MATH 638 PROJECTS

Question 1. Consider the initial-value problem for a scalar conservation law:

$$
\left\{\begin{align*}
u_{t}+f(u)_{x} & =0 & & \text { in } \mathbb{R} \times \mathbb{R}_{+} \tag{1}\\
u & =u^{0} & & \text { on } \mathbb{R} \times\{t=0\}
\end{align*}\right.
$$

where u is a bounded and measurable function. Prove that the following two definitions are equivalent if $u \in C\left([0, \infty) ; L_{l o c}^{1}(\mathbb{R})\right.$) (assume that u is piecewise smooth if you do not know/understand the notation).

Definition 1. u is a weak solution, if $\forall \phi \in C_{0}^{1}(\mathbb{R} \times[0, \infty)), u$ satisfies

$$
\int_{\mathbb{R}} \int_{0}^{\infty} u(x, t) \phi_{t}(x, t)+f(u(x, t)) \phi_{x}(x, t) d t d x+\int_{\mathbb{R}} u^{0}(x) \phi(x, 0) d x=0
$$

Definition 2. u is a weak solution, if $\forall \phi \in C_{0}^{1}(\mathbb{R} \times[0, \infty))$ and $\forall T \in[0, \infty), u$ satisfies

$$
\int_{\mathbb{R}} \int_{0}^{T} u(x, t) \phi_{t}(x, t)+f(u(x, t)) \phi_{x}(x, t) d t d x=\int_{\mathbb{R}} u(x, T) \phi(x, T)-\int_{\mathbb{R}} u^{0}(x) \phi(x, 0) d x
$$

Question 2. Let f in (1) be smooth and strictly convex (or just take $f(u)=0.5 u^{2}$). Assume that the initial condition $u^{0}: \mathbb{R} \rightarrow \mathbb{R}$ satisfies:

- u^{0} has a compact support, i.e., $\operatorname{supp}\left(u^{0}\right) \in[-C, C]$,
- $\left|u^{0}(x)\right| \leq C, \forall x \in \mathbb{R}$,
- $\frac{u^{0}(x)-u^{0}(y)}{x-y} \leq C, \forall x, y \in \mathbb{R}$ such that $x \neq y$,
where C is a fixed positive constant. Consider one-step of the LxF scheme

$$
\begin{aligned}
& v_{j}^{0}=\frac{1}{\Delta x} \int_{x_{j-\frac{1}{2}}^{2}}^{x_{j+\frac{1}{2}}} u^{0}(x) d x, \text { where } x_{j}=j \Delta x \\
& v_{j+\frac{1}{2}}^{1}=\frac{1}{2} v_{j+1}^{0}+\frac{1}{2} v_{j}^{0}-\frac{\Delta t}{\Delta x}\left(f\left(v_{j+1}^{0}\right)-f\left(v_{j}^{0}\right)\right)
\end{aligned}
$$

Prove the following stability results:
a. For all $j \in \mathbb{Z}$, we have: $\max _{j} \frac{v_{j+1}^{0}-v_{j}^{0}}{\Delta x} \leq C$ and $\left|v_{j}^{0}\right| \leq C$.
b. For all $j \in \mathbb{Z}$, we have: $\max _{j} \frac{v_{j+\frac{1}{2}}^{1}-v_{j-\frac{1}{2}}^{1}}{\Delta x} \leq C$ and $\left|v_{j+\frac{1}{2}}^{1}\right| \leq C$.
c. Let $\left\{g_{j}\right\}_{j \in \Lambda}$ be a finite sequence such that $\left|g_{j}\right| \leq C, \frac{g_{j+1}-g_{j}}{\Delta x} \leq C$ for all $j, j+1 \in \Lambda$, and the number of elements in the sequence $|\Lambda|$ is such that $|\Lambda| \leq \frac{C}{\Delta x}+1$. Then we have that

$$
\sum_{j, j+1 \in \Lambda}\left|g_{j+1}-g_{j}\right| \leq \tilde{C}
$$

where \tilde{C} is a fixed constant that depends only on C, i.e., \tilde{C} is independent of Δx.

Question 3. Implement NT and LxF numerical schemes for the following scalar conservation law:

$$
\begin{cases}u_{t}+f(u)_{x}=0, & x \in(-2,2), t>0 \\ u(x, 0)=u_{0}(x), & x \in(-2,2)\end{cases}
$$

with periodic boundary conditions.
Test cases:
(1) Linear Transport: $f(u)=u$,

$$
u_{0}(x)=\left\{\begin{aligned}
1 & , x>0 \\
-1 & , x \leq 0
\end{aligned}\right.
$$

(2) Burgers' Equation: $f(u)=u^{2} / 2$,

$$
u_{0}(x)= \begin{cases}1+x & , x \in[-1,0) \\ 1-x & , x \in[0,1] \\ 0 & , \text { otherwise }\end{cases}
$$

(3) Buckley-Leverett. $f(u)=\frac{u^{2}}{u^{2}+(1-u)^{2}}$,

$$
u_{0}(x)= \begin{cases}1 & , x<0 \\ 0 & , x \geq 0\end{cases}
$$

Set the number of cells to 200 , the CFL condition to 0.3 , and test the schemes at times $t=$ $0.5,2$ and 20 . Use the minmod limiter in the NT scheme.

