Learnability of Gaussians with flexible variances

Ding-Xuan Zhou

City University of Hong Kong

E-mail: mazhou@cityu.edu.hk

Supported in part by Research Grants Council of Hong Kong

Start October 20, 2007

Least-square Regularized Regression

Learn $f: X \to Y$ from random samples $\mathbf{z} = \{(x_i, y_i)\}_{i=1}^m$

Take X to be a compact subset of \mathbb{R}^n and $Y = \mathbb{R}$. $y \approx f(x)$ Due to noises or other uncertainty, we assume a (unknown) probability measure ρ on $Z = X \times Y$ governs the sampling.

marginal distribution ρ_X on X: $\{x_i\}_{i=1}^m$ drawn according to ρ_X

conditional distribution $\rho(\cdot|x)$ at $x \in X$

Learning the **regression function**: $f_{\rho}(x) = \int_{Y} y d\rho(y|x)$

 $y_i \approx f_\rho(x_i)$

Learning with a Fixed Gaussian

$$f_{\mathbf{z},\lambda,\sigma} := \arg\min_{f \in \mathcal{H}_{K\sigma}} \left\{ \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \lambda \|f\|_{K\sigma}^2 \right\}, \qquad (1)$$

where $\lambda = \lambda(m) > 0$, and $K_{\sigma}(x,y) = e^{-\frac{|x-y|^2}{2\sigma^2}}$ is a Gaussian kernel on X

Reproducing Kernel Hilbert Space (RKHS) $\mathcal{H}_{K_{\sigma}}$

completion of span{ $(K_{\sigma})_t := K_{\sigma}(t, \cdot) : t \in X$ } with the inner product $\langle , \rangle_{K_{\sigma}}$ satisfying $\langle (K_{\sigma})_x, (K_{\sigma})_y \rangle_K = K_{\sigma}(x, y)$.

Theorem 1 (Smale-Zhou, Constr. Approx. 2007) Assume $|y| \leq M$ and that $f_{\rho} = \int_X K_{\sigma}(x, y)g(y)d\rho_X(y)$ for some $g \in L^2_{\rho_X}$. For any $0 < \delta < 1$, with confidence $1 - \delta$,

$$\|f_{\mathbf{z},\lambda,\sigma} - f_{\rho}\|_{L^{2}_{\rho_{X}}} \leq 2\log(4/\delta) (12M)^{2/3} \|g\|_{L^{2}_{\rho_{X}}}^{1/3} (\frac{1}{m})^{1/3}$$

where $\lambda = \lambda(m) = \log(4/\delta) (12M/\|g\|_{L^{2}_{\rho_{X}}})^{2/3} (1/m)^{1/3}.$

In Theorem 1, $f_{\rho} \in C^{\infty}$

RKHS $\mathcal{H}_{K_{\sigma}}$ generated by a Gaussian kernel on X

 $\mathcal{H}_{K_{\sigma}} = \mathcal{H}_{K_{\sigma}}(\mathbf{R}^n)|_X$ where $\mathcal{H}_{K_{\sigma}}(\mathbf{R}^n)$ is the RKHS generated by K_{σ} as a Mercer kernel on \mathbf{R}^n :

$$\mathcal{H}_{K_{\sigma}}(\mathbf{R}^{n}) = \left\{ f \in L^{2}(\mathbf{R}^{n}) : \|f\|_{\mathcal{H}_{K_{\sigma}}(\mathbf{R}^{n})} < \infty \right\}$$

where

$$||f||_{\mathcal{H}_{K_{\sigma}}(\mathbf{R}^{n})} = \left(\int_{\mathbf{R}^{n}} \frac{|\hat{f}(\xi)|^{2}}{(\sqrt{2\pi}\sigma)^{n} e^{-\frac{\sigma^{2}|\xi|^{2}}{2}}} d\xi\right)^{1/2}$$

Thus $\mathcal{H}_{K_{\sigma}}(\mathbf{R}^n) \subset C^{\infty}(\mathbf{R}^n)$

Steinwart

If X is a domain with piecewise smooth boundary and $d\rho_X(x) \ge c_0 dx$ for some $c_0 > 0$, then for any $\beta > 0$,

$$\mathcal{D}_{\sigma}(\lambda) := \inf_{f \in \mathcal{H}_{K_{\sigma}}} \left\{ \|f - f_{\rho}\|_{L^{2}_{\rho_{X}}}^{2} + \lambda \|f\|_{K_{\sigma}}^{2} \right\} = O(\lambda^{\beta})$$

implies $f_{\rho} \in C^{\infty}(X)$.

Note
$$||f - f_{\rho}||^2_{L^2_{\rho_X}} = \mathcal{E}(f) - \mathcal{E}(f_{\rho})$$
 where $\mathcal{E}(f) := \int_Z (f(x) - y)^2 d\rho$.

Denote
$$\mathcal{E}_{\mathbf{z}}(f) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2 \approx \mathcal{E}(f)$$
. Then
 $f_{\mathbf{z},\lambda,\sigma} = \arg \min_{f \in \mathcal{H}_{K_{\sigma}}} \left\{ \mathcal{E}_{\mathbf{z}}(f) + \lambda \|f\|_{K_{\sigma}}^2 \right\}.$

If we define

$$f_{\lambda,\sigma} = \arg \min_{f \in \mathcal{H}_{K_{\sigma}}} \left\{ \mathcal{E}(f) + \lambda \|f\|_{K_{\sigma}}^{2} \right\},\,$$

then $f_{\mathbf{z},\lambda,\sigma} \approx f_{\lambda,\sigma}$ and the error can be estimated in terms of λ by the theory of uniform convergence over the **compact** function set $B_{M/\sqrt{\lambda}} := \{f \in \mathcal{H}_{K_{\sigma}} : \|f\|_{K_{\sigma}} \leq M/\sqrt{\lambda}\}$ since $f_{\mathbf{z},\lambda,\sigma} \in B_{M/\sqrt{\lambda}}$. But $\|f_{\lambda,\sigma} - f_{\rho}\|_{L^{2}_{\rho_{X}}}^{2} = O(\lambda^{\beta})$ for any $\beta > 0$ implies $f_{\rho} \in C^{\infty}(X)$. So the learning ability of a single Gaussian is weak. One may choose less smooth kernel, but we would like radial basis kernels for manifold learning.

One way to increase the learning ability of Gaussian kernels: let σ depend on m and $\sigma = \sigma(m) \rightarrow 0$ as $m \rightarrow \infty$.

Steinwart-Scovel, Xiang-Zhou, ...

Another way: allow all possible variances $\sigma \in (0, \infty)$

Regularization Schemes with Flexible Gaussians:

Zhou, Wu-Ying-Zhou, Ying-Zhou, Micchelli-Pontil-Wu-Zhou, ...

$$f_{\mathbf{z},\lambda} := \arg\min_{0 < \sigma < \infty} \min_{f \in \mathcal{H}_{K\sigma}} \left\{ \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \lambda \|f\|_{K\sigma}^2 \right\}$$

Theorem 2 (Ying-Zhou, J. Mach. Learning Res. 2007) Let ρ_X be the Lebesgue measure on a domain X in \mathbb{R}^n with minimally smooth boundary. If $f_{\rho} \in H^s(X)$ for some $s \leq 2$ and $\lambda = m^{-\frac{2s+n}{4(4s+n)}}$, then we have

$$E_{\mathbf{z}\in Z^m}\left(\|f_{\mathbf{z},\lambda}-f_\rho\|_{L^2}^2\right) = O\left(m^{-\frac{s}{2(4s+n)}}\sqrt{\log m}\right).$$

FirstPreviousNextLastBackCloseQuit7

Major difficulty: is the function set

$$\mathcal{H} = \bigcup_{0 < \sigma < \infty} \left\{ f \in \mathcal{H}_{K_{\sigma}} : \|f\|_{K_{\sigma}} \le R \right\}$$

with R > 0 learnable? That is, is this function set a uniform Glivenko-Cantelli class? Its closure is not a compact subset of C(X).

Theory of Uniform Convergence for $\sup_{f \in \mathcal{H}} |\mathcal{E}_{\mathbf{z}}(f) - \mathcal{E}(f)|$.

Given a bounded set ${\mathcal H}$ of functions on X, when do we have

$$\lim_{\ell \to \infty} \sup_{\rho} \operatorname{Prob} \left\{ \sup_{m \ge \ell} \sup_{f \in \mathcal{H}} \left| \frac{1}{m} \sum_{i=1}^{m} f(x_i) - \int_X f(x) d\rho \right| > \epsilon \right\} = 0, \forall \epsilon > 0?$$

Such a set is called a **uniform Glivenko-Cantelli** (UGC) class.

Characterizations: Vapnik-Chervonenkis, and Alon, Ben-David, Cesa-Bianchi, Haussler (1997)

Our quantitative estimates:

If $V : Y \times \mathbf{R} \to \mathbf{R}_+$ is convex with respect to the second variable, $M = \|V(y, 0)\|_{L^{\infty}_{\rho}(Z)} < \infty$, and

 $C_R = \sup\{\max\{|V'_{-}(y,t)|, |V'_{+}(y,t)|\} : y \in Y, |t| \le R\} < \infty,$

then we have

$$E_{\mathbf{z}\in Z^m}\left\{\sup_{f\in\mathcal{H}}\left|\frac{1}{m}\sum_{i=1}^m V(y_i, f(x_i)) - \int_Z V(y, f(x))d\rho\right|\right\}$$
$$\leq C'C_R R \frac{\log m}{m^{1/4}} + \frac{2M}{\sqrt{m}},$$

where C' is a constant depending on n.

Ideas: reducing the estimates for \mathcal{H} to a much smaller subset $\mathcal{F} = \{(K_{\sigma})_x : x \in X, 0 < \sigma < \infty\}$, then bounding empirical covering numbers. The UGC property follows from the characterization of Dudley-Giné-Zinn.

Improve the learning rates when X is a manifold of dimension d with d much smaller than the dimension n of the underlying Euclidean space.

Approximation by Gaussians on Riemannian manifolds

Let X be a d-dimensional connected compact C^{∞} submanifold of \mathbb{R}^n without boundary. The approximation scheme is given by a family of linear operators $\{I_{\sigma} : C(X) \to C(X)\}_{\sigma>0}$ as

$$I_{\sigma}(f)(x) = \frac{1}{(\sqrt{2\pi}\sigma)^{d}} \int_{X} K_{\sigma}(x,y) f(y) dV(y)$$

= $\frac{1}{(\sqrt{2\pi}\sigma)^{d}} \int_{X} \exp\left\{-\frac{|x-y|^{2}}{2\sigma^{2}}\right\} f(y) dV(y), \quad x \in X,$

where V is the Riemannian volume measure of X.

Theorem 3 (Ye-Zhou, Adv. Comput. Math. 2007) If $f_{\rho} \in Lip(s)$ with $0 < s \le 1$, then

$$|I_{\sigma}(f_{\rho}) - f_{\rho}||_{C(X)} \le C_X ||f_{\rho}||_{Lip(s)} \sigma^s \qquad \forall \sigma > 0, \qquad (2)$$

where C_X is a positive constant independent of f_ρ or σ . By taking $\lambda = \left(\frac{\log^2 m}{m}\right)^{\frac{s+d}{8s+4d}}$, we have

$$E_{\mathbf{z}\in Z^m}\left\{\|f_{\mathbf{z},\lambda} - f_\rho\|_{L^2_{\rho_X}}^2\right\} = O\left(\left(\frac{\log^2 m}{m}\right)^{\frac{s}{8s+4d}}\right)$$

The index $\frac{s}{8s+4d}$ in Theorem 3 is smaller than $\frac{s}{2(4s+n)}$ in Theorem 2 when the manifold dimension d is much smaller than n.

11

Classification by Gaussians on Riemannian manifolds

Let $\phi(t) = \max\{1 - t, 0\}$ be the hinge loss for the support vector machine classification. Define

$$f_{\mathbf{z},\lambda} = \arg\min_{\sigma \in (0,+\infty)} \min_{f \in \mathcal{H}_{K_{\sigma}}} \left\{ \frac{1}{m} \sum_{i=1}^{m} \phi(y_i f(x_i)) + \lambda \|f\|_{K_{\sigma}}^2 \right\}$$

By using I_{σ} : $L^{p}(X) \rightarrow L^{p}(X)$, we obtain learning rates for binary classification to learn the Bayes rule:

$$f_c(x) = \begin{cases} 1, & \text{if } \rho(y=1|x) \ge \rho(y=-1|x) \\ -1, & \text{if } \rho(y=1|x) < \rho(y=-1|x) \end{cases}$$

Here $Y = \{1, -1\}$ represents two classes. The misclassification error is defined as $\mathcal{R}(f)$: $Prob\{y \neq f(x)\} \geq \mathcal{R}(f_c)$ for any $f: X \to Y$. The Sobolev space $H_p^k(X)$ is the completion of $\mathcal{C}^{\infty}(X)$ with respect to the norm

$$||f||_{H^k_p(X)} = \sum_{j=0}^k \left(\int_X |\nabla^j f|^p dV \right)^{1/p},$$

where $\nabla^{j} f$ denotes the *j*th covariant derivative of *f*.

Theorem 4 If f_c lies in the interpolation space $(L^1(X), H_1^2(X))_{\theta}$ for some $0 < \theta \le 1$, then by taking $\lambda = \left(\frac{\log^2 m}{m}\right)^{\frac{2\theta+d}{12\theta+2d}}$, we have

$$E_{\mathbf{z}\in Z^m}\Big\{\mathcal{R}(\operatorname{sgn}(f_{\mathbf{z},\lambda}))-\mathcal{R}(f_c)\Big\}\leq \widetilde{C}\bigg(\frac{\log^2 m}{m}\bigg)^{\frac{\theta}{6\theta+d}},$$

where \tilde{C} is a constant independent of m.

Ongoing topics:

variable selection

dimensionality reduction

graph Laplacian

diffusion map

