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Least-square Regularized Regression

Learn f : X → Y from random samples z = {(xi, yi)}m
i=1

Take X to be a compact subset of Rn and Y = R. y ≈ f(x)

Due to noises or other uncertainty, we assume a (unknown)

probability measure ρ on Z = X × Y governs the sampling.

marginal distribution ρX on X: {xi}m
i=1 drawn according to ρX

conditional distribution ρ(·|x) at x ∈ X

Learning the regression function: fρ(x) =
∫
Y ydρ(y|x)

yi ≈ fρ(xi)
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Learning with a Fixed Gaussian

fz,λ,σ := arg min
f∈HKσ

 1

m

m∑
i=1

(f(xi)− yi)
2 + λ‖f‖2Kσ

 , (1)

where λ = λ(m) > 0, and Kσ(x, y) = e
−|x−y|2

2σ2 is a Gaussian

kernel on X

Reproducing Kernel Hilbert Space (RKHS) HKσ

completion of span{(Kσ)t := Kσ(t, ·) : t ∈ X} with the inner

product 〈 , 〉Kσ satisfying 〈(Kσ)x, (Kσ)y〉K = Kσ(x, y).
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Theorem 1 (Smale-Zhou, Constr. Approx. 2007) Assume

|y| ≤ M and that fρ =
∫
X Kσ(x, y)g(y)dρX(y) for some g ∈ L2

ρX
.

For any 0 < δ < 1, with confidence 1− δ,

‖fz,λ,σ − fρ‖L2
ρX

≤ 2 log
(
4/δ

)(
12M

)2/3
‖g‖1/3

L2
ρX

( 1

m

)1/3

where λ = λ(m) = log
(
4/δ

)(
12M/‖g‖L2

ρX

)2/3(
1/m

)1/3
.

In Theorem 1, fρ ∈ C∞
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RKHS HKσ generated by a Gaussian kernel on X

HKσ = HKσ(R
n)|X where HKσ(R

n) is the RKHS generated by

Kσ as a Mercer kernel on Rn:

HKσ(R
n) =

{
f ∈ L2(Rn) : ‖f‖HKσ(Rn) < ∞

}
where

‖f‖HKσ(Rn) =

∫
Rn

|f̂(ξ)|2

(
√

2πσ)ne−
σ2|ξ|2

2

dξ


1/2

.

Thus HKσ(R
n) ⊂ C∞(Rn)

Steinwart
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If X is a domain with piecewise smooth boundary and dρX(x) ≥
c0dx for some c0 > 0, then for any β > 0,

Dσ(λ) := inf
f∈HKσ

{
‖f − fρ‖2L2

ρX
+ λ‖f‖2Kσ

}
= O(λβ)

implies fρ ∈ C∞(X).

Note ‖f−fρ‖2L2
ρX

= E(f)−E(fρ) where E(f) :=
∫
Z(f(x)−y)2dρ.

Denote Ez(f) = 1
m

∑m
i=1(f(xi)− yi)

2 ≈ E(f). Then

fz,λ,σ = arg min
f∈HKσ

{
Ez(f) + λ‖f‖2Kσ

}
.
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If we define

fλ,σ = arg min
f∈HKσ

{
E(f) + λ‖f‖2Kσ

}
,

then fz,λ,σ ≈ fλ,σ and the error can be estimated in terms

of λ by the theory of uniform convergence over the com-

pact function set B
M/

√
λ

:= {f ∈ HKσ : ‖f‖Kσ ≤ M/
√

λ} since

fz,λ,σ ∈ B
M/

√
λ
. But ‖fλ,σ − fρ‖2L2

ρX

= O(λβ) for any β > 0 im-

plies fρ ∈ C∞(X). So the learning ability of a single Gaussian

is weak. One may choose less smooth kernel, but we would

like radial basis kernels for manifold learning.

One way to increase the learning ability of Gaussian kernels:

let σ depend on m and σ = σ(m) → 0 as m →∞.

Steinwart-Scovel, Xiang-Zhou, ...
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Another way: allow all possible variances σ ∈ (0,∞)

Regularization Schemes with Flexible Gaussians:

Zhou, Wu-Ying-Zhou, Ying-Zhou, Micchelli-Pontil-Wu-Zhou,

...

fz,λ := arg min
0<σ<∞

min
f∈HKσ

 1

m

m∑
i=1

(f(xi)− yi)
2 + λ‖f‖2Kσ

 .

Theorem 2 (Ying-Zhou, J. Mach. Learning Res. 2007) Let

ρX be the Lebesgue measure on a domain X in Rn with min-

imally smooth boundary. If fρ ∈ Hs(X) for some s ≤ 2 and

λ = m
− 2s+n

4(4s+n), then we have

Ez∈Zm

(
‖fz,λ − fρ‖2L2

)
= O

(
m
− s

2(4s+n)
√

logm

)
.
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Major difficulty: is the function set

H = ∪0<σ<∞
{
f ∈ HKσ : ‖f‖Kσ ≤ R

}
with R > 0 learnable? That is, is this function set a uniform
Glivenko-Cantelli class? Its closure is not a compact subset of
C(X).

Theory of Uniform Convergence for supf∈H |Ez(f)− E(f)|.

Given a bounded set H of functions on X, when do we have

lim
`→∞

sup
ρ

Prob

sup
m≥`

sup
f∈H

∣∣∣∣∣ 1m
m∑

i=1

f(xi)−
∫
X

f(x)dρ

∣∣∣∣∣ > ε

 = 0, ∀ε > 0?

Such a set is called a uniform Glivenko-Cantelli (UGC) class.

Characterizations: Vapnik-Chervonenkis, and Alon, Ben-David,
Cesa-Bianchi, Haussler (1997)
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Our quantitative estimates:

If V : Y×R → R+ is convex with respect to the second variable,

M = ‖V (y,0)‖L∞ρ (Z) < ∞, and

CR = sup{max{|V ′
−(y, t)|, |V ′

+(y, t)|} : y ∈ Y, |t| ≤ R} < ∞,

then we have

Ez∈Zm

{
supf∈H

∣∣∣ 1m∑m
i=1 V (yi, f(xi))−

∫
Z V (y, f(x))dρ

∣∣∣}
≤ C′CRRlogm

m1/4 + 2M√
m

,

where C′ is a constant depending on n.

Ideas: reducing the estimates for H to a much smaller subset

F = {(Kσ)x : x ∈ X,0 < σ < ∞}, then bounding empirical

covering numbers. The UGC property follows from the char-

acterization of Dudley-Giné-Zinn.
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Improve the learning rates when X is a manifold of dimension

d with d much smaller than the dimension n of the underlying

Euclidean space.

Approximation by Gaussians on Riemannian manifolds

Let X be a d-dimensional connected compact C∞ submanifold

of Rn without boundary. The approximation scheme is given

by a family of linear operators {Iσ : C(X) → C(X)}σ>0 as

Iσ(f)(x) =
1

(
√

2πσ)
d

∫
X

Kσ(x, y)f(y)dV (y)

=
1

(
√

2πσ)
d

∫
X

exp

{
−
|x− y|2

2σ2

}
f(y)dV (y), x ∈ X,

where V is the Riemannian volume measure of X.
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Theorem 3 (Ye-Zhou, Adv. Comput. Math. 2007) If fρ ∈
Lip(s) with 0 < s ≤ 1, then

‖Iσ(fρ)− fρ‖C(X) ≤ CX‖fρ‖Lip(s)σ
s ∀σ > 0, (2)

where CX is a positive constant independent of fρ or σ. By

taking λ =
(
log2 m

m

) s+d
8s+4d, we have

Ez∈Zm

{
‖fz,λ − fρ‖2L2

ρX

}
= O

((
log2 m

m

) s
8s+4d

)
.

The index s
8s+4d in Theorem 3 is smaller than s

2(4s+n) in The-

orem 2 when the manifold dimension d is much smaller than

n.
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Classification by Gaussians on Riemannian manifolds

Let φ(t) = max{1 − t,0} be the hinge loss for the support

vector machine classification. Define

fz,λ = arg min
σ∈(0,+∞)

min
f∈HKσ

 1

m

m∑
i=1

φ (yif(xi)) + λ‖f‖2Kσ

 .

By using Iσ : Lp(X) → Lp(X), we obtain learning rates for

binary classification to learn the Bayes rule:

fc(x) =

{
1, if ρ(y = 1|x) ≥ ρ(y = −1|x)
−1, if ρ(y = 1|x) < ρ(y = −1|x).

Here Y = {1,−1} represents two classes. The misclassification

error is defined as R(f) : Prob{y 6= f(x)} ≥ R(fc) for any

f : X → Y .
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The Sobolev space Hk
p(X) is the completion of C∞(X) with

respect to the norm

‖f‖Hk
p(X) =

k∑
j=0

( ∫
X
|∇jf |pdV

)1/p
,

where ∇jf denotes the jth covariant derivative of f .

Theorem 4 If fc lies in the interpolation space (L1(X), H2
1(X))θ

for some 0 < θ ≤ 1, then by taking λ =

(
log2 m

m

) 2θ+d
12θ+2d

, we have

Ez∈Zm

{
R(sgn(fz,λ))−R(fc)

}
≤ C̃

(
log2 m

m

) θ
6θ+d

,

where C̃ is a constant independent of m.
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Ongoing topics:

variable selection

dimensionality reduction

graph Laplacian

diffusion map
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