MDS, extensions).

Embedding requires the spectral analysis of a kernel of dimension *n*, the cardinality of the point cloud.

The spectral analysis task typically consists of finding a rank-k approximation to a symmetric, positive semi-definite matrix.

How to Approximate an SPD Matrix, in Theory? Finding a low-rank approximation is *easy*...

• An SPSD matrix G can be written in spectral coordinates

$$G = U\Lambda U^T$$
,

where U is orthogonal and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$ is diagonal.

- The λ_i 's are the eigenvalues of G, ordered such that $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n \ge 0$, and the u_i 's are the eigenvectors.
- For any unitarily invariant norm $\|\cdot\|$, we have that

$$\underset{\widetilde{G}: \operatorname{rank}(\widetilde{G})=k}{\operatorname{argmin}} \|G - \widetilde{G}\| = U\Lambda_k U^T =: G_k,$$

where
$$\Lambda_k = \mathsf{diag}(\lambda_1, \lambda_2, \dots, \lambda_k, 0, \dots, 0)$$

How to Approximate an SPD Matrix, in Practice? Finding a low-rank approximation is *hard*!

Changing to spectral coordinates is done using the Singular Value Decomposition of G, which requires $\mathcal{O}(n^3)$ operations

• On a Pentium IV 3GHZ desktop PC, with 1GB RAM, 512k Cache:

- Extrapolating to n = 10⁶, factoring G takes more than 4 months.
- When *n* increases, *G* quickly becomes too large to be stored in memory

Approximating Large Kernels How to discriminate between data and information?

This presents a practical problem for large data sets!

- A commonly used "trick" is to sparsify the kernel.
 - Fix $\varepsilon > 0$. If $G_{ij} \leq \varepsilon$, set $G_{ij} = 0$
 - Questions: How to choose ε ? How accurate is the result?
- Alternative approach: discard some of the data.
 - How to construct a low-rank approximation using just some of the data? The Nyström extension provides an answer
- The basic idea is as follows:
 - Write $G = X^T X$, so that G is a Gram matrix for vectors X_1, \ldots, X_n .
 - Choose a subset *I* of vectors *X_i* and their correlations with *all* the other vectors to find a low-rank approximation \widetilde{G} .

A Provably Good Low-Rank Approximation Our main result on approximating quadratic forms

How to choose I : |I| = k so as to minimize $||G - \tilde{G}||$?

- This is equivalent to asking: "How to choose the *most informative* part from our dataset?"—most informative being conditioned on our reconstruction scheme
- There are $\frac{n!}{k!(n-k!)}$ multi-indices—no hope of enumerating
- We define the following distribution on multi-indices:

$$p_{G,k} = \frac{\det(G_{I \times I})}{\sum_{|I|=k} \det(G_{I \times I})}$$

• Our main result will be to show that, for spectral decomposition $G = U\Lambda U^T$, we have in Frobenius norm:

$$\mathbb{E}\|G-\tilde{G}\| \leq (k+1)(\lambda_{k+1}+\lambda_{k+2}+\ldots+\lambda_n)$$

Wolfe (Harvard University)

Introduction: Spectral Methods in Learning

- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information
- 2 Nyström Approximation and Multi-Index Selection
 - The Nyström extension as an approximation method
 - Randomized multi-index selection by weighted sampling
 - Deterministic multi-index selection by sorting
- 3 Numerical Results and Algorithmic Implementation
 - Approximate sampling
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings

The Nyström Extension Simplify the problem

- Historically, the *Nyström extension* was introduced to obtain numerical solutions to integral equations.
- Let $g : [0,1] \times [0,1] \rightarrow \mathbb{R}$ be an SPSD kernel and (u_i, λ_i^u) , $i \in \mathbb{N}$, denote its pairs of eigenfunctions and eigenvalues:

$$\int_0^1 g(x,y)u_i(y)\,dy=\lambda_i^u u_i(x),\quad i\in\mathbb{N}.$$

• The Nyström extension approximates the eigenvectors of g(x, y) by evaluation of the kernel at k^2 distinct points

• Let
$$\{(x_m, x_n)\}_{m,n=1}^k \in [0, 1] \times [0, 1]$$
.

• Define $G(m, n) \equiv G_{mn} := g(x_m, x_n)$

The Nyström Extension Extend the solution

• We now solve a finite dimensional problem

$$\frac{1}{k}\sum_{n=1}^{k}G(m,n)v_i(n)=\lambda_i^{v}v_i(m), \quad i=1,2,\ldots,k,$$

where (v_i, λ_i^v) represent the k eigenvector-eigenvalues pairs associated with G.

• What do we do with these eigenvectors? We *extend* them to approximate $\tilde{u}_i \simeq u_i$ as follows:

$$\widetilde{u}_i(x) = \frac{1}{\lambda_i^{v}k} \sum_{m=1}^k g(x, x_m) v_i(m).$$

 In essence: only use *partial information* about the kernel to solve a simpler eigenvalue problem, and then to *extend* the solution using complete knowledge of the kernel.

Wolfe (Harvard University)

The Nyström Extension In finite dimensions

The Nyström extension first solves a simpler eigenfunction/eigenvalue problem.

- How do we translate this to a finite dimensional setting?
- We approximate k eigenvectors of G by decomposing and then extending a $k \times k$ principal submatrix of G.
- We partition G as follows

$$G = \begin{bmatrix} A & B^T \\ B & C \end{bmatrix}$$
 ,

with $A \in \mathbb{R}^{k \times k}$; we say that this partition corresponds to the multi-index $I = \{1, 2, \dots, k\}$.

• Define spectral decompositions $G = U\Lambda U^T$ and $A = U_A \Lambda_A U_A^T$

The Nyström Extension The approximation error

• The Nyström extension then provides an approximation for k eigenvectors in U as

$$\widetilde{U} := \begin{bmatrix} U_A \\ BU_A \Lambda_A^{-1} \end{bmatrix}; \quad A = U_A \Lambda_A U_A^T.$$

• In turn, the approximations $\widetilde{U} \cong U$ and $\Lambda_A \cong \Lambda$ may be composed to yield an approximation $\widetilde{G} \cong G$ according to

$$\widetilde{G} := \widetilde{U} \Lambda_A \widetilde{U}^T = \begin{bmatrix} A & B^T \\ B & BA^{-1}B^T \end{bmatrix}.$$

• The resultant approximation error is

$$\|G-\widetilde{G}\|=\|C-BA^{-1}B^{T}\|,$$

the norm of the Schur complement of A in G

Wolfe (Harvard University)

HARVARD ENGINEERING

13 / 37

October 2007

Adjusting Computational Load vs. Approximation Error From eigenanalysis to partitioning

On what fronts do we gain by using the Nyström extension?

- What is required is the spectral analysis of a kernel of size k ≤ n ⇒ gain in space and time complexity.
- But we introduced another problem: how to partition G?

In other words, we have shifted the computational load from eigenanalysis to the determination a "good" partition

- The latter problem is more amenable to approximation
- We give two algorithms to solve it, along with error bounds...

The Nyström Extension A combinatorial problem

We now introduce the problem formally with notation:

- *I*, *J* ⊂ {1,..., *n*} are multi-indices of respective cardinalities *k* and *l*, containing pairwise distinct elements in {1,..., *n*}.
- We write $I = \{i_1, \ldots, i_k\}$, $J = \{j_1, \ldots, j_l\}$, and denote by \overline{I} the complement of I in $\{1, \ldots, n\}$.
- Define G_{I×J} for the k×I matrix whose (p, q)-th entry is given by (G_{I×J})_{pq} = G_{ipjq}. Abbreviate G_I for G_{I×I}.
- The partitioning problem is equivalent to selecting a multi-index *I* such that the error

$$\|G - \widetilde{G}\| = \|G_{\overline{I}} - G_{\overline{I} \times I}G_I^{-1}G_{I \times \overline{I}}\| = \|S_C(G_I)\|$$

is minimized.

The Nyström Method and Exact Reconstruction Recovery when $rank(G_l) = rank(G) = k$

When does the Nyström method admit exact reconstruction?

- If we take for I the entire set $\{1, 2, ..., n\}$, then the Nyström extension yields $\widetilde{G} = G$ trivially
- If G is of rank k < n, then there exist I : I = |k| such that the Nyström method yields exact reconstruction
- These I are those such that $rank(G_I) = rank(G) = k$
 - Intuition: express G as a Gram matrix whose entries comprise the inner products of n vectors in \mathbb{R}^k
 - Knowing the correlation of these *n* vectors with a subset of *k linearly independent* vectors allows us to recover them
 - Information contained in *G_l* is sufficient to reconstruct *G*; Nyström extension performs the reconstruction
- To verify, we introduce our first lemma...

HARVARD ENGINE

Verifying the Perfect Reconstruction Property Characterizing Schur complements as ratios of determinants

Lemma (Crabtree-Haynsworth)

Let G_I be a nonsingular principal submatrix of some SPSD matrix G. The Schur complement of G_I in G is given element-wise by

$$(S_C(G_I))_{ij} = \frac{\det(G_{I \cup \{i\} \times I \cup \{j\}})}{\det(G_I)}.$$
 (1)

This implies that for I such that $rank(G_I) = rank(G) = k$,

$$S_{\mathcal{C}}(G_{\mathcal{I}})=G_{\overline{\mathcal{I}}}-G_{\overline{\mathcal{I}}\times \mathcal{I}}G_{\mathcal{I}}^{-1}G_{\mathcal{I}\times\overline{\mathcal{I}}}=0.$$

• If rank(G) = k = |I|, then (1) implies that diag($S_C(G_I)$) = 0

• Positive definiteness of G implies positive definiteness of $S_C(G_I)$ for any multi-index I, allowing us to conclude that $S_C(G_I)$ is identically zero.

Wolfe (Harvard University)

Randomized Low-Rank Kernel Approximation Randomized multi-index selection by weighted sampling

Whether rank(G) = k or rank(G) > k, we are faced with the task of selecting a multi-index I from amongst a set of $\binom{n}{k}$ possibilities. This motivates our first algorithm for multi-index selection:

Observation: Since G is positive definite, it induces a probability distribution on the set of all I: |I| = k as follows:

$$p_{G,k}(I) \propto \det(G_I)$$
,

with the normalizing constant being $\sum_{I,|I|=k} \det(G_I)$

• Algorithm: first sample $I \sim p_{G,k}(I)$, then perform the Nyström extension on the chosen multi-index

Recall: if rank(G) = k and we seek a rank-k approximant \tilde{G} , then $\tilde{G} = G$ by our previous argument.

Randomized Multi-Index Selection by Weighted Sampling Statement of the main result

Our randomized algorithm for multi-index selection admits the following error bound in expectation:

Theorem (Randomized Multi-Index Selection)

Let G be a real, $n \times n$, positive quadratic form with eigenvalues $\lambda_1 \ge \ldots \ge \lambda_n$. Let \tilde{G} be the Nyström approximation to G corresponding to I, with $I \sim p_{G,k}(I) \propto \det(G_I)$. Then

$$\mathbb{E} \|G - \widetilde{G}\| \le (k+1) \sum_{l=k+1}^{n} \lambda_l.$$
(2)

HARVARD ENGINEERING AND APPLIED SCIENCES

Proof of the Randomized Multi-Index Result I Randomized algorithm for multi-index selection

Proof.

We seek to bound

$$\mathbb{E} \|G - \widetilde{G}\| = \frac{1}{\sum_{I,|I|=k} \det(G_I)} \sum_{I,|I|=k} \det(G_I) \|S_C(G_I)\|.$$

Denote the eigenvalues of $S_C(G_I)$ as $\{\bar{\lambda}_j\}_{j=1}^{n-k}$; positive definiteness and subadditivity of the square root imply that

$$\|S_{\mathcal{C}}(G_{\mathcal{I}})\| = \sqrt{\sum_{j} \bar{\lambda}_{j}^{2}} \leq \sum_{j} \bar{\lambda}_{j} = \operatorname{tr}(S_{\mathcal{C}}(G_{\mathcal{I}})).$$

Proof of the Randomized Multi-Index Result II Randomized algorithm for multi-index selection

Proof.

The Crabtree-Haynsworth Lemma yields

$$\operatorname{tr}(S_C(G_I)) = \sum_{i \notin I} \frac{\operatorname{det}(G_{I \cup \{i\}})}{\operatorname{det}(G_I)},$$

and thus

$$\mathbb{E} \|G - \widetilde{G}\| \leq \frac{1}{Z} \sum_{I, |I|=k} \sum_{i \notin I} \det(G_{I \cup \{i\}}),$$
(3)

where $Z = \sum_{I,|I|=k} \det(G_I)$ is the normalizing constant of $p_{G,k}(I)$.

Proof of the Randomized Multi-Index Result III Randomized algorithm for multi-index selection

Proof.

Every multi-index of cardinality k + 1 appears exactly k + 1 times in the double sum of (3) above, whence

$$\mathbb{E} \|G - \widetilde{G}\| \leq \frac{(k+1)}{Z} \sum_{I, |I|=k+1} \det(G_I).$$
(4)

The sum of the principal (k + 1)-minors of G can be expressed as the sum of (k + 1)-fold products of its ordered eigenvalues (Cauchy-Binet):

$$\sum_{\substack{I,|I|=k+1\\ < j_{k+1} \le n}} \det(G_I) = \sum_{\substack{1 \le j_1 < j_2 < \dots \\ < j_{k+1} \le n}} \lambda_{j_1} \lambda_{j_2} \cdots \lambda_{j_{k+1}}.$$

INEERING

22 / 37

Proof of the Randomized Multi-Index Result IV Randomized algorithm for multi-index selection

Proof.

It thus follows that

$$\sum_{\substack{I,|I|=k+1}} \det(G_I) \leq \sum_{\substack{1 \leq j_1 < j_2 < \dots \\ < j_k \leq n}} \lambda_{j_1} \lambda_{j_2} \cdots \lambda_{j_k} \sum_{\substack{I=k+1 \\ I=k+1}}^n \lambda_I$$
$$= \sum_{\substack{I,|I|=k}} \det(G_I) \sum_{\substack{I=k+1 \\ I=k+1}}^n \lambda_I.$$

Combining this relation with (4) above, we obtain

$$\mathbb{E} \|G - \widetilde{G}\| \leq \frac{(k+1)}{Z} \sum_{I,|I|=k} \det(G_I) \sum_{l=k+1}^n \lambda_l = (k+1) \sum_{l=k+1}^n \lambda_l,$$

which concludes the proof. \blacksquare

INEERING

Wolfe (Harvard University)

Deterministic Multi-Index Selection by Sorting A different flavor of result

 \bullet We obtain an SPSD approximant $\widetilde{{\it G}}$ such that

$$\mathbb{E} \left\| \mathcal{G} - \widetilde{\mathcal{G}} \right\| \leq (k+1) \sum_{i=k+1}^n \lambda_i$$

in the Frobenius norm, as compared to the optimum

$$\|G - \widetilde{G}_{opt}\| = \left(\sum_{i=k+1}^{n} \lambda_i^2\right)^{1/2}$$

afforded by the full spectral decomposition.

- Two practical issues:
 - Complexity of sampling from $p_{G,k}(I) \propto \det(G_I)$
 - Desire for deterministic rather than probabilistic result

HARVARD ENGINEERING AND APPLIED SCIENCES

Deterministic Low-Rank Kernel Approximation Deterministic multi-index selection by sorting

- We now present a low-complexity deterministic multi-index selection algorithm and provide a bound on its worst-case error
- Let *I* contain the indices of the *k* largest diagonal elements of *G* and then implement the Nyström extension. Then we have:

Theorem (Deterministic Multi-Index Selection)

Let G be a real positive-definite kernel, let I contain the indices of its k largest diagonal elements, and let \tilde{G} be the corresponding Nyström approximation. Then

$$\|G - \widetilde{G}\| \leq \sum_{i \notin I} G_{ii}.$$

HARVARD ENGINEERING

(5)

Proof of the Deterministic Multi-Index Result I Deterministic algorithm for multi-index selection

We have sacrificied some power to obtain gains in the deterministic nature of the result and in computational efficiency:

$$\|G - \widetilde{G}\| \leq \sum_{i=k+1}^{n} G_{ii} \text{ (sorting) vs. } \mathbb{E} \|G - \widetilde{G}\| \leq (k+1) \sum_{i=k+1}^{n} \lambda_i \text{ (sampling)}$$

The proof of this theorem is straightforward, once we have the following generalization of the Hadamard inequality:

Lemma (Fischer's Lemma)

If G is a positive-definite matrix and G_I a nonsingular principal submatrix then

$$\det(G_{I\cup\{i\}}) < \det(G_I)G_{ii}.$$

AND APPLIED SCIENCES

Proof of the Deterministic Multi-Index Result II Deterministic algorithm for multi-index selection

Proof of the Theorem.

We have from our earlier proof that $||G - \widetilde{G}|| \leq tr(S_C(G_I))$; applying Crabtree-Haynsworth in turn gives

$$\|G - \widetilde{G}\| \leq \frac{1}{\det(G_I)} \sum_{i \notin I} \det(G_{I \cup \{i\}}),$$

after which Fischer's Lemma yields $\|G - \widetilde{G}\| \leq \sum_{i \notin I} G_{ii}$.

- In other work (Belabbas and W., 2007), we have shown this algorith to perform well in an array signal processing context.
- Beginning with the case k = 1, it may be seen through repeated application of the theorem to constitute a simple stepwise-greedy approach to multi-index selection.

Wolfe (Harvard University)

Remarks and Discussion Comparison to known results

• Drineas et al. (2005) proposed to choose row/column subsets by sampling, independently and with replacement, indices in proportion to elements of $\{G_{ii}^2\}_{i=1}^n$, and were able to show:

$$\mathbb{E} \left\| G - \widetilde{G} \right\| \leq \left\| G - G_k \right\| + 2\sqrt{2} \sum_{i=1}^n G_{ii}^2,$$

- Our randomized approach yields a relative error bound Algorithmic complexity: $O(k^3 + (n - k)k^2)$
- Our deterministic approach offers improvement if tr(G) ≥ n; complexity O(k³ + (n − k)k² + n log k)
- Connections to the recently introduced notion of *volume sampling* in theoretical computer science

Introduction: Spectral Methods in Learning

- Spectral methods and statistical learning
- Approximating a positive semi-definite kernel
- Discriminating between data and information
- 2 Nyström Approximation and Multi-Index Selection
 The Nyström extension as an approximation method
 Randomized multi-index selection by weighted sampling
 Deterministic multi-index selection by sorting

3 Numerical Results and Algorithmic Implementation

- Approximate sampling
- Low-rank kernel approximation
- Methods for nonlinear embeddings

October 2007

RVARD ENGINEERING

29 / 37

Implementation of the Sampling Scheme Sampling from $p_{G,k}$

- Sampling directly from $p_{G,k} \propto \det(G_l)$ is infeasable
- Simulation methods provide an appealing alternative
- We employed the Metropolis algorithm to simulate an ergodic Markov chain admitting p_{G,k}(I) as its equilibrium distribution:
 - The proposal distribution is straightforward: exchange one index from I with one index from \bar{I} uniformly at random
 - Distance to $p_{G,k}(\cdot)$ in total variation norm typically observed to be small after on the order of 50|I| iterations of the chain.
- We made no attempt to optimize this choice, as its performance in practice was observed to be satisfactory

A Metropolis Algorithm for Sampling from $p_{G,k}$ Implementation of the sampling scheme

Implementation of the Metropolis sampler is straightforward and intuitive:

- Begin with data $X = \{x_1, x_2, \dots, x_n\} \in \mathbb{R}^m$
- Initialize (in any desired manner) a multi-index I⁽⁰⁾ of cardinality k
- Compute the sub-kernel
 W⁽⁰⁾(X, I⁽⁰⁾)
- After T iterations, return I ~ p_{G,k}

INPUT : Data X, $0 \le k \le n$, T > 0, $k \times k$ sub-kernel $W^{(0)}$ with indices $I^{(0)}$

OUTPUT : Sampled k-multi-index I

for t = 1 to T do **pick** $s \in \{1, 2, \dots, k\}$ uniformly at random **pick** $j'_{\epsilon} \in \{1, 2, \ldots, n\} \setminus I^{(t-1)}$ at random $W' \leftarrow UpdateKernel(W^{(t-1)}, X, s, j'_s)$ with probability $\min(1, \frac{\det(W')}{\det(M/(t-1))})$ do $W^{(t)} \leftarrow W'$ $I^{(t)} \leftarrow \{j'_{\mathsf{s}}\} \cup I^{(t-1)} \setminus \{j_{\mathsf{s}}\}$ otherwise $W^{(t)} \leftarrow W^{(t-1)}$ $I^{(t)} \leftarrow I^{(t-1)}$ end do end for

Wolfe (Harvard University)

Spectral Methods in Learning

October 2007 31 / 37

First, we compare the different randomized algorithms for multi-index selection with one another, and with the method of Drineas et al. (2005):

- Three different settings for approximation error evaluation: Principal components, Diffusion maps, and Laplacian eigenmaps.
- We draw kernels at random from ensembles relevant to the test setting, and then average (though results do not imply a measure on the input space)
- For each kernel drawn, we further average over many runs of the randomized algorithm.

Approximate Principal Components Analysis Randomized multi-index selection

- We drew 1000 50 × 50 SPD matrices of rank 12 from a Wishart ensemble.
- We show the error of several algorithms used to perform a low rank approximation (outputs averaged over 250 trials)

Approximate Diffusion Maps Randomized multi-index selection

- We sample 500 points uniformly on a circle, and use the Diffusion maps algorithm to define an appropriate kernel for embedding
- We measured the resultant approximation error, averaged over 100 datasets and over 100 trials per set

Sampling Sampling Embeddings

Approximate Diffusion Maps Deterministic multi-index selection

- At left, we plot the distribution of approximation error for fixed rank *k* = 8.
- The worst-case error bound of our deterministic algorithm can be clearly seen

Wolfe (Harvard University)

October 2007 35 / 37

Laplacian Eigenmaps Example Embedding a massive dataset

We used the Laplacian eigenmaps algorithm embed the fishbowl dataset

Wolfe (Harvard University)

October 2007 36 / 37

Summary Approximation of quadratic forms in learning theory

- Two alternative strategies for the approximate spectral decomposition of large kernels were presented, both coupled with the Nyström method:
 - Randomized multi-index selection (sampling)
 - Deterministic multi-index selection (sorting)
- Simulation studies demonstrated applicability to machine learning tasks, with measurable improvements in performance
 - Low-rank kernel approximation
 - Methods for nonlinear embeddings
- Work supported by NSF-DMS and DARPA. Related activities in our Statistics & Informations Sciences Laboratory include:
 - Exploiting variability in the space of speech sounds (DARPA)
 - Color image acquisition, processing, and display (Sony Corp.)
 - Statistical inference and algorithms for graphs and networks (NSF-DMS/MSBS, NSF-CISE/DHS)