MATH 638 PROJECTS

Question 1. Consider the initial-value problem for a scalar conservation law:

(1)
$$\begin{cases} u_t + f(u)_x = 0 & \text{in } \mathbb{R} \times \mathbb{R}_+ \\ u = u^0 & \text{on } \mathbb{R} \times \{t = 0\} \end{cases}$$

where u is a bounded and measurable function. Prove that the following two definitions are equivalent if $u \in C([0,\infty); L^1_{loc}(\mathbb{R}))$ (assume that u is piecewise smooth if you do not know/understand the notation).

Definition 1. u is a weak solution, if $\forall \phi \in C_0^1(\mathbb{R} \times [0,\infty))$, u satisfies

$$\int_{\mathbb{R}} \int_{0}^{\infty} u(x,t)\phi_{t}(x,t) + f(u(x,t))\phi_{x}(x,t) \ dt \ dx + \int_{\mathbb{R}} u^{0}(x)\phi(x,0) \ dx = 0$$

Definition 2. u is a weak solution, if $\forall \phi \in C_0^1(\mathbb{R} \times [0,\infty))$ and $\forall T \in [0,\infty)$, u satisfies

$$\int_{\mathbb{R}} \int_{0}^{T} u(x,t)\phi_{t}(x,t) + f(u(x,t))\phi_{x}(x,t) \ dt \ dx = \int_{\mathbb{R}} u(x,T)\phi(x,T) - \int_{\mathbb{R}} u^{0}(x)\phi(x,0) \ dx$$

Question 2. Let f in (1) be smooth and strictly convex (or just take $f(u) = 0.5u^2$). Assume that the initial condition $u^0 : \mathbb{R} \to \mathbb{R}$ satisfies:

- u^0 has a compact support, i.e., $supp(u^0) \in [-C, C]$,
- $|u^0(x)| \le C, \ \forall x \in \mathbb{R},$

•
$$\frac{u^0(x) - u^0(y)}{x - y} \le C, \ \forall x, y \in \mathbb{R} \text{ such that } x \neq y,$$

where C is a fixed positive constant. Consider one-step of the LxF scheme

$$v_j^0 = \frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} u^0(x) \, dx, \text{ where } x_j = j\Delta x,$$
$$v_{j+\frac{1}{2}}^1 = \frac{1}{2} v_{j+1}^0 + \frac{1}{2} v_j^0 - \frac{\Delta t}{\Delta x} \left(f(v_{j+1}^0) - f(v_j^0) \right).$$

Prove the following stability results:

a. For all
$$j \in \mathbb{Z}$$
, we have: $\max_{j} \frac{v_{j+1}^0 - v_j^0}{\Delta x} \le C$ and $|v_j^0| \le C$.
b. For all $j \in \mathbb{Z}$, we have: $\max_{j} \frac{v_{j+\frac{1}{2}}^1 - v_{j-\frac{1}{2}}^1}{\Delta x} \le C$ and $|v_{j+\frac{1}{2}}^1| \le C$.

c. Let $\{g_j\}_{j \in \Lambda}$ be a finite sequence such that $|g_j| \leq C$, $\frac{g_{j+1} - g_j}{\Delta x} \leq C$ for all $j, j+1 \in \Lambda$, and the number of elements in the sequence $|\Lambda|$ is such that $|\Lambda| \leq \frac{C}{\Delta x} + 1$. Then we have that

$$\sum_{j,j+1\in\Lambda} |g_{j+1} - g_j| \le \tilde{C},$$

where \tilde{C} is a fixed constant that depends only on C, i.e., \tilde{C} is independent of Δx .

Question 3. Implement NT and LxF numerical schemes for the following scalar conservation law:

$$\begin{cases} u_t + f(u)_x = 0, & x \in (-2,2), \ t > 0\\ u(x,0) = u_0(x), & x \in (-2,2) \end{cases}$$

with periodic boundary conditions.

Test cases:

(1) Linear Transport: f(u) = u,

$$u_0(x) = \begin{cases} 1 & , \ x > 0 \\ -1 & , \ x \le 0 \end{cases}$$

(2) Burgers' Equation: $f(u) = u^2/2$,

$$u_0(x) = \begin{cases} 1+x & , \ x \in [-1,0) \\ 1-x & , \ x \in [0,1] \\ 0 & , \ \text{otherwise} \end{cases}$$

(3) Buckley-Leverett.
$$f(u) = \frac{u^2}{u^2 + (1-u)^2},$$

$$u_0(x) = \begin{cases} 1 & , \ x < 0 \\ 0 & , \ x \ge 0 \end{cases}$$

Set the number of cells to 200, the CFL condition to 0.3, and test the schemes at times t = 0.5, 2 and 20. Use the minmod limiter in the NT scheme.