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Spectral Methods in Learning
The discrepancy between data and information

What role do spectral methods play in statistical learning?

Goal: get relevant “information” about very large datasets in
very high dimensional spaces

Image segmentation, low-dimensional embeddings, . . .

What is the “relevant” information contained in the data set?

Spectral methods reduce this question to finding a low-rank
approximation to a symmetric, positive semi-definite (SPSD)
kernel—equivalently, a quadratic form

They can be quite effective, and see wide use:

Older methods: principal components analysis (1901),
multidimensional scaling (1958), . . .
Newer methods: isomap, Laplacian eigenmaps, Hessian
eigenmaps, diffusion maps, . . .
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Application of Low-Rank Approximations to Learning
Inner and outer characteristics of the point cloud

Let {x1, . . . , xn} be a collection of data points in Rm. Spectral
methods can be classified according to whether they rely on:

Outer characteristics of the point cloud (PCA, discriminants).
Here we work directly in the ambient space. Require
spectral analysis of a positive-definite kernel of
dimension m, the extrinsic dimensionality of the data.

Inner characteristics of the point cloud (MDS, extensions).
Embedding requires the spectral analysis of a kernel
of dimension n, the cardinality of the point cloud.

The spectral analysis task typically consists of finding a rank-k
approximation to a symmetric, positive semi-definite matrix.
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How to Approximate an SPD Matrix, in Theory?
Finding a low-rank approximation is easy. . .

An SPSD matrix G can be written in spectral coordinates

G = UΛUT ,

where U is orthogonal and Λ = diag(λ1, . . . , λn) is diagonal.

The λi ’s are the eigenvalues of G , ordered such that
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, and the ui ’s are the eigenvectors.

For any unitarily invariant norm ‖ · ‖, we have that

argmineG : rank(eG)=k

‖G − G̃‖ = UΛkUT =: Gk ,

where Λk = diag(λ1, λ2, . . . , λk , 0, . . . , 0)
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How to Approximate an SPD Matrix, in Practice?
Finding a low-rank approximation is hard!

Changing to spectral coordinates is done using the Singular Value
Decomposition of G , which requires O(n3) operations

On a Pentium IV 3GHZ desktop
PC, with 1GB RAM, 512k Cache: Extrapolating to

n = 106, factoring G
takes more than 4
months.

When n increases, G
quickly becomes too
large to be stored in
memory
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Approximating Large Kernels
How to discriminate between data and information?

This presents a practical problem for large data sets!

A commonly used “trick” is to sparsify the kernel.

Fix ε > 0. If Gij ≤ ε, set Gij = 0
Questions: How to choose ε? How accurate is the result?

Alternative approach: discard some of the data.

How to construct a low-rank approximation using just some of
the data? The Nyström extension provides an answer

The basic idea is as follows:

Write G = XTX , so that G is a Gram matrix for vectors
X1, . . . ,Xn.
Choose a subset I of vectors Xi and their correlations with all
the other vectors to find a low-rank approximation G̃ .
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A Provably Good Low-Rank Approximation
Our main result on approximating quadratic forms

How to choose I : |I | = k so as to minimize ‖G − G̃‖?
This is equivalent to asking: “How to choose the most
informative part from our dataset?”—most informative being
conditioned on our reconstruction scheme

There are n!
k!(n−k!) multi-indices—no hope of enumerating

We define the following distribution on multi-indices:

pG ,k =
det(GI×I )∑
|I |=k det(GI×I )

Our main result will be to show that, for spectral
decomposition G = UΛUT , we have in Frobenius norm:

E‖G − G̃‖ ≤ (k + 1)(λk+1 + λk+2 + . . . + λn)
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The Nyström Extension
Simplify the problem

Historically, the Nyström extension was introduced to obtain
numerical solutions to integral equations.

Let g : [0, 1]× [0, 1] → R be an SPSD kernel and (ui , λ
u
i ),

i ∈ N, denote its pairs of eigenfunctions and eigenvalues:∫ 1

0
g(x , y)ui (y) dy = λu

i ui (x), i ∈ N.

The Nyström extension approximates the eigenvectors of
g(x , y) by evaluation of the kernel at k2 distinct points

Let {(xm, xn)}k
m,n=1 ∈ [0, 1]× [0, 1].

Define G (m, n) ≡ Gmn := g(xm, xn)
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The Nyström Extension
Extend the solution

We now solve a finite dimensional problem

1

k

k∑
n=1

G (m, n)vi (n) = λv
i vi (m), i = 1, 2, . . . , k,

where (vi , λ
v
i ) represent the k eigenvector-eigenvalues pairs

associated with G .

What do we do with these eigenvectors? We extend them to
approximate ũi u ui as follows:

ũi (x) =
1

λv
i k

k∑
m=1

g(x , xm)vi (m).

In essence: only use partial information about the kernel to
solve a simpler eigenvalue problem, and then to extend the
solution using complete knowledge of the kernel.
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The Nyström Extension
In finite dimensions

The Nyström extension first solves a simpler
eigenfunction/eigenvalue problem.

How do we translate this to a finite dimensional setting?

We approximate k eigenvectors of G by decomposing and
then extending a k × k principal submatrix of G .

We partition G as follows

G =

[
A BT

B C

]
,

with A ∈ Rk×k ; we say that this partition corresponds to the
multi-index I = {1, 2, . . . , k}.
Define spectral decompositions G = UΛUT and A = UAΛAUT

A
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The Nyström Extension
The approximation error

The Nyström extension then provides an approximation for k
eigenvectors in U as

Ũ :=

[
UA

BUAΛ−1
A

]
; A = UAΛAUT

A .

In turn, the approximations Ũ u U and ΛA u Λ may be
composed to yield an approximation G̃ u G according to

G̃ := ŨΛAŨT =

[
A BT

B BA−1BT

]
.

The resultant approximation error is

‖G − G̃‖ = ‖C − BA−1BT‖,

the norm of the Schur complement of A in G
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Adjusting Computational Load vs. Approximation Error
From eigenanalysis to partitioning

On what fronts do we gain by using the Nyström extension?

What is required is the spectral analysis of a kernel of size
k ≤ n ⇒ gain in space and time complexity.

But we introduced another problem: how to partition G?

In other words, we have shifted the computational load from
eigenanalysis to the determination a “good” partition

The latter problem is more amenable to approximation

We give two algorithms to solve it, along with error bounds. . .
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The Nyström Extension
A combinatorial problem

We now introduce the problem formally with notation:

I , J ⊂ {1, . . . , n} are multi-indices of respective cardinalities k
and l , containing pairwise distinct elements in {1, . . . , n}.
We write I = {i1, . . . , ik}, J = {j1, . . . , jl}, and denote by Ī
the complement of I in {1, . . . , n}.
Define GI×J for the k × l matrix whose (p, q)-th entry is given
by (GI×J)pq = Gip jq . Abbreviate GI for GI×I .

The partitioning problem is equivalent to selecting a
multi-index I such that the error

‖G − G̃‖ = ‖GĪ − GĪ×IG
−1
I GI×Ī‖ = ‖SC (GI )‖

is minimized.
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The Nyström Method and Exact Reconstruction
Recovery when rank(GI ) = rank(G) = k

When does the Nyström method admit exact reconstruction?

If we take for I the entire set {1, 2, . . . , n}, then the Nyström
extension yields G̃ = G trivially

If G is of rank k < n, then there exist I : I = |k| such that the
Nyström method yields exact reconstruction

These I are those such that rank(GI ) = rank(G ) = k

Intuition: express G as a Gram matrix whose entries comprise
the inner products of n vectors in Rk

Knowing the correlation of these n vectors with a subset of k
linearly independent vectors allows us to recover them
Information contained in GI is sufficient to reconstruct G ;
Nyström extension performs the reconstruction

To verify, we introduce our first lemma. . .
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Verifying the Perfect Reconstruction Property
Characterizing Schur complements as ratios of determinants

Lemma (Crabtree-Haynsworth)

Let GI be a nonsingular principal submatrix of some SPSD matrix
G. The Schur complement of GI in G is given element-wise by

(SC (GI ))ij =
det(GI∪{i}×I∪{j})

det(GI )
. (1)

This implies that for I such that rank(GI ) = rank(G ) = k,

SC (GI ) = GĪ − GĪ×IG
−1
I GI×Ī = 0.

If rank(G ) = k = |I |, then (1) implies that diag(SC (GI )) = 0

Positive definiteness of G implies positive definiteness of
SC (GI ) for any multi-index I , allowing us to conclude that
SC (GI ) is identically zero.
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Randomized Low-Rank Kernel Approximation
Randomized multi-index selection by weighted sampling

Whether rank(G ) = k or rank(G ) > k, we are faced with the task
of selecting a multi-index I from amongst a set of (

n
k
) possibilities.

This motivates our first algorithm for multi-index selection:

Observation: Since G is positive definite, it induces a
probability distribution on the set of all I : |I | = k as follows:

pG ,k(I ) ∝ det(GI ),

with the normalizing constant being
∑

I ,|I |=k det(GI )

Algorithm: first sample I ∼ pG ,k(I ), then perform the
Nyström extension on the chosen multi-index

Recall: if rank(G ) = k and we seek a rank-k approximant G̃ ,
then G̃ = G by our previous argument.
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Randomized Multi-Index Selection by Weighted Sampling
Statement of the main result

Our randomized algorithm for multi-index selection admits the
following error bound in expectation:

Theorem (Randomized Multi-Index Selection)

Let G be a real, n × n, positive quadratic form with eigenvalues
λ1 ≥ . . . ≥ λn. Let G̃ be the Nyström approximation to G
corresponding to I , with I ∼ pG ,k(I ) ∝ det(GI ). Then

E ‖G − G̃‖ ≤ (k + 1)
n∑

l=k+1

λl . (2)
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Proof of the Randomized Multi-Index Result I
Randomized algorithm for multi-index selection

Proof.

We seek to bound

E ‖G − G̃‖ =
1∑

I ,|I |=k det(GI )

∑
I ,|I |=k

det(GI ) ‖SC (GI )‖.

Denote the eigenvalues of SC (GI ) as {λ̄j}n−k
j=1 ; positive definiteness

and subadditivity of the square root imply that

‖SC (GI )‖ =

√∑
j

λ̄2
j ≤

∑
j

λ̄j = tr(SC (GI )).
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Proof of the Randomized Multi-Index Result II
Randomized algorithm for multi-index selection

Proof.

The Crabtree-Haynsworth Lemma yields

tr(SC (GI )) =
∑
i /∈I

det(GI∪{i})

det(GI )
,

and thus

E ‖G − G̃‖ ≤ 1

Z

∑
I ,|I |=k

∑
i /∈I

det(GI∪{i}), (3)

where Z =
∑

I ,|I |=k det(GI ) is the normalizing constant of pG ,k(I ).
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Proof of the Randomized Multi-Index Result III
Randomized algorithm for multi-index selection

Proof.

Every multi-index of cardinality k + 1 appears exactly k + 1 times
in the double sum of (3) above, whence

E ‖G − G̃‖ ≤ (k + 1)

Z

∑
I ,|I |=k+1

det(GI ). (4)

The sum of the principal (k + 1)-minors of G can be expressed as
the sum of (k + 1)-fold products of its ordered eigenvalues
(Cauchy-Binet):∑

I ,|I |=k+1

det(GI ) =
∑

1≤j1<j2<...

<jk+1≤n

λj1λj2 · · ·λjk+1
.
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Proof of the Randomized Multi-Index Result IV
Randomized algorithm for multi-index selection

Proof.

It thus follows that∑
I ,|I |=k+1

det(GI ) ≤
∑

1≤j1<j2<...

<jk≤n

λj1λj2 · · ·λjk

∑n
l=k+1 λl

=
∑

I ,|I |=k

det(GI )
∑n

l=k+1 λl .

Combining this relation with (4) above, we obtain

E ‖G − G̃‖ ≤ (k + 1)

Z

∑
I ,|I |=k

det(GI )
n∑

l=k+1

λl = (k + 1)
n∑

l=k+1

λl ,

which concludes the proof.
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Deterministic Multi-Index Selection by Sorting
A different flavor of result

We obtain an SPSD approximant G̃ such that

E ‖G − G̃‖ ≤ (k + 1)
n∑

i=k+1

λi

in the Frobenius norm, as compared to the optimum

‖G − G̃opt‖ =

(
n∑

i=k+1

λ2
i

)1/2

afforded by the full spectral decomposition.

Two practical issues:

Complexity of sampling from pG ,k(I ) ∝ det(GI )
Desire for deterministic rather than probabilistic result
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Deterministic Low-Rank Kernel Approximation
Deterministic multi-index selection by sorting

We now present a low-complexity deterministic multi-index
selection algorithm and provide a bound on its worst-case error

Let I contain the indices of the k largest diagonal elements of
G and then implement the Nyström extension. Then we have:

Theorem (Deterministic Multi-Index Selection)

Let G be a real positive-definite kernel, let I contain the indices of
its k largest diagonal elements, and let G̃ be the corresponding
Nyström approximation. Then

‖G − G̃‖ ≤
∑
i /∈I

Gii . (5)
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Proof of the Deterministic Multi-Index Result I
Deterministic algorithm for multi-index selection

We have sacrificied some power to obtain gains in the deterministic
nature of the result and in computational efficiency:

‖G − G̃‖ ≤
n∑

i=k+1

Gii (sorting) vs. E ‖G − G̃‖ ≤ (k+1)
n∑

i=k+1

λi (sampling)

The proof of this theorem is straightforward, once we have the
following generalization of the Hadamard inequality:

Lemma (Fischer’s Lemma)

If G is a positive-definite matrix and GI a nonsingular principal
submatrix then

det(GI∪{i}) < det(GI )Gii .
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Proof of the Deterministic Multi-Index Result II
Deterministic algorithm for multi-index selection

Proof of the Theorem.

We have from our earlier proof that ‖G − G̃‖ ≤ tr(SC (GI ));
applying Crabtree-Haynsworth in turn gives

‖G − G̃‖ ≤ 1

det(GI )

∑
i /∈I

det(GI∪{i}),

after which Fischer’s Lemma yields ‖G − G̃‖ ≤
∑

i /∈I Gii .

In other work (Belabbas and W., 2007), we have shown this
algorith to perform well in an array signal processing context.

Beginning with the case k = 1, it may be seen through
repeated application of the theorem to constitute a simple
stepwise-greedy approach to multi-index selection.
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Remarks and Discussion
Comparison to known results

Drineas et al. (2005) proposed to choose row/column subsets
by sampling, independently and with replacement, indices in
proportion to elements of {G 2

ii }n
i=1, and were able to show:

E ‖G − G̃‖ ≤ ‖G − Gk‖+ 2
√

2
n∑

i=1

G 2
ii ,

Our randomized approach yields a relative error bound
Algorithmic complexity: O(k3 + (n − k)k2)

Our deterministic approach offers improvement if tr(G ) ≥ n;
complexity O(k3 + (n − k)k2 + n log k)

Connections to the recently introduced notion of volume
sampling in theoretical computer science
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Implementation of the Sampling Scheme
Sampling from pG ,k

Sampling directly from pG ,k ∝ det(GI ) is infeasable

Simulation methods provide an appealing alternative

We employed the Metropolis algorithm to simulate an ergodic
Markov chain admitting pG ,k(I ) as its equilibrium distribution:

The proposal distribution is straightforward: exchange one
index from I with one index from Ī uniformly at random
Distance to pG ,k(·) in total variation norm typically observed
to be small after on the order of 50|I | iterations of the chain.

We made no attempt to optimize this choice, as its
performance in practice was observed to be satisfactory
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A Metropolis Algorithm for Sampling from pG ,k
Implementation of the sampling scheme

Implementation of the
Metropolis sampler is
straightforward and
intuitive:

Begin with data X =
{x1, x2, . . . , xn} ∈ Rm

Initialize (in any desired
manner) a multi-index
I (0) of cardinality k

Compute the sub-kernel
W (0)(X , I (0))

After T iterations,
return I ∼ pG ,k

INPUT : Data X , 0 ≤ k ≤ n, T > 0,
k × k sub-kernel W (0) with indices I (0)

OUTPUT : Sampled k-multi-index I

for t = 1 to T do
pick s ∈ {1, 2, . . . , k} uniformly at random
pick j ′s ∈ {1, 2, . . . , n} \ I (t−1) at random
W ′ ⇐ UpdateKernel(W (t−1),X , s, j ′s)

with probability min(1, det(W ′)
det(W (t−1))

) do

W (t) ⇐ W ′

I (t) ⇐ {j ′s} ∪ I (t−1) \ {js}
otherwise

W (t) ⇐ W (t−1)

I (t) ⇐ I (t−1)

end do
end for

Wolfe (Harvard University) Spectral Methods in Learning October 2007 31 / 37



Introduction Main Results Simulation Studies Summary Sampling Sampling Embeddings

Simulation Results
Experimental setup

First, we compare the different randomized algorithms for
multi-index selection with one another, and with the method of
Drineas et al. (2005):

Three different settings for approximation error evaluation:
Principal components, Diffusion maps, and Laplacian
eigenmaps.

We draw kernels at random from ensembles relevant to the
test setting, and then average (though results do not imply a
measure on the input space)

For each kernel drawn, we further average over many runs of
the randomized algorithm.
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Approximate Principal Components Analysis
Randomized multi-index selection
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Approximate Diffusion Maps
Randomized multi-index selection
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Approximate Diffusion Maps
Deterministic multi-index selection
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Laplacian Eigenmaps Example
Embedding a massive dataset

We used the Laplacian eigenmaps algorithm embed the fishbowl dataset
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Summary
Approximation of quadratic forms in learning theory

Two alternative strategies for the approximate spectral
decomposition of large kernels were presented, both coupled
with the Nyström method:

Randomized multi-index selection (sampling)
Deterministic multi-index selection (sorting)

Simulation studies demonstrated applicability to machine
learning tasks, with measurable improvements in performance

Low-rank kernel approximation
Methods for nonlinear embeddings

Work supported by NSF-DMS and DARPA. Related activities
in our Statistics & Informations Sciences Laboratory include:

Exploiting variability in the space of speech sounds (DARPA)
Color image acquisition, processing, and display (Sony Corp.)
Statistical inference and algorithms for graphs and networks
(NSF-DMS/MSBS, NSF-CISE/DHS)
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