
Preface

These notes were written beginning in 1989 and arose from a graduate
course in the numerical solution of scalar hyperbolic conservation laws that
I taught a number of times at Purdue University. They’re rather focused,
and travel in a straight line to the results that I want to get to without
much discussion of related topics.

I thought at one time that I might make them into a book, but I
would need to learn what Bernardo Cockburn and his collaborators called
“a posteriori” error bounds for numerical methods for conservation laws in
order to “finish” them. I also never got around to adding the Besov space
regularity results by me and Ron DeVore to the notes.

In 1999 Bernardo and I talked, and I found out that he was thinking of
writing a book on conservation laws, and our material was almost comple-
mentary, so we thought we might put our material together (and I wouldn’t
have to learn about “a posteriori” analysis) to make a book. And, indeed,
Bernardo did a lot of work to merge the two sets of notes.

Then the book Front tracking for hyperbolic conservation laws by Helge
Holden and Nils Henrik Risebro came out, and the first half of their book
covers basically the same material as these notes (but with a somewhat
different emphasis and point of view) and Bernardo and I abandoned the
thought of a joint book.

As it is, there has been great progress in the area since the time these
notes were composed, especially by Bressan and his collaborators.

But these notes still exist, and I decided to write up this preface and
distribute them privately before I’m able to clean them up for more general
distribution.

So, if you got these notes from me, please don’t distribute them further.
And, if you got them from someone else, you shouldn’t have them;

please e-mail me and I’ll send you the latest version.
There are no references in the notes, so we gather them here, together

with the later papers on Besov space regularity on conservation laws.

Bradley Lucier, June 2009
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Chapter 1

Introduction

We shall be concerned with the mathematical properties of hyperbolic con-
servation laws, which are differential equations that arise, typically, as laws
of conservation in physics. Our motivating example of such laws will be the
Euler equations that describe the conservation of mass, momentum, and
energy in an inviscid, perfect gas. Given, for each point x ∈ R3, the initial
values of the density ρ, the momentum in each of the coordinate directions
m1, m2, and m3, and the total energy E, we attempt to find the values of
the vector U = (ρ,m1,m2,m3, E) for all points x and all positive time, t.
The laws of conservation of mass, momentum, and energy state that there
is a matrix function F = F (U) such that the flux of U across any surface
S at a point x on S in the direction of the unit normal vector ν is equal to
F (U) · ν. Thus, if Ω is a region in R3 with boundary S and unit outward
normal ν, we have

∂

∂t

∫∫∫
Ω

U dx = −
∫∫

S

F (U) · ν dσ.

Since this is true for all Ω, we have by the divergence theorem if U is smooth

(0.1)
∂U

∂t
+∇ · F (U) = 0, x ∈ R3, t > 0.

We shall be concerned with the mathematical properties and numerical
approximation of solutions of (0.1). One point of mathematical interest is
the fact that, regardless of the use of derivatives in formulating the problem,
solutions of (0.1) generally do not remain differentiable or even continuous
as time progresses. This leads one to consider the existence and properties
of discontinuous solutions of (0.1) through the addition of side conditions
called entropy conditions. Numerically, the computation of the solution of
the Euler equations and other special cases of (0.1) are important in many
areas of computational modeling.

The mathematical theory of (0.1) is far from complete. If U is a scalar
variable, then existence, uniqueness and continuous dependence of the so-
lution on the initial data is known in any number of spatial dimensions. As
for regularity, if U has bounded variation initially, then the variation does
not increase with time. In one space dimension, more is known—roughly
speaking, the solution can be approximated by moving-grid finite-elements
for positive time with the same accuracy as at the initial time, no matter
how many discontinuities arise in the solution.
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2 Chapter 1. Introduction

Much less is known for systems. In one dimension, Glimm has proved
under various conditions that a solution exists for all time. This theory has
been extended, but as of yet there is no general uniqueness theorem, even
less a proof of continuous dependence. In several space dimensions there is
not even a mathematical proof of the existence of solutions.

These equations are so important, however, that the mere fact that
mathematicians cannot prove that a solution is unique, or even exists,
should not dissuade people from trying to compute solutions numerically!
Many different numerical schemes have been proposed for (0.1); in the first
part of the course we shall emphasize methods for which proofs of conver-
gence are available. This will, of course, restrict us to the scalar case, and
for high order methods, to one dimensional problems.

Historically, numerical methods have played an important role in the
mathematical theory of (0.1). We shall take a numerical approach to almost
all the properties of solutions of (0.1). Specifically, existence of solutions for
scalar equations will be proved using monotone numerical methods, while
uniqueness and continuous dependence of solutions will be proved using
an approximation theorem of Kuznetsov. Later we shall consider Glimm’s
scheme and various moving grid numerical schemes for the scalar equation
in one dimension.

Remarks. The book Shock Waves and Reaction-Diffusion Equations
by Joel Smoller deals with earlier approaches to the scalar problem and
with systems in one space dimension. Lax’s monograph Hyperbolic Sys-
tems of Conservation Laws and the Mathematical Theory of Shock Waves
is of interest in one space dimension. The book Introduction to Partial
Differential Equations with Applications by Zachmanoglou and Thoe

contains a good explanation of the C1 theory of nonlinear, first-order, par-
tial differential equations.

§1. Motivation of Mathematical Properties

In this section we derive in a formal and nonrigorous way several properties
that we expect will hold for solutions of scalar conservation laws. It will be
necessary in later chapters to prove that solutions, as we define them, will
indeed satisfy these properties.

Consider the scalar equation in one space dimension

(1.1)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.
We can rewrite the differential equation as

∇x,tu · (f ′(u), 1) = 0,

so that in the x-t plane u is constant in the direction (f ′(u), 1). Because
this direction depends only on u, u is constant along the characteristic line
x = x0 + f ′(u)t. Because of the initial condition, in fact we have that
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§1. Motivation of Mathematical Properties 3

u = u0(x0) for x = x0 + f ′(u)t. Eliminating x0 from these equations gives
the implicit formula

(1.2) u = u0(x− f ′(u)t)

for the solution u(x, t) of (1.1).

Example 1.1. Consider the C1 initial data

u0(x) =

{
cos2(x), for x ∈ [−π/2, π/2],

0, otherwise,

and the flux f(u) = u2. Then for x0 = 0, u = u0(x0) = 1 along the line
x = x0 + f ′(u0(x0))t = 2t, while for x0 = π/2, u = u0(x0) = 0 along the
line x = x0 + f ′(u0(x0))t = π/2. Clearly we shall have problems when
t = π/4 and x = π/2 — u cannot take on two distinct values there! (See
Figure 1.)

x0 = 0
u = u0(x0) = 1

x = x0 + f ′(u0(x0))t = 2t

x0 = π/2
u = u0(x0) = 0

x = x0 + f ′(u0(x0))t = π/2

0 π/2

Figure 1. Characteristic lines in x-t space can cross.

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

So, discontinuities occur in u. We can see this in a different way by
differentiating (1.2) with respect to x:

ux = u′0(x− f ′(u)t)× (1− tf ′′(u)ux),

or

ux =
u′0(x0)

1 + u′0(x0)f ′′(u0(x0))t

where x0 = x − f ′(u)t. Thus, one can see that ux is well-defined as long
as 1 + u′0(x0)f ′′(u0(x0))t is not zero, and conversely, the first value of t
for which 1 + u′0(x0)f ′′(u0(x0))t = 0 for some x0 is the time at which C1

solutions no longer exist. See Figure 2.
The above examples show that we must consider the existence and

properties of discontinuous solutions of (1.1). We shall attempt to extend
to discontinuous solutions selected qualitative properties of C1 solutions,
which we now describe.
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4 Chapter 1. Introduction

u(x, t), t = 0

.....................................................................................................................................................................................................................................................................

.....................................................................................................................................................................................................................................................................

=⇒

u(x, t), t = 2

..............................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................................................................................................

Figure 2. The solution of ut + (u2)x = 0 with u(x, 0) =

exp(−x2/2)/
√

2π at time 2, just before the shock time.

First, we shall assume that if

‖u0‖L1(R) :=

∫
R
|u0(x)| dx <∞

then the integral of u( · , t) does not change with time, that is∫
R
u(x, t) dx =

∫
R
u0(x) dx.

This is clear formally for smooth solutions in L1(R) with ux bounded be-
cause

∂

∂t

∫
R
u(x, t) dx =

∫
R
ut(x, t) dx

= −
∫
R
f(u(x, t))x dx

= − lim
R→∞

(f(u(R, t)− f(u(−R, t))))

= 0,

because u(R, t)→ 0 as R→ ±∞.

Next, we assume that the mapping u0 → u( · , t) is a contraction in
L1(R), that is, for any two solutions u and v with initial data u0 and v0,
respectively,

(1.3) ‖u( · , t)− v( · , t)‖L1(R) ≤ ‖u0 − v0‖L1(R).

For two smooth solutions u and v one can show formally that equality holds
in (1.3). For each t, assume we can find a partition {xi} of R with no limit
points such that u(x, t) > v(x, t) on Ii := (x2i, x2i+1) and u(x, t) < v(x, t)
on Ji := (x2i−1, x2i); see Figure 3
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§1. Motivation of Mathematical Properties 5

x2i−1 x2i x2i+1Ji Ii

Figure 3. We assume that R can be partitioned into intervals where
u(x, t) > v(x, t) and u(x, t) < v(x, t).
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We can write formally

∂

∂t
‖u( · , t)− v( · , t)‖L1(R)

=
∂

∂t

∑
i

∫
Ii

(u− v) dx− ∂

∂t

∑
i

∫
Ji

(u− v) dx

=
∑
i

∫
Ii

(ut − vt) dx−
∑
i

∫
Ji

(ut − vt) dx

= −
∑
i

∫
Ii

(f(u)x − f(v)x) dx+
∑
i

∫
Ji

(f(u)x − f(v)x) dx

= −
∑
i

(f(u)− f(v))
∣∣
Ii

+
∑
i

(f(u)− f(v))
∣∣
Ji

= 0

because f(u(xi, t)) = f(v(xi, t)). Physically, we expect discontinuous solu-
tions of (1.1) to be limits as ε→ 0 of solutions of the viscous equation

(1.4)
ut + f(u)x = ε uxx, x ∈ R, t > 0, ε > 0,

u(x, 0) = u0(x), x ∈ R.

The above argument applied to (1.4) shows that

∂

∂t
‖u( · , t)− v( · , t)‖L1(R)

= −
∑
i

∫
Ii

(f(u)x − εuxx − f(v)x + εvxx) dx

+
∑
i

∫
Ji

(f(u)x − εuxx − f(v)x + εvxx) dx

= −
∑
i

(−εux + εvx)
∣∣
Ii

+
∑
i

(−εux + εvx)
∣∣
Ji

Because u > v on Ii and u < v on Ji, we have that

ux(x2i, t) ≥ vx(x2i, t) and ux(x2i+1, t) ≤ vx(x2i+1, t);

DRAFT—not for distribution. c© 1989, 1990, 1991 Bradley Lucier 4/5/1993—960



6 Chapter 1. Introduction

substituting this into the previous equality shows that

∂

∂t
‖u( · , t)− v( · , t)‖L1(R) ≤ 0.

Thus, if we expect the solution of the inviscid problem (with ε = 0) to be
the limit of the viscous solutions as ε→ 0, then we expect (1.3) to hold for
solutions of (1.1).

A third property that is not obvious even for smooth solutions is that
if u0(x) ≥ v0(x) for all x then u(x, t) ≥ v(x, t) for all x and t. This may
be surprising because the characteristics coming into a point (x, t) will
generally start at two different points (x0, 0) for u and (x1, 0) for v, so
u0(x0) and v0(x1) are not directly comparable. Nevertheless, this property
follows from the following useful lemma.

Lemma 1.1. (Crandall and Tartar). Assume that (Ω, dµ) is a mea-
sure space (e.g., Rn with the usual Lebesgue measure dx) and that the pos-
sibly nonlinear mapping T : L1(Ω)→ L1(Ω) satisfies for all u ∈ L1(Ω)

(1.5)

∫
Ω

Tu dµ =

∫
Ω

u dµ.

Then the following two properties are equivalent:

(1) For all u, v ∈ L1(Ω), ‖Tu− Tv‖L1(Ω) ≤ ‖u− v‖L1(Ω).

(2) For all u, v ∈ L1(Ω), u ≥ v a.e. (dµ) implies Tu ≥ Tv a.e. (dµ).

Remark 1.1. For any fixed t > 0 we can apply this lemma to the
mapping T : u0 → u( · , t) to substantiate the claimed property.

Proof of Lemma 1.1. Assume that (1) holds and let u ≥ v a.e. (dµ).
Then∫

Ω

|Tu− Tv| dµ = ‖Tu− Tv‖L1(Ω) ≤ ‖u− v‖L1(Ω)

=

∫
Ω

u− v dµ

=

∫
Ω

Tu− Tv dµ by (1.5).

Therefore, Tu− Tv ≥ 0 a.e. (dµ).

Conversely, assume that (2) holds and consider u∨ v = max(u, v) and
u ∧ v = min(u, v). Then by (2), T (u ∨ v) ≥ T (u) and T (u ∨ v) ≥ T (v), so
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§2. Weak Solutions and the Entropy Condition 7

T (u ∨ v) ≥ T (u) ∨ T (v). Also, |u− v| = u ∨ v − u ∧ v. So

‖Tu− Tv‖L1(Ω) =

∫
Ω

|Tu− Tv| dµ =

∫
Ω

Tu ∨ Tv − Tu ∧ Tv dµ

≤
∫

Ω

T (u ∨ v)− T (u ∧ v) dµ

=

∫
Ω

u ∨ v − u ∧ v dµ by (1.5)

= ‖u− v‖L1(Ω).

Finally, we shall assume that u satisfies a maximum principle: for all
t > 0 and u( · , t) ∈ L1(R)

ess sup
x∈R

u(x, t) ≤ ess sup
x∈R

u0(x), and

ess inf
x∈R

u(x, t) ≥ ess inf
x∈R

u0(x).

Because of (1.2), this is clear for smooth solutions of (1.1).

§2. Weak Solutions and the Entropy Condition

The example in the previous section shows that continuous solutions of
(1.1) generally do not exist. In this section we shall give examples to show
that so-called weak solutions of (1.1) are not unique. We shall then go on
to motivate the entropy condition , which we shall prove in later chapters
specifies a unique weak solution of (1.1).

If u(x, t) is a smooth solution of (1.1) then for any C1 function φ(x, t)
with bounded support and any value of T > 0

0 =

∫ T

0

∫
R

(ut + f(u)x)φdx dt

or, after integrating by parts in x and t,

(2.1)
−
∫ T

0

∫
R
uφt + f(u)φx dx dt

+

∫
R
u(x, T )φ(x, T ) dx−

∫
R
u0(x)φ(x, 0) dx = 0,

where, of course, we have used the fact that u(x, 0) = u0(x).

Definition. If u is bounded and measurable and satisfies (2.1) for all
φ ∈ C1 with bounded support, then we say that u is a weak solution of
(1.1) in R × [0, T ].

We can readily give a necessary and sufficient condition that a piecewise
smooth function be a weak solution of (1.1). Assume that u(x, t) is a weak
solution of (1.1) in a rectangle Ω := [x0, x1]× [t0, t1], that u is a pointwise
solution of (1.1) in each of Ω1 := {(x, t) ∈ Ω | x < s(t)} and Ω2 := {(x, t) ∈
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8 Chapter 1. Introduction

Ω | x > s(t)}, and that u has well-defined, continuous, limits from the left
and right as x approaches the curve S := {(x, t) ∈ Ω | x = s(t)}; see Figure
4.

x0 x1

Figure 4. The weak solution u(x, t) is assumed to be smooth in Ω1

and Ω2, with a discontinuity along S = {x = s(t)}.
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Ω1

Ω2

x = s(t)

By the definition of weak solutions, we have for any φ ∈ C1
0 (Ω)

(2.2)

0 =

∫
Ω

uφt + f(u)φx dx dt

=

∫
Ω1

uφt + f(u)φx dx dt+

∫
Ω2

uφt + f(u)φx dx dt.

Because u is a pointwise solution of (1.1) in Ω1, we can write

(2.3)

∫
Ω1

uφt + f(u)φx dx dt

=

∫
Ω1

(uφ)t + (f(u)φ)x dx dt−
∫

Ω1

utφ+ f(u)xφdx dt

=

∫
Ω1

(uφ)t + (f(u)φ)x dx dt

=

∫
∂Ω1

(f(u)φ, uφ) · ν dσ

by the divergence theorem; here ν is the unit outward normal of Ω1. By
assumption, φ is zero on the boundary of Ω1, except possibly on S. Because
of this, calculus shows that (2.3) is equal to∫ t1

t0

φ(s(t), t)[f(u(s(t)−, t))− s′(t)u(s(t)−, t)] dt,

where u(s(t)−, t) means the limit of u(x, t) as you approach (s(t), t) from
the left, i.e., from Ω1. Substituting into (2.2) this value and a similar one
for the integral over Ω2 shows that∫ t1

t0

φ(s(t), t){[f(u(s(t)−, t))−f(u(s(t)+, t))]−s′(t)[u(s(t)−, t)−u(s(t)+, t)]}dt
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§2. Weak Solutions and the Entropy Condition 9

is zero for all φ ∈ C1
0 (Ω). Because φ is arbitrary, this is true if and only if

the quantity in braces is identically zero, i.e., for all t,

(2.4) s′(t) =
f(u(s(t)+, t))− f(u(s(t)−, t))

u(s(t)+, t)− u(s(t)−, t)
=:

[f(u)]

[u]
,

where we have introduced the notation [g(u)] to mean the jump in a quan-
tity g(u) at a point. The relation (2.4) is called the Rankine-Hugoniot
condition. Thus, if u(x, t) is a piecewise smooth function that satisfies (1.1)
pointwise where it is C1, and whose jumps satisfy (2.4), then it is a weak
solution of (1.1).

Example 2.1. Let f(u) = u2 and let

u0(x) =

{
1, x ∈ [0, 1],

0, otherwise.

It is left to the reader to verify that both

u(x, t) =

{
1, x ∈ [t, 1 + t],

0, otherwise,

and

u(x, t) =


x/2t, x ∈ [0, 2t],

1, x ∈ [2t, 1 + t],

0, otherwise,

are weak solutions of (1.1) on the strip R × [0, 1]; see Figure 5.
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Figure 5. There are at least two weak solutions at time 1/2 with
u0 = χ[0,1] and f(u) = u2.
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10 Chapter 1. Introduction

Example 2.2. A rather more striking example of lack of uniqueness
is the following. Let f(u) = u2 and u0(x) = 0 for all x. Then of course
u(x, t) ≡ 0 is a weak solution of (1.1). Nonetheless, the function

u(x, t) =


−1, −1 ≤ x/t ≤ 0,

1, 0 < x/t ≤ 1,

0, otherwise,

is also a weak solution of (1.1) with zero initial data.
So, classical solutions do not exist for all time, and weak solutions are

not unique. However, we shall prove later that weak solutions that satisfy
the properties listed in the previous section are unique. First, we use an
idea of Crandall and Majda to show that the properties in the previous
section, together with the assumption that the correct weak solution for
the data u0(x) ≡ c is u(x, t) ≡ c, imply that u satisfies the so-called entropy
condition: for all c ∈ R

|u− c|t + (sgn(u− c)(f(u)− f(c)))x ≤ 0.

This inequality is to be understood in the weak sense, i.e., for all C1 φ ≥ 0
with compact support and all T > 0,

(2.5)
−
∫ T

0

∫
R
|u− c|φt + sgn(u− c)(f(u)− f(c))φx dx dt

+

∫
R
|u(x, T )− c|φ(x, T ) dx−

∫
R
|u0(x)− c|φ(x, 0) dx ≤ 0.

Inequality (2.5) can be derived for piecewise smooth solutions as follows.
Assume that for any continuous, piecewise C1 initial data u0 one can solve
(1.1) for a short time and that the solution will satisfy the properties of the
previous section. For any T > 0 consider the solution to the problem

vt + f(v)x = 0, x ∈ R, t > T,

v(x, T ) = u(x, T ) ∨ c, x ∈ R.

Because we hope that the solution operator of (1.1) is order-preserving, for
t > T we know that v(x, t) ≥ u(x, t) and v(x, t) ≥ c (the function u(x, t) = c
for all x and t is, by assumption, a solution of (1.1)), so v(x, t) ≥ u(x, t)∨c.
Therefore

v(x.t)− v(x, T )

t− T =
v(x.t)− u(x, T ) ∨ c

t− T ≥ u(x.t) ∨ c− u(x, T ) ∨ c
t− T .

Let t→ T to see that

−f(u ∨ c)x
∣∣
t=T

= −f(v)x
∣∣
t=T

= vt
∣∣
t=T
≥ (u ∨ c)t

∣∣
t=T

.

Therefore

(u ∨ c)t + f(u ∨ c)x ≤ 0.
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§2. Weak Solutions and the Entropy Condition 11

Similarly,
(u ∧ c)t + f(u ∧ c)x ≥ 0.

Because |u−c| = u∨c−u∧c and sgn(u−c)(f(u)−f(c)) = f(u∨c)−f(u∧c),
(2.5) follows. Any u that satisfies (2.5) will be called an entropy weak
solution of (1.1).

If u is a bounded entropy weak solution of (1.1), then it is also satisfies
(2.1). For if c ≤ inf u, then sgn(u− c) = 1, |u− c| = u− c, and (2.5) implies
that

(2.6)

0 ≥−
∫ T

0

∫
R

(u− c)φt + (f(u)− f(c))φx dx dt

+

∫
R

(u(x, T )− c)φ(x, T ) dx−
∫
R

(u0(x)− c)φ(x, 0) dx

=−
∫ T

0

∫
R
uφt + f(u)φx dx dt

+

∫
R
u(x, T )φ(x, T ) dx−

∫
R
u0(x)φ(x, 0) dx.

(The terms involving the constant c integrate to zero.) On the other hand,
if c ≥ sup u, then sgn(u− c) = −1, |u− c| = c− u, and we have

(2.7)

0 ≥+

∫ T

0

∫
R

(u− c)φt + (f(u)− f(c))φx dx dt

−
∫
R

(u(x, T )− c)φ(x, T ) dx+

∫
R

(u0(x)− c)φ(x, 0) dx

= +

∫ T

0

∫
R
uφt + f(u)φx dx dt

−
∫
R
u(x, T )φ(x, T ) dx+

∫
R
u0(x)φ(x, 0) dx.

Inequalities (2.6) and (2.7) together imply (2.1).
In the same way that (2.1) implies (2.4) for piecewise smooth solutions

of (1.1), the entropy inequality (2.5) will imply an inequality, which we now
derive, for the speed of valid, or entropy satisfying, shocks. We assume that
u(x, t) is an entropy weak solution of (1.1) in a rectangle Ω := [x0, x1] ×
[t0, t1], that u is a pointwise solution of (1.1) in each of Ω1 := {(x, t) ∈
Ω | x < s(t)} and Ω2 := {(x, t) ∈ Ω | x > s(t)}, and that u has well-
defined, continuous, limits from the left and right as x approaches the
curve S := {(x, t) ∈ Ω | x = s(t)}; see Figure 4. For any c ∈ R and any
nonnegative φ ∈ C1

0 (Ω), we now have

(2.8) 0 ≤
∫

Ω

|u− c|φt + sgn(u− c)(f(u)− f(c))φx dx dt.

Assume for a particular t ∈ (t0, t1) that no two of u(s(t)+, t), c, and
u(s(t)−, t) are the same. Then, because u is continuous in both Ω1 and
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12 Chapter 1. Introduction

Ω2, there is a ball B around (s(t), t) such that c, u(x, t) for (x, t) ∈ B ∩Ω1,
and u(x, t) for (x, t) ∈ B ∩ Ω2 are in the same order as c, u(s(t)−, t), and
u(s(t)+, t); for example, u(s(t)−, t) < c < u(s(t)+, t). In B ∩ Ω1 we obvi-
ously have

(2.9) |u− c|t + [sgn(u− c)(f(u)− f(c))]x = 0 for (x, t) ∈ Ω1

since sgn(u− c) has a fixed sign in this ball. Therefore, when we consider
the weak equation we can restrict φ to have support in this ball, and all the
following arguments are valid. Whenever c = u(s(t)−, t) or c = u(s(t)+, t)
then a different argument is needed.

Proceeding now in the same way as we did to derive (2.2) and (2.3),
we see that ∫

Ω1

|u− c|φt + sgn(u− c)(f(u)− f(c))φx dx dt

is equal to ∫ t1

t0

φ[sgn(uL − c)(f(uL)− f(c))− s′(t)|uL − c|] dt,

where uL := u(s(t)−, t) and φ = φ(s(t), t). Similarly,∫
Ω2

|u− c|φt + sgn(u− c)(f(u)− f(c))φx dx dt

is equal to

−
∫ t1

t0

φ[sgn(uR − c)(f(uR)− f(c))− s′(t)|uR − c|] dt,

where uR := u(s(t)+, t). Since (2.8) holds for all φ ≥ 0, adding the integrals
over Ω1 and Ω2 implies that

(2.10) sgn(uL − c)(f(uL)− f(c))− sgn(uR − c)(f(uR)− f(c))

− s′(t)[|uL − c| − |uR − c|] ≥ 0 for all c ∈ R.

When c is either less than both uL and uR or greater than uL and uR,
then sgn(uL−c) = sgn(uR−c). When c ≤ min(uL, uR), then (2.10) implies
that

f(uL)− f(uR)− s′(t)[uL − uR] ≥ 0.

Similarly, when c ≥ max(uL, uR), then

f(uL)− f(uR)− s′(t)[uL − uR] ≤ 0,

so (2.10) implies the Rankine-Hugoniot condition

(2.11) f(uL)− f(uR)− s′(t)[uL − uR] = 0.

(This is good, because (2.5) implies (2.1), from which the Rankine-Hugoniot
condition was derived!)
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§2. Weak Solutions and the Entropy Condition 13

Let us restrict our attention for the moment to the case uL > uR. For
all uL > c > uR, (2.10) implies that

(2.12) f(uL)− f(c) + f(uR)− f(c)− s′(t)[uL − c− c+ uR] ≥ 0.

Adding (2.11) to (2.12) shows that

2f(uL)− 2f(c)− s′(t)[2uL − 2c] ≥ 0.

So, we must have for all uL > c > uR,

(2.13)
f(uL)− f(uR)

uL − uR
= s′(t) ≤ f(uL)− f(c)

uL − c
.

Geometrically, this says that the slope of the line joining the points
(uL, f(uL)) and (uR, f(uR)) must be less than the slope of the line joining
the points (uL, f(uL)) and (c, f(c)) for all c between uL and uR. This is
equivalent to saying that the line joining (uL, f(uL)) and (uR, f(uR)) must
be above the graph of the function f(u) for u between uL and uR. See
Figure 6

uR u′R u′L uL

Figure 6. The constant states uL and uR can be joined by an
entropy satisfying shock; the states u′L and u′R cannot be so joined.
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We can derive an inequality that is equivalent to (2.13), but which
involves the value at the right endpoint uR. By subtracting (2.11) from
(2.12) we obtain

2f(uR)− 2f(c)− s′(t)[2uR − 2c] ≥ 0,

which gives for all uL > c > uR, because uR − c < 0,

(2.14)
f(uL)− f(uR)

uL − uR
= s′(t) ≥ f(uR)− f(c)

uR − c
.
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14 Chapter 1. Introduction

Now, by letting c → uL in (2.13) and c → uR in (2.14), we derive the
following inequality that is a necessary condition for a shock to be entropy-
satisfying:

f ′(uL) ≥ s′(t) =
f(uL)− f(uR)

uL − uR
≥ f ′(uR).

Geometrically, this says that the characteristic speed on the left of the shock
must be greater than the shock speed, which in turn must be greater than
the characteristic speed on the right. In other words, the characteristics
must point into the shock.

We leave it to the reader to show that whenever uL < c < uR the
same inequality (2.13) results. However, (2.13) has a different graphical
interpretation in this case: it requires that the line joining (uL, f(uL))
and (uR, f(uR)) be below the graph of f(u) for u between uL and uR.
Inequality (2.13) (or one algebraically equivalent to it, using (2.11)) is called
the Oleinik entropy condition for piecewise smooth solutions of (1.1).

If the flux f(u) is convex (f ′′(u) ≥ 0), then the line joining (uL, f(uL))
and (uR, f(uR)) is always above the graph of f(u) for u between uL and
uR. Therefore, the entropy condition requires for convex f(u) that any
entropy-satisfying shock with left state uL and right state uR have uL >
uR. Similarly, if f(u) is concave then the line joining (uL, f(uL)) and
(uR, f(uR)) is always below the graph of f(u) for u between uL and uR, so
any entropy-satisfying shock must have uL < uR.

We can use (2.13) to see which (if any) of our several weak solutions
given in Examples 2.1 and 2.2 are entropy weak solutions. In both examples,
f(u) = u2, so the entropy condition requires that all discontinuities have
uL > uR. By this criterion, it is easily seen that neither

u(x, t) =

{
1, x ∈ [t, 1 + t],

0, otherwise,

nor

u(x, t) =


−1, −1 ≤ x/t ≤ 0,

1, 0 < x/t ≤ 1,

0, otherwise,

satisfies the entropy condition, whereas both u(x, t) ≡ 0 and

u(x, t) =


x/2t, x ∈ [0, 2t],

1, x ∈ [2t, 1 + t],

0, otherwise,

for 0 ≤ t ≤ 1,

are entropy weak solutions of (1.1) with f(u) = u2. This leaves open the
questions of whether there are other entropy weak solutions of (1.1) with
the same initial data (in our case u0(x) = 0 and u0(x) = χ[0,1](x)), or if
entropy weak solutions of (1.1) exist for other initial data. It will be a
corollary of Kuznetsov’s approximation theorem in Chapter 2 that entropy
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§3. Norms and Spaces 15

weak solutions of (1.1), as defined by (2.5), are unique, and we shall show
in Chapter 3 that, under fairly general conditions, entropy weak solutions
of (1.1) exist.

§3. Norms and Spaces

Rn will denote the set of n-tuples of real numbers x := (x1, . . . , xn), and
Zn will denote the set of n-tuples of integers ν := (ν1, . . . , νn). In either
case ei will denote the n-vector with the ith component equal to 1 and all
other components 0. The norm of x will always be taken to be the L∞

norm, |x| := max1≤j≤n |xj|.
The space of real integrable functions will be given by

L1(Rn) := {f : Rn → R | ‖f‖L1(Rn) :=

∫
Rn
|f(x)| dx <∞}.

Similarly, the space of “integrable” functions on Zn will be given by

L1(Zn) := {f : Zn → R | ‖f‖L1(Zn) :=
∑
ν∈Zn

|fν | <∞}.

The variation of a function on Rn is defined to be

‖f‖BV(Rn) :=
n∑
j=1

sup
τ∈R

1

|τ |

∫
Rn
|f(x+ τej)− f(x)| dx.

(BV stands for “bounded variation.”) This is not really a norm, because if
there is a constant c such that for all x ∈ Rn, f(x) = c, then ‖f‖BV(Rn) = 0
but f 6= 0. The variation of a function on Zn is defined similarly:

‖f‖BV(Zn) :=
n∑
j=1

∑
ν∈Zn

|fν+ej − fν |.

If X is a normed linear space (such as Rn, L1(Rn), and L1(Zn)) then
C([0, T ], X) is the space of continuous functions f : [0, t]→ X. This means
that for all t ∈ [0, T ], limt′→t ‖f(t)− f(t′)‖X = 0. If X is a Banach space
(a complete, normed, linear space, again such as Rn, L1(Rn), and L1(Zn)),
then so is C([0, T ], X), with norm given by

‖f‖C([0,T ],X) := sup
t∈[0,T ]

‖f(t)‖X .
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Chapter 2

Kuznetsov’s Approximation Theorem

In this chapter we consider entropy weak solutions of the scalar conservation
law in several space dimensions

(0.1)
ut +∇x · f(u) = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn.

More precisely, we first consider approximate entropy solutions of (0.1),
and we bound the difference of such approximate solutions in L1(Rn) at
time T > 0 in terms of their difference at time zero, their smoothness, and
how well they satisfy the entropy condition in a certain technical sense.
Next, assuming that entropy solutions do exist (which we prove in the next
chapter), we show that they are unique, and depend continuously on the
initial data; i.e., that problem (0.1) is well-posed in the sense of Hadamard.
Finally, we state the approximation theorem originally presented by N. N.

Kuznetsov that compares an entropy solution of (0.1) to an approximate
entropy solution.

§1. Comparing Approximate Entropy Weak Solutions

Definition. The bounded measurable function u is an entropy weak
solution of (0.1) if for all positive φ ∈ C1(Rn+1) with compact support, all
c ∈ R, and all positive T

(1.1)

Λ(u, c, T, φ) :=

−
∫ T

0

∫
Rn
|u− c|φt + sgn(u− c)(f(u)− f(c)) · ∇xφdx dt

+

∫
Rn
|u(x, T )− c|φ(x, T ) dx−

∫
Rn
|u0(x)− c|φ(x, 0) dx ≤ 0.

We introduce a smooth, nonnegative, function η(s), s ∈ R, with
support in [−1, 1], integral 1, decreasing for positive s, and satisfying

η(−s) = η(s). For each positive ε, define ηε(s) =
1

ε
η(
s

ε
). Assume that

for each parameter pair (x′, t′) there is a value v(x′, t′) and set

c = v(x′, t′)

φ(x, t) = ω(x− x′, t− t′) := ηε0(t− t′)
n∏
i=1

ηε(xi − x′i);
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2 Chapter 2. Kuznetsov’s Approximation Theorem

ε and ε0 are to be chosen later. Next define

Λε0ε (u, v, T ) :=

∫ T

0

∫
Rn

Λ(u, v(x′, t′), T, ω( · − x′, · − t′)) dx′ dt′.

If u is an entropy weak solution of (0.1), then Λε0ε (u, v, T ) ≤ 0 for all v and
T > 0. In addition, if Λε0ε (u, v, T ) ≤ C for some small positive constant
C, then we say that u is an approximate entropy solution of (0.1). (Of
course, any function u is an approximate entropy solution of (0.1) for some
value of C, but you get the idea.) In fact, if u and v are two approximate
solutions of (0.1) we can bound ‖u( · , T )− v( · , T )‖L1(Rn) in terms of the
difference in the initial data ‖u( · , 0)−v( · , 0)‖L1(Rn), and the average weak
truncation errors Λε0ε (u, v, T ), and Λε0ε (v, u, T ), together with the following
measures of smoothness: For any w ∈ L∞(Rn), we define the L1 modulus
of smoothness in space

ω1(w, ε) := sup
|ξ|<ε

∫
Rn
|w(x+ ξ)−w(x)| dx,

and for any u : [0, T ] −→ L∞(Rn), we define the modulus of smoothness in
time

ν(u, t, ε) := sup
max(t−ε,0)<t′<min(T,t+ε)

‖u( · , t′)− u( · , t)‖L1(Rn).

Our most general result is the following theorem.

Theorem 1.1. If ε0 ≤ T and u, v : [0, T ] −→ L∞(Rn) then

(1.2)

‖u(T )− v(T )‖L1(Rn) ≤ ‖u(0)− v(0)‖L1(Rn)

+
1

2
{ω1(u(T ), ε) + ω1(v(T ), ε) + ω1(u(0), ε) + ω1(v(0), ε)}

+
1

2
{ν(u, 0, ε0) + ν(v, 0, ε0) + ν(u, T, ε0) + ν(v, T, ε0)}

+ Λε0ε (u, v, T ) + Λε0ε (v, u, T ),

whenever the quantities on the right hand side of (1.2) exist and are finite.

Proof. It follows from the symmetries of ω(x− x′, t− t′) that

∇x′ω(x− x′, t− t′) = −∇xω(x− x′, t− t′),

and
∂

∂t′
ω(x− x′, t− t′) = − ∂

∂t
ω(x− x′, t− t′).

In addition, we obviously have that

|u(x, t)− v(x′, t′)| = |v(x′, t′)− u(x, t)|
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and

sgn(u(x, t)− v(x′, t′))(f(u(x, t))− f(v(x′, t′))) =

sgn(v(x′, t′)− u(x, t))(f(v(x′, t′))− f(u(x, t))).

Therefore, if we fully expand the definitions of Λε0ε (u, v, T ) and Λε0ε (v, u, T )
into integrals, the quadruple integrals will cancel and we are left with

(1.3)

Λε0ε (u, v, T ) + Λε0ε (v, u, T )

=

∫ T

0

∫
Rn

∫
Rn
|u(x, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|u(x, 0)− v(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

+

∫ T

0

∫
Rn

∫
Rn
|v(x, T )− u(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x, 0)− u(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′.

This is the fundamental identity on which Kuznetsov’s theorem is based; no
approximations are involved, and various inequalities can be derived based
on how we write the right side of (1.3).

All the terms in the right hand side of (1.3) have the same form; we
shall analyze the first. We can write by the triangle inequality

(1.4)

∫ T

0

∫
Rn

∫
Rn
|u(x, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥
∫ T

0

∫
Rn

∫
Rn
|u(x′, T )− v(x′, T )|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|u(x, T )− u(x′, T )|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x′, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′.

When the first term on the right of (1.4) is integrated over x and t′ we get

1

2
‖u(T )− v(T )‖L1(Rn).

Because ω(ξ, t) is zero if |ξ| ≥ ε, the second term on the right of (1.4) can
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4 Chapter 2. Kuznetsov’s Approximation Theorem

be bounded as∫ T

0

∫
Rn

∫
Rn
|u(x, T )− u(x′, T )|ω(x− x′, T − t′) dx dx′ dt′

=

∫ T

0

∫
Rn

∫
Rn
|u(x′ + ξ, T )− u(x′, T )|ω(ξ, T − t′) dξ dx′ dt′

≤
∫ T

0

∫
Rn

sup
|ξ|<ε

[∫
Rn
|u(x′ + ξ, T )− u(x′, T )| dx′

]
ω(ξ, T − t′) dξ dt′

=
1

2
ω1(u(T ), ε).

Finally, because ω(s, t) is zero if |t| ≥ ε0, the third term on the right of
(1.4) is bounded by∫ T

0

∫
Rn

∫
Rn
|v(x′, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≤
∫ T

0

sup
T−ε0<t′<T

[∫
Rn
|v(x′, T )− v(x′, t′)| dx′

]
ηε0(T − t′) dt′

=
1

2
ν(v, T, ε0).

So the first term on the right hand side of (1.3) satisfies∫ T

0

∫
Rn

∫
Rn
|u(x, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥ 1

2
‖u(T )− v(T )‖L1(Rn) −

1

2
ω1(u(T ), ε)− 1

2
ν(v, T, ε0).

Similarly, we find for the second term on the right hand side of (1.3),∫ T

0

∫
Rn

∫
Rn
|u(x, 0)− v(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

≤ 1

2
‖u(0)− v(0)‖L1(Rn) +

1

2
ω1(u(0), ε) +

1

2
ν(v, 0, ε0).

The other two terms in (1.3) can be bounded as∫ T

0

∫
Rn

∫
Rn
|v(x, T )− u(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥ 1

2
‖v(T )− u(T )‖L1(Rn) −

1

2
ω1(v(T ), ε)− 1

2
ν(u, T, ε0),

and∫ T

0

∫
Rn

∫
Rn
|v(x, 0)− u(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

≤ 1

2
‖v(0)− u(0)‖L1(Rn) +

1

2
ω1(v(0), ε) +

1

2
ν(u, 0, ε0),
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§2. Consequences of the Approximation Theorem 5

which proves the theorem.

Remark 1.1. It is left as an exercise to analyze the case T < ε0.

§2. Consequences of the Approximation Theorem

At this point we shall move a little ahead of ourselves to discover what prop-
erties of entropy weak solutions of (0.1) are implied by Theorem 1.1. In the
next chapter we shall prove that if u(0) ∈ L∞(Rn) satisfies ω1(u(0), ε)→ 0
as ε → 0, and if f is Lipschitz continuous, then an entropy weak solution
of (0.1) exists. Furthermore, we shall show that u(x, t) is a bounded, mea-
surable function of x ∈ Rn and t ∈ [0, T ] and that u− u(0) is a continuous
mapping of [0, T ] into L1(Rn). Of course, an entropy weak solution u also
satisfies Λε0ε (u, w, T ) ≤ 0 for all ε > 0, ε0 > 0, T > 0, and bounded, mea-
surable w. In this section we shall consider only entropy weak solutions of
(0.1) with the preceding properties.

Corollary 2.1 (Continuous dependence). If u and v are entropy weak
solutions of (0.1), then for all T > 0,

(2.1) ‖u(T )− v(T )‖L1(Rn) ≤ ‖u(0)− v(0)‖L1(Rn).

Proof. We shall show that the terms in the right hand side of (1.2)
that depend on ε and ε0 are either zero or negative in the limit as ε and ε0
tend to zero. We remark explicitly about the terms involving u; the same
arguments hold for v.

By assumption, Λε0ε (u, v, T ) ≤ 0 for all ε and ε0. Also by assumption,
ω1(u(0), ε) vanishes as ε approaches zero.

Because u − u(0) is assumed to be in C([0, T ], L1(Rn)), we know for
any t ∈ [0, T ] that ‖u(t′)− u(t)‖L1(Rn) → 0 as t′ → t. Therefore ν(u, 0, ε0)
and ν(u, T, ε0) approach zero as ε0 → 0.

Finally, we note that

ω1(u(T ), ε) ≤ ω1(u(T )− u(0), ε) + ω1(u(0), ε).

By assumption, the second term on the right vanishes as ε → 0; since
u(T )− u(0) ∈ L1(Rn), so does the first term. Therefore, ω1(u(T ), ε) tends
to zero as ε→ 0. The theorem follows by letting ε and ε0 approach zero.

Corollary 2.2 (Uniqueness). If u and v are entropy weak solutions
of (0.1) and u(0) = v(0), then for all T > 0 we have u(T ) = v(T ).

Proof. The result obviously follows from Corollary 2.1.
Corollary 2.2 implies that if we let v(x, 0) := u(x + ξ, 0), then the

entropy weak solutions u and v of (0.1) satisfy for all T > 0,

v(x, T ) = u(x+ ξ, t),

since our assumptions are invariant under translation of the initial data.
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6 Chapter 2. Kuznetsov’s Approximation Theorem

Corollary 2.3. (Spatial smoothness). If u is an entropy weak solution
of (0.1) then for all T > 0 and ε > 0

(2.2) ω1(u(T ), ε) ≤ ω1(u(0), ε).

Proof. For each ξ ∈ Rn with |ξ| < ε and for all T > 0, (2.1) implies:∫
Rn
|u(x+ ξ, T )− u(x, T )| dx ≤

∫
Rn
|u(x+ ξ, 0)− u(x, 0)| dx.

Therefore, (2.2) follows from the definition of ω1.

Corollaries 2.2 and 2.3 imply that the operator St : u(0) −→ u(t) is a
semigroup: StSs(u(0)) = Ss+t(u(0)) = u(s + t). Explicitly, if w(x, 0) :=
u(x, s) for all x then for all T > 0,

w(x, T ) = u(x, T + s).

Corollary 2.4. (Temporal smoothness). If u is an entropy weak so-
lution of (0.1) then for all T > 0 and ε > 0

(2.3) ν(u, T, ε) ≤ ν(u, 0, ε).

Proof. For each 0 < s < ε and for all T > 0, we have by (2.1):

‖u(T + s)− u(T )‖L1(Rn) ≤ ‖u(s)− u(0)‖L1(Rn).

Therefore, (2.3) follows from the definition of ν.

§3. Bounding the Error of Approximations

Being symmetric in u and v, the right side of (1.2) is suitable for comparing
two approximate solutions of (0.1). We can use the a priori information
derived in the previous section to give a new, asymmetric, bound for ‖u(T )−
v(T )‖L1(Rn) that is useful when comparing an entropy weak solution v to
an approximate solution u. In addition to the properties proved in the
previous section, we shall prove in Chapter 3 that

ν(v, 0, ε0) ≤ Lω1(v(0), ε0),

where L = supξ∈R
∑n
j=1 |f ′j(ξ)|.
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§3. Bounding the Error of Approximations 7

Specifically, we bound (1.4) in the following way:∫ T

0

∫
Rn

∫
Rn
|u(x, T )− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥
∫ T

0

∫
Rn

∫
Rn
|u(x, T )− v(x, T )|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x, t′)− v(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x, T )− v(x, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥ 1

2
‖u(T )− v(T )‖L1(Rn) −

1

2
ω1(v(0), ε)− 1

2
Lω1(v(0), ε0).

Similarly, the second term of (1.3) satisfies

−
∫ T

0

∫
Rn

∫
Rn
|u(x, 0)− v(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

≥ −
∫ T

0

∫
Rn

∫
Rn
|u(x, 0)− v(x, 0)|ω(x− x′, 0− t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x, t′)− v(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

−
∫ T

0

∫
Rn

∫
Rn
|v(x, 0)− v(x, t′)|ω(x− x′, 0− t′) dx dx′ dt′

≥ −1

2
‖u(0)− v(0)‖L1(Rn) −

1

2
ω1(v(0), ε)− 1

2
Lω1(v(0), ε0).

The final two terms of (1.3) can be simplified to∫ T

0

∫
Rn

∫
Rn
|v(x, T )− u(x′, t′)|ω(x− x′, T − t′) dx dx′ dt′

≥ 1

2
‖v(T )− u(T )‖L1(Rn) −

1

2
ω1(v(0), ε)− 1

2
ν(u, T, ε0),

and

−
∫ T

0

∫
Rn

∫
Rn
|v(x, 0)− u(x′, t′)|ω(x− x′, 0− t′) dx dx′ dt′

≥ −1

2
‖v(0)− u(0)‖L1(Rn) −

1

2
ω1(v(0), ε)− 1

2
ν(u, 0, ε0).

Anticipating Chapter 3 somewhat, we can therefore state the following
theorem, which is more or less how Kuznetsov stated it in the first place.

Theorem 3.1. Assume that v0 is a bounded, measurable function,
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8 Chapter 2. Kuznetsov’s Approximation Theorem

with ω1(v0, ε)→ 0 as ε→ 0, that f is Lipschitz continuous, with

L := sup
ξ∈R

n∑
j=1

|f ′j(ξ)| <∞,

and that v(x, t) is the entropy weak solution of

vt +∇ · f(v) = 0, x ∈ Rn, t > 0,

v(x, 0) = v0(x), x ∈ Rn.

Then for any bounded, measurable u defined on Rn × [0, T ] we have

‖u(T )− v(T )‖L1(Rn) ≤ ‖u(0)− v(0)‖L1(Rn) + 2ω1(v0, ε) + Lω1(v0, ε0)

+
1

2
ν(u, 0, ε0) +

1

2
ν(u, T, ε0) + Λε0ε (u, v, T ).
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Chapter 3

Monotone Finite Difference Methods

In this chapter we study monotone finite difference methods for the approx-
imation of u(x, t), the solution of the scalar equation

(0.1)
ut +∇x · f(u) = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn.

The solutions of the finite difference equations will be used as approximate
solutions of (0.1) and analyzed using Kuznetsov’s theorem in Chapter 2.
We study in depth only the Engquist-Osher scheme; this will allow us
to prove existence of solutions of (0.1). The analysis of other monotone
schemes is so similar that it does not warrant repeating. The references for
this chapter are the papers by Sanders and Crandall and Majda.

§1. The Engquist-Osher Method

Let us first consider the equation in one space dimension,

(1.1)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

To derive a numerical method for (1.1) it is natural to substitute finite
difference approximations to the derivatives in (1.1). To that end, let h
and ∆t be fixed positive numbers and introduce the quantities

Uki ≈ u(ih, k∆t), i ∈ Z, k ≥ 0,

∆+
t (Uk)i :=

Uk+1
i − Uki

∆t
≈ ∂u(ih, k∆t)

∂t
, i ∈ Z, k ≥ 0,

∆x(f(Uk))i :=
f(Uki+1)− f(Uki−1)

2h
≈ ∂f(u(ih, k∆t))

∂x
, i ∈ Z, k ≥ 0.

The quantity ∆x(f(Uk))i is a second order, centered difference approxima-
tion to f(u(ih, k∆t))x. Then a possible finite difference scheme is

(1.2)

∆+
t (Uk)i + ∆x(f(Uk))i = 0, i ∈ Z, k ≥ 0,

U0
i =

1

h

∫ (i+1)h

ih

u0(x) dx, i ∈ Z.
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2 Chapter 3. Monotone Finite Difference Methods

In this equation we can solve explicitly for Uk+1
i if we know Uki for all i:

(1.3) Uk+1
i = Uki −

∆t

2h
(f(Uki+1)− f(Uki−1)).

We would like the finite-difference scheme to have the same qualitative
properties that we expect the entropy solution of (1.1) to have. In partic-
ular, we would like it to be the case that if Uki ≥ V ki for all i ∈ Z, then

Uk+1
i ≥ V k+1

i for all i ∈ Z. But this will not be so for (1.3)—if f is increas-

ing, for example, then increasing Uki+1 will decrease Uk+1
i . Thus, there is

no chance that the finite difference formula (1.3) will be order preserving.

One can attempt to rectify this problem by introducing a one-sided
divided difference in x,

∆−x (f(Uk))i :=
f(Uki )− f(Uki−1)

h
≈ ∂f(u(ih, k∆t))

∂x
, i ∈ Z, k ≥ 0,

and solving the problem

(1.4)

∆+
t (Uk)i + ∆−x (f(Uk))i = 0, i ∈ Z, k ≥ 0,

U0
i =

1

h

∫ (i+1)h

ih

u0(x) dx, i ∈ Z.

For this equation, one has the explicit formula

(1.5) Uk+1
i = Uki −

∆t

h
(f(Uki )− f(Uki−1)).

This formula will be order preserving if and only if the function

G(r, s) := r − ∆t

h
(f(r)− f(s))

is increasing in r and s, i.e., Gr ≥ 0 and Gs ≥ 0. We can calculate explicitly

Gr(r, s) = 1− ∆t

h
f ′(r) and Gs(r, s) =

∆t

h
f ′(s).

Thus, (1.4) is order preserving if and only if

f ′(ξ) ≥ 0 and

∆t

h
f ′(ξ) ≤ 1

for all ξ ∈ R. Condition (1.5) means that the scheme is an upwind scheme:
the characteristic lines have positive slope, and to calculate the value of
Uk+1
i we are using spatial differences taken to the left of Uki , “into the

wind.” Condition (1.5) is called a CFL condition and was introduced first
by Courant, Friedrichs, and Lewy.
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§1. The Engquist-Osher Method 3

So, we have an order preserving scheme if ∆t is small enough and f ′

is positive and bounded. If f ′ is negative and bounded then we can set

∆+
x (f(Uk))i :=

f(Uki+1)− f(Uki )

h
≈ ∂f(u(ih, k∆t))

∂x
, i ∈ Z, k ≥ 0

and solve the finite difference equations

(1.6)

∆+
t (Uk)i + ∆+

x (f(Uk))i = 0, i ∈ Z, k ≥ 0,

U0
i =

1

h

∫ (i+1)h

ih

u0(x) dx, i ∈ Z.

In the same way as we analyzed (1.4), we see that (1.6) will be order
preserving if

−∆t

h
f ′(ξ) ≤ 1, ξ ∈ R.

For a general function f(ξ) that increases for some ξ and decreases
for others, neither (1.4) or (1.6) is satisfactory. Engquist and Osher

introduced the following method that is suitable for any f .
Without loss of generality, we let f(0) = 0. We shall assume that

f is Lipschitz continuous, i.e., there exists a constant L such that for all
ζ, ξ ∈ R, |f(ζ)− f(ξ)| ≤ L|ζ − ξ|. Then, by the Radon-Nikodym theorem
there exists a.e. a derivative f ′(ξ) with |f ′(ξ)| ≤ L and for all ξ, ζ ∈ R,

f(ζ)− f(ξ) =

∫ ζ

ξ

f ′(s) ds.

Using this f ′, we can decompose f into its increasing and decreasing parts:

(1.7) f+(ξ) =

∫ ξ

0

f ′(ζ) ∨ 0 dζ and f−(ξ) =

∫ ξ

0

f ′(ζ) ∧ 0 dζ.

Because f ′(ζ) ∨ 0 ≥ 0, f ′(ζ) ∧ 0 ≤ 0, and f ′(ζ) = f ′(ζ) ∨ 0 + f ′(ζ) ∧ 0,
we know that f+ is increasing, f− is decreasing, and for all ζ ∈ R f(ζ) =
f+(ζ) + f−(ζ). For later purposes we also define f t = f+ − f−; note that
(f t)′ = (f+)′ − (f−)′ = f ′ ∨ 0− f ′ ∧ 0 = |f ′|.

Now that we have decomposed f , we can difference the increasing part
to the left and the decreasing part to the right to get the Engquist-Osher
scheme:

(1.8)

∆+
t (Uk)i + ∆−x (f+(Uk))i + ∆+

x (f−(Uk))i = 0, i ∈ Z, k ≥ 0,

U0
i =

1

h

∫ (i+1)h

ih

u0(x) dx, i ∈ Z.

We next consider approximating (0.1) in several space dimensions. In
(0.1), f(u) is a vector (f1(u), . . . , fn(u)), so one extends the one-dimensional
Engquist-Osher method by splitting each of the components fj(u) into its
increasing and decreasing parts, fj(u) = f+

j (u) + f−j (u). The index i ∈ Z
will no longer suffice; now points in Zn are indexed by the multi-index
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4 Chapter 3. Monotone Finite Difference Methods

ν = (ν1, . . . , νn). Recall that the unit vector ej has a single 1 in the jth
component. Now the approximations for each ν ∈ Zn and k ≥ 0 will be

Ukν ≈ u(νh, k∆t),

∆+
t (Uk)ν :=

Uk+1
ν − Ukν

∆t
≈ ∂u(νh, k∆t)

∂t
,

∆−j (f+
j (Uk))ν :=

f+
j (Ukν )− f+

j (Ukν−ej)

h
≈
∂f+

j (u(νh, k∆t))

∂xj
,

∆+
j (f−j (Uk))ν :=

f−j (Ukν+ej )− f
−
j (Ukν )

h
≈
∂f−j (u(νh, k∆t))

∂xj
.

Using this (increasingly Byzantine) notation, the Engquist-Osher method
in several space dimensions can be written as

(1.9)

∆+
t (Uk)ν +

n∑
j=1

[
∆−j (f+

j (Uk))ν + ∆+
j (f−j (Uk))ν

]
= 0,

ν ∈ Zn, k ≥ 0,

U0
ν =

1

hn

∫ (ν1+1)h

ν1h

· · ·
∫ (νn+1)h

νnh

u0(x) dx, ν ∈ Zn.

Remark. A general explicit finite difference scheme of the form

∆+
t (Uk)i +

F (Uki−N , . . .U
k
i+N+1)− F (Uki−N−1, . . .U

k
i+N )

h
= 0, i ∈ Z,

for the problem

ut + f(u)x = 0, x ∈ R, t > 0,

is said to be conservative, since∑
i∈Z

Uk+1
i =

∑
i∈Z

Uki

whenever Uk ∈ L1(Z). The Engquist-Osher scheme is conservative, with
N = 0 and

F (Uki , U
k
i+1) = f+(Uki ) + f−(Uki+1).

A general method is consistent if for all c ∈ R,

F (c, . . . , c) = f(c);

the Engquist-Osher method is consistent, since, by (1.7),

F (c, c) = f+(c) + f−(c) = f(c).

Finally, a method is monotone if, under some conditions on ∆t, h, and f ,
we have that

Uki ≥ V ki for all i ∈ Z =⇒ Uk+1
i ≥ V k+1

i for all i ∈ Z.
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§2. Properties of the Engquist-Osher Method 5

To show this, it is sufficient to show that

∂Uk+1
i

∂Ukj
≥ 0, j ∈ Z.

For the Engquist-Osher scheme, we have the explicit formula

(1.10) Uk+1
i = Uki −

∆t

h
{f+(Uki )− f+(Uki−1) + f−(Uki+1)− f−(Uki )}.

If |j − i| > 1, then Uk+1
i does not depend on Ukj , so

∂Uk+1
i

∂Ukj
= 0. We

calculate from (1.10) that

∂Uk+1
i

∂Uki−1

=
∆t

h
(f+)′(Uki−1) ≥ 0 and

∂Uk+1
i

∂Uki+1

= −∆t

h
(f−)′(Uki+1) ≥ 0.

Finally, we have that

∂Uk+1
i

∂Uki
= 1− ∆t

h
{(f+)′(Uki )− (f−)′(Uki )}

= 1− ∆t

h
|f ′(Uki )|,

which will be nonnegative if the CFL condition

∆t

h
|f ′(ξ)| ≤ 1, ξ ∈ R,

holds.

Other examples of consistent, conservative, monotone, finite differ-
ence schemes are Godunov’s scheme (described later) and the Lax-Friedrich
scheme

∆+
t (Uk)i +

f(Uki+1)− f(Uki−1)

2h
−µ

Uki−1 − 2Uki + Uki+1

h2
= 0, i ∈ Z, k ≥ 0,

when µ ≥ h
2 max |f ′(ξ)|.

§2. Properties of the Engquist-Osher Method

Theorem 2.1. Assume that there exists a number L such that

(2.1) sup
ξ

∑
i

|f ′i(ξ)| ≤ L and
∆t

h
L ≤ 1.

Assume Uk and V k are given, and that Uk+1 and V k+1 are defined by (1.9).
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6 Chapter 3. Monotone Finite Difference Methods

Then

(1) If Ukν ≥ V kν for all |ν| ≤ l + 1, then Uk+1
ν ≥ V k+1

ν for all |ν| ≤ l.

(2)
∑
|ν|≤l
|Uk+1
ν − V k+1

ν | ≤
∑
|ν|≤l+1

|Ukν − V kν |.

(3) sup
|ν|≤l

Uk+1
ν ≤ sup

|ν|≤l+1

Ukν and inf
|ν|≤l

Uk+1
ν ≥ inf

|ν|≤l+1
Ukν .

(4)
∑
|ν|≤l
|Uk+1
ν − Ukν | ≤

L∆t

h

∑
|ν|≤l+1

n∑
j=1

|Ukν − Ukν−ej |.

(5)
∑
|ν|≤l

n∑
j=1

|Uk+1
ν − Uk+1

ν−ej | ≤
∑
|ν|≤l+1

n∑
j=1

|Ukν − Ukν−ej |.

Remark 2.1. The following inequalities, which we shall now take for
granted, can be derived by letting l tend to infinity in (1) to (5):

(1) If Ukν ≥ V kν for all ν ∈ Zn, then Uk+1
ν ≥ V k+1

ν for all ν ∈ Zn.

(2) ‖Uk+1 − V k+1‖L1(Zn) ≤ ‖Uk − V k‖L1(Zn).

(3) sup
ν∈Zn

Uk+1
ν ≤ sup

ν∈Zn
Ukν and inf

ν∈Zn
Uk+1
ν ≥ inf

ν∈Zn
Ukν .

(4) ‖Uk+1 − Uk‖L1(Zn) ≤
L∆t

h
‖Uk‖BV(Zn) ≤

L∆t

h
‖U0‖BV(Zn) (see (5)).

(5) ‖Uk+1‖BV(Zn) ≤ ‖Uk‖BV(Zn) ≤ ‖U0‖BV(Zn), by induction.

Proof of Theorem 2.1. We have the explicit formulae for Uk+1
ν :

Uk+1
ν = G(Ukν , U

k
ν−e1 , U

k
ν+e1, . . . , U

k
ν−en, U

k
ν+en)

:= Ukν −∆t

 n∑
j=1

[
∆−j (f+

j (Uk))ν + ∆+
j (f−j (Uk))ν

] .
= Ukν −

∆t

h

n∑
j=1

(f+
j (Ukν )− f−j (Ukν ))

− ∆t

h

n∑
j=1

(f−j (Ukν+ej)− f
+
j (Ukν−ej ))

= Ukν −
∆t

h

n∑
j=1

(f−j (Ukν+ej) + f+
j (Ukν ))

+
∆t

h

n∑
j=1

(f−j (Ukν ) + f+
j (Ukν−ej ))
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§2. Properties of the Engquist-Osher Method 7

It’s clear from these formulae that Uk+1
ν for |ν| ≤ l depend only on Ukν for

|ν| ≤ l + 1, and that if Ukν = C for |ν| ≤ l + 1, then Uk+1
ν = C for |ν| ≤ l.

(1) It suffices to show that

∂G

∂Ukν
≥ 0 and

∂G

∂Ukν±ej
≥ 0, j = 1, . . . , n.

We calculate explicitly

∂G

∂Ukν
= 1− ∆t

h

n∑
j=1

((f+
j )′(Ukν )− (f−j )′(Ukν ))

= 1− ∆t

h

n∑
j=1

(f tj )
′(Ukν )

≥ 1− ∆tL

h
≥ 0

by assumption (2.1). In addition,

∂G

∂Ukν+ej

= −∆t

h
(f−j )′(Ukν+ej ) ≥ 0

and

∂G

∂Ukν−ej
=

∆t

h
(f+
j )′(Ukν−ej ) ≥ 0.

So Uk+1 is a monotone function of Uk.

(2) We have from (2.1) that

Uk+1
ν − V k+1

ν =

[Ukν − V kν −
∆t

h

n∑
j=1

(f+
j (Ukν )− f+

j (V kν )) +
∆t

h

n∑
j=1

(f−j (Ukν )− f−j (V kν ))]

+
∆t

h

n∑
j=1

(f+
j (Ukν−ej)− f

+
j (V kν−ej ))

− ∆t

h

n∑
j=1

(f−j (Ukν+ej)− f
−
j (V kν+ej )).

Because f+
j increases, f−j decreases, and (2.1) holds, the quantity in square

brackets above, (Ukν −V kν ), (f+
j (Ukν )− f+

j (V kν )), and −(f−j (Ukν )− f−j (V kν ))
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8 Chapter 3. Monotone Finite Difference Methods

all have the same sign. Therefore, taking absolute values we have

|Uk+1
ν − V k+1

ν |

≤ |Ukν − V kν −
∆t

h

n∑
j=1

(f+
j (Ukν )− f+

j (V kν )) +
∆t

h

n∑
j=1

(f−j (Ukν )− f−j (V kν ))|

+
∆t

h

n∑
j=1

|f+
j (Ukν−ej)− f

+
j (V kν−ej )|

+
∆t

h

n∑
j=1

|f−j (Ukν+ej)− f
−
j (V kν+ej )|

= |Ukν − V kν | −
∆t

h

n∑
j=1

|f+
j (Ukν )− f+

j (V kν )| − ∆t

h

n∑
j=1

|f−j (Ukν )− f−j (V kν )|

+
∆t

h

n∑
j=1

|f+
j (Ukν−ej)− f

+
j (V kν−ej )|

+
∆t

h

n∑
j=1

|f−j (Ukν+ej)− f
−
j (V kν+ej )|.

Summing this inequality over all |ν| ≤ l yields∑
|ν|≤l
|Uk+1
ν − V k+1

ν | ≤
∑
|ν|≤l
|Ukν − V kν |

− ∆t

h

n∑
j=1

∑
νj=0
|ν|≤l

|f−j (Ukν−lej )− f
−
j (V kν−lej )|

− ∆t

h

n∑
j=1

∑
νj=0
|ν|≤l

|f+
j (Ukν+lej )− f

+
j (V kν+lej )|.

+
∆t

h

n∑
j=1

∑
νj=0
|ν|≤l

|f−j (Ukν+(l+1)ej
)− f−j (V kν+(l+1)ej

)|

+
∆t

h

n∑
j=1

∑
νj=0
|ν|≤l

|f+
j (Ukν−(l+1)ej

)− f+
j (V kν−(l+1)ej

)|.

The sums here are over the (n − 1)–dimensional hypercubes |ν| ≤ l with
νj = 0, each of which when added to lej gives the jth “side” of the n-
dimensional hypercube |ν| ≤ l. Because of (2.1), we only increase the right
side of the previous inequality by substituting |Ukν+(l+1)ej

− V kν+(l+1)ej
| for
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§2. Properties of the Engquist-Osher Method 9

∆t
h
|f−j (Ukν+(l+1)ej

)− f−j (V kν+(l+1)ej
)|, etc. Thus we arrive at∑

|ν|≤l
|Uk+1
ν − V k+1

ν | ≤
∑
|ν|≤l+1

|Ukν − V kν |,

which proves (2).

(3) Let V kν = sup|µ|≤l+1 U
k
µ for |ν| ≤ l + 1. Property (1) implies that

V k+1
ν ≥ Uk+1

ν for all |ν| ≤ l, which implies the first part of (3). The second
part follows in the same way.

(4) Equation (2.1) and condition (2.1) imply that∑
|ν|≤l
|Uk+1
ν − Ukν |

≤ ∆t

h

∑
|ν|≤l

n∑
j=1

{|f+
j (Ukν )− f+

j (Ukν−ej )|+ |f
−
j (Ukν+ej)− f

−
j (Ukν )|}

≤ ∆t

h

∑
|ν|≤l+1

n∑
j=1

|f tj (Ukν )− f tj (Ukν−ej )|

≤ ∆tL

h

∑
|ν|≤l+1

n∑
j=1

|Ukν − Ukν−ej |

In fact, our argument shows that in the last inequality we can replace
L = supξ

∑n
j=1 |f ′j(ξ)| by maxj supξ |f ′j(ξ)|.

(5) This property follows directly from Property 2. For each j let
V kν := Ukν−ej . Then Property 2 implies that∑

|ν|≤l
|Uk+1
ν − Uk+1

ν−ej | ≤
∑
|ν|≤l+1

|Ukν − Ukν−ej |.

Summing this inequality over j = 1, . . . , n gives (5).

Remark 2.2. Because solutions of (1.9) satisfy the maximum and
minimum principles (3), we can replace the definition of L in (2.1) by

L = sup
infν Ukν≤ξ≤supν U

k
ν

n∑
j=1

|f ′j(ξ)|.

If we are working with a family of bounded Uk, with |Ukν | ≤M , say, for all
ν ∈ Zn and k ≥ 0, then we can take

L = sup
|ξ|≤M

n∑
j=1

|f ′j(ξ)|.

This allows us to consider flux functions like fj(u) = u2, which otherwise
would not satisfy (2.1).
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10 Chapter 3. Monotone Finite Difference Methods

§3. Discrete and Continuous Norms of Approximations

Before using Kuznetsov’s Theorem to bound in L1(Rn) the difference of
two numerical approximations to (0.1), we must first interpret the function
Ukν , defined for the discrete values of ν ∈ Zn and k ≥ 0, as a function uh(x)
defined for all x ∈ Rn.

As in the previous section, we fix positive numbers h and ∆t, and we
assume that (2.1) is satisfied. Let χ(x) := χ[0,1)n(x) be the characteristic
function of the n-dimensional unit hypercube I := [0, 1)n ⊂ Rn, i.e.,

χ(x) =

{
1, 0 ≤ xj < 1, j = 1, . . . , n,

0, otherwise.

For each ν ∈ Zn define χhν (x) := χ(x
h
− ν), so that χhν is the characteristic

function of the cube Ihν :=
∏n
j=1[νjh, (νj + 1)h). For each k ≥ 0 let

uh(x, k∆t) :=
∑
ν∈Zn

Ukν χ
h
ν (x),

and for k∆t < t < (k + 1)∆t, so that t = (k + α)∆t for some 0 < α < 1,
define

(3.1) uh(x, t) := αuh(x, (k+ 1)∆t) + (1− α)uh(x, k∆t).

From the definition, it is clear that uh(x, t) is piecewise constant in x and
piecewise linear in t. The following Lemma allows us to relate continuous
norms of uh( · , t) to discrete norms of Uk:

Lemma 3.1. If for all k ≥ 0, Uk ∈ L1(Zn) then
(1) ‖uh( · , k∆t)‖L1(Rn) = hn‖Uk‖L1(Zn), k ≥ 0.

(2) ‖uh( · , k∆t)‖BV(Rn) = hn−1‖Uk‖BV(Zn), k ≥ 0.
(3) For k∆t < t < (k + 1)∆t,

‖uht ( · , t)‖L1(Rn) =
hn

∆t
‖Uk+1 − Uk‖L1(Zn), k ≥ 0.

Proof. (1) This is clear from

‖uh( · , k∆t)‖L1(Rn) =
∑
ν∈Zn

|Ukν |
∫
Rn
χhν dx

=
∑
ν∈Zn

|Ukν |hn

= hn‖Uk‖L1(Zn).

(2) We note that for any ε > 0,

‖v‖BV(Rn) =
n∑
j=1

sup
|τ |≤ε

1

|τ |

∫
Rn
|v(x+ τej)− v(x)| dx,
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§3. Discrete and Continuous Norms of Approximations 11

That is, we can take the supremum over small τ rather than over all τ and
get the same result. This is simply because if |τ | > ε, and σ = τ/d satisfies
|σ| ≤ ε, then

1

|τ |

∫
Rn
|v(x+ τej)− v(x)| dx

≤ 1

|τ |

∫
Rn

d∑
l=1

|v(x+ lσej)− v(x+ (l− 1)σej)| dx

=
d

|τ |

∫
Rn
|v(x+ σej)− v(x)| dx

=
1

|σ|

∫
Rn
|v(x+ σej)− v(x)| dx.

Therefore the supremum over all τ is the same as the supremum over all σ
with |σ| ≤ ε for any positive ε.

So we can assume that |τ | ≤ h/2 when calculating ‖uh( · , t)‖BV(Rn),
with t = k∆t. We calculate∫

Rn
|uh(x+ τej , t)− uh(x, t)| dx = hn−1|τ |

∑
ν∈Zn

|Ukν+ej − U
k
ν |.

(See the (missing) picture for what happens in two space dimensions.) So

‖uh( · , t)‖BV(Rn) =
n∑
j=1

sup
|τ |≤h/2

1

|τ |

∫
Rn
|uh(x+ τej , t)− vh(x, t)| dx

=
n∑
j=1

hn−1
∑
ν∈Zn

|Ukν+ej − U
k
ν |

= hn−1‖Uk‖BV(Zn).

(3) Note that α = (t − k∆t)/∆t, so dα/dt = 1/∆t. From (3.1), we
have that

‖uht (x, t)‖L1(Rn) =

∥∥∥∥uh(x, (k + 1)∆t)− uh(x, k∆t)

∆t

∥∥∥∥
L1(Rn)

=
hn

∆t
‖Uk+1 − Uk‖L1(Zn)

by Property (1).

The initial data for the numerical method is calculated from the for-
mula

(3.2) U0
ν =

1

hn

∫
Ihν

u0(x) dx, ν ∈ Zn.

We now calculate norms of U0 in terms of norms of u0.
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12 Chapter 3. Monotone Finite Difference Methods

Lemma 3.2. Let U0 be calculated by the formula (3.2). Then

(1) hn‖U0‖L1(Zn) ≤ ‖u0‖L1(Rn),

(2) hn−1‖U0‖BV(Zn) ≤ ‖u0‖BV(Rn), and

(3) ‖u0 − uh( · , 0)‖L1(Rn) ≤ h‖u0‖BV(Rn).

Proof. (1) We have for each ν ∈ Zn,

hn|U0
ν | ≤

∫
Ihν

|u0(x)| dx.

Summing this over all ν ∈ Zn gives (1).

(2) For the variation bound, we calculate

hn‖U0‖BV(Zn) = hn
n∑
j=1

∑
ν∈Zn

|U0
ν − U0

ν−ej |

=
n∑
j=1

∑
ν∈Zn

∣∣∣∣∫
Ihν

(u0(x)− u0(x− hej)) dx
∣∣∣∣

≤ h
n∑
j=1

∑
ν∈Zn

1

h

∫
Ihν

|u0(x)− u0(x− hej)| dx

≤ h‖u0‖BV(Rn).

(3) We apply the triangle inequality to calculate,

(3.3)

‖u0 − uh( · , t)‖L1(Rn)

=
∑
ν∈Zn

∫
Ihν

∣∣∣∣u0(y)− 1

hn

∫
Ihν

u0(x) dx

∣∣∣∣ dy
=
∑
ν∈Zn

∫
Ihν

∣∣∣∣ 1

hn

∫
Ihν

(u0(y)− u0(x)) dx

∣∣∣∣ dy
≤ 1

hn

∑
ν∈Zn

∫
Ihν

∫
Ihν

|u0(y)− u0(x)| dx dy

≤ 1

hn

∑
ν∈Zn

∫
Ihν

∫
Ihν

n∑
j=1

|u0(z(x, y, j))− u0(z(x, y, j − 1))| dx dy,

where z(x, y, j) := (x1, . . . , xj, yj+1, . . . , yn). We shall examine the jth term
in the sum on j, and assume for simplicity that ν = 0, i.e., that the cube
is situated at the origin. The jth term does not depend on y1, . . . , yj−1 or
xj+1, . . . , xn; so, integrating with respect to these variables gives a factor
of hn−1. If we set s = yj − xj and rename the variables yj+1 to yn to be
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§4. Convergence of the Engquist-Osher Method 13

xj+1 to xn, we can write∫
Ihν

∫
Ihν

|u0(z(x, y, j))− u0(z(x, y, j − 1))| dx dy

= hn−1

∫
Ihν

∫ h−xj

−xj
|u0(x+ sej)− u0(x)| ds dx

≤ hn−1

∫ h

−h
|s|
{

1

|s|

∫
Ihν

|u0(x+ sej)− u0(x)| dx
}
ds.

We substitute this into (3.3) to give

‖u0 − uh( · , t)‖L1(Rn)

≤ 1

hn

n∑
j=1

hn−1

∫ h

−h
|s|
{

1

|s|
∑
ν∈Zn

∫
Ihν

|u0(x+ sej)− u0(x)| dx
}
ds

≤ 1

h

∫ h

−h
|s|

n∑
j=1

sup
s∈R

{
1

|s|

∫
Rn
|u0(x+ sej)− u0(x)| dx

}
ds

= h‖u0‖BV(Rn).

§4. Convergence of the Engquist-Osher Method

In this section we shall prove that the solutions of the Engquist-Osher
numerical method are Cauchy in C([0, T ], L1(Rn)), and hence converge to
a function u ∈ C([0, T ], L1(Rn)) as h and ∆t tend to zero. This function
u satisfies Λε0ε (u, v, T ) ≤ 0 for all bounded measurable v and all T > 0; it
requires another simple argument (which we omit) to show that in fact u is
an entropy weak solution as defined in Chapter 2. By the previous chapter,
this entropy weak solution is unique. Finally, we give error bounds for the
Engquist-Osher scheme and give examples to show that these bounds are
sharp.

To simplify things somewhat, we shall consider a sequence of approxi-
mations uh(x, t) with h = 2−M , M = 1, 2, . . . , with ∆t chosen as a constant
multiple of h such that the assumptions of Theorem 2.1 hold. The initial
data will be chosen by the formula (3.2).

Consider now two solutions u1, with parameters h1 and ∆t1, and u2

with parameters h2 < h1 and ∆t2 < ∆t1. First, we note that it is sufficient
to show that ‖u1( · , t)−u2( · , t)‖L1(Rn) is small when t=k∆t1, for if k∆t1 ≤
t < (k + 1

2 )∆t1, then

‖u1( · , t)− u2( · , t)‖L1(Rn) ≤ ‖u1( · , k∆t1)− u2( · , k∆t1)‖L1(Rn)

+ ‖u1( · , t)− u1( · , k∆t1)‖L1(Rn)

+ ‖u2( · , t)− u2( · , k∆t1)‖L1(Rn)
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14 Chapter 3. Monotone Finite Difference Methods

and

‖u1( · , t)− u1( · , k∆t1)‖L1(Rn)

≤ (t− k∆t1) sup ‖∂tu1( · , t)‖L1(Rn) sup over k∆t1 ≤ t < (k + 1)∆t1

≤ ∆t1
2

hn1
∆t1
‖Uk+1 − Uk‖L1(Zn) by (3) of Lemma 3.1

≤ hn1
2

L∆t1
h1
‖Uk‖BV(Zn) by (4) of Theorem 2.1

≤ hn−1
1

2
L∆t1‖U0‖BV(Zn) by (5) of Theorem 2.1 and induction

≤ L∆t1
2
‖u0‖BV(Rn) by (3) of Lemma 3.2.

If (k+ 1
2 )∆t1 ≤ t < (k+ 1)∆t1, then the same bound holds by comparison

with u1(x, (k + 1)∆t1). Because k∆t1 is a multiple of ∆t2, a similar ar-
gument shows that ‖u2( · , t)− u2( · , k∆t1)‖L1(Rn) is bounded in the same
way. Thus,

(4.1) sup
0≤t≤T

‖u1( · , t)− u2( · , t)‖L1(Rn) ≤

sup
0≤k∆t1≤T

‖u1( · , k∆t1)− u2( · , k∆t1)‖L1(Rn) + L∆t1‖u0‖BV(Rn),

and we need show only that the right hand side tends to zero as h1 (and
hence h2) tends to zero.

For the rest of the section, we redefine u1 by

u1(x, t) :=
∑
ν∈Zn

Ukν χ
h1
ν (x) for k∆t1 ≤ t < (k + 1)∆t1.

We similarly redefine u2 to be constant in time for k∆t2 ≤ t < (k+ 1)∆t2.
This new way of “filling the gaps” between time steps does not change the
values of u1(x, k∆t1) or u2(x, k∆t2), so bounding the right side of (4.1) for
these new functions will give us the result we desire. We propose to bound
the relevant quantities in Theorem 1.1 of Chapter 2 with u = u1, v = u2,
and T = K∆t1.

We bound the difference of the initial values by

‖u1( · , 0)− u2( · , 0)‖L1(Rn)

≤ ‖u1( · , 0)− u0‖L1(Rn) + ‖u2( · , 0)− u0‖L1(Rn)

≤ (h1 + h2)‖u0‖BV(Rn),

by (3) of Lemma 3.2. We always have the bound

ω1(w, ε) ≤ ε ‖w‖BV(Rn),

so

(4.2) ω1(u1( · , 0), ε) ≤ ε ‖u1( · , 0)‖BV(Rn) ≤ ε ‖u0‖BV(Rn)
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by (2) from Lemmas 3.1 and 3.2. One combines (5) from Theorem 2.1, (2)
from Lemma 3.1, and an argument by induction to show that

‖u1( · , T )‖BV(Rn) ≤ ‖u1( · , 0)‖BV(Rn).

Therefore, we can bound ω(u1( · , T ), ε) by ε ‖u0‖BV(Rn). The same ar-
guments show that both ω(u2( · , 0), ε) and ω(u2( · , T ), ε) are bounded by
ε ‖u0‖BV(Rn).

We next set out to bound

sup
0<t<ε0

‖u1( · , 0)− u1( · , t)‖L1(Rn).

Note that u1 is piecewise constant in time, with jumps only at the points
k∆t1, and that it is right continuous. There are bε0/∆t1c such jumps for
0 ≤ t < ε0, where bsc denotes the greatest integer less than or equal to
s. Therefore, Inequalities (4) and (5) of Theorem 2.1, together with our
typical generous application of Lemmas 3.1 and 3.2, show that

sup
0<t<ε0

‖u1( · , 0)− u1( · , t)‖L1(Rn) ≤
⌊
ε0

∆t1

⌋
L∆t1‖u0‖BV(Rn)

≤ ε0L‖u0‖BV(Rn).

It is a little more delicate to bound

sup
T−ε0<t<T

‖u1( · , T )− u1( · , t)‖L1(Rn).

The number of jumps in u1 between T − ε0 and T is dε0/∆t1e, where dse is
the smallest integer greater than or equal to s. This is because there is a
jump right at t = T ; u1 is continuous from above, not from below, in time.
Therefore

sup
T−ε0<t<T

‖u1( · , T )− u1( · , t)‖L1(Rn) ≤
⌈
ε0

∆t1

⌉
L∆t1‖u0‖BV(Rn)

≤ (ε0 + ∆t1)L‖u0‖BV(Rn).

The above arguments and Theorem 1.1 of Chapter 2 imply that

(4.3)

‖u1( · , T )− u2( · , T )‖L1(Rn)

≤ [h1 + h2 + 2ε+ 2ε0L+
1

2
(∆t1 + ∆t2)L]‖u0‖BV(Rn)

+ Λε0ε (u1, u2, T ) + Λε0ε (u2, u1, T ).

The only thing left to do is show how Λε0ε (u1, u2, T ) is bounded in terms of
h1, ∆t1, ε, and ε0.

In order to bound Λε0ε (u1, u2, T ), we shall show that u1 satisfies a nu-
merical entropy condition, the form of which was first derived by Crandall

and Majda. We used their argument in “deriving” the entropy condition
from our observations about smooth solutions of (0.1) in Chapter 1; we
repeat it here.
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16 Chapter 3. Monotone Finite Difference Methods

Let us denote by Ukν the discrete solution associated with u1 at time
k∆t1. Let c ∈ R, and define V kν := Ukν ∨ c for all ν ∈ Zn. We calculate
V k+1 as the solution of the Engquist-Osher scheme with initial data V k:

(4.4) ∆+
t (V k)ν +

n∑
j=1

[
∆−j (f+

j (V k))ν + ∆+
j (f−j (V k))ν

]
= 0, ν ∈ Zn.

We note that V kν = Ukν ∨ c is greater than both Ukν and c, so by (1) from
Theorem 2.1, we have that V k+1

ν ≥ Uk+1
ν ∨ c for all ν ∈ Zn. We substitute

these expressions into (4.4) to see that for all ν ∈ Zn,

(4.5) ∆+
t (Uk ∨ c)ν +

n∑
j=1

[
∆−j (f+

j (Uk ∨ c))ν + ∆+
j (f−j (Uk ∨ c))ν

]
≤ 0.

Similarly, by setting V kν = Ukν ∧ c, we find that for all ν ∈ Zn,

(4.6) ∆+
t (Uk ∧ c)ν +

n∑
j=1

[
∆−j (f+

j (Uk ∧ c))ν + ∆+
j (f−j (Uk ∧ c))ν

]
≥ 0.

Note that Ukν ∨ c− Ukν ∧ c = |Ukν − c|. To make our notation a little more
concise, we define

F̄j(U
k
ν , c) := fj(U

k
ν ∨ c)− fj(Ukν ∧ c) = sgn(Ukν − c)(fj(Ukν )− fj(c))

and

F̃j(U
k, c)ν := f−j (Ukν+ej ∨ c) + f+

j (Ukν ∨ c)− f−j (Ukν+ej ∧ c)− f
+
j (Ukν ∧ c)

= sgn(Ukν+ej − c)(f
−
j (Ukν+ej)− f

−
j (c))

+ sgn(Ukν − c)(f+
j (Ukν )− f+

j (c))

The difference of (4.5) and (4.6) can now be expressed as

(4.7) ∆+
t |Uk − c|ν +

n∑
j=1

∆−j F̃j(U
k, c)ν ≤ 0

for all ν ∈ Zn and k ≥ 0. This is our numerical entropy condition.
If we let u1 ≡ u1(x, t), u2 ≡ u2(x′, t′), h ≡ h1, and ∆t ≡ ∆t1, then

Λε0ε (u1, u2,t) = −
∫ T

0

∫
Rn

∫ T

0

∫
Rn
|u1 − u2|ωt(x− x′, t− t′)

+
n∑
j=1

F̄j(u1, u2)ωxj (x− x′, t− t′) dx dt dx′dt′

+

∫ T

0

∫
Rn

∫
Rn
|u1(x, T )− u2(x′, t′)|ω(x− x′, T − t′) dx dx′dt′

−
∫ T

0

∫
Rn

∫
Rn
|u1(x, 0)− u2(x′, t′)|ω(x− x′, 0− t′) dx dx′dt′.
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§4. Convergence of the Engquist-Osher Method 17

Because u1 − u2 is piecewise constant in x and t, the time derivative can
be integrated to yield

−
∫ T

0

∫
Rn

∫ T

0

∫
Rn
|u1 − u2|ωt(x− x′, t− t′) dx dt dx′dt′

= −
K−1∑
k=0

∫ T

0

∫
Rn

∆t
∑
ν∈Zn

∫
Iν

|Ukν − u2|∆+
t ω(x− x′, tk − t′) dx dx′dt′

=
K−1∑
k=0

∫ T

0

∫
Rn

∆t
∑
ν∈Zn

∫
Iν

∆+
t |Ukν − u2|ω(x− x′, tk+1 − t′) dx dx′dt′

−
∫ T

0

∫
Rn

∑
ν∈Zn

∫
Iν

|UKν − u2|ω(x− x′, T − t′) dx dx′dt′

+

∫ T

0

∫
Rn

∑
ν∈Zn

∫
Iν

|U0
ν − u2|ω(x− x′, 0− t′) dx dx′dt′

where tk := k∆t and Iν is defined to be the hypercube [ν, ν + 1]h. Now,∫ T

0

∫
Rn

∫
Rn
|u1(x, T )− u2(x′, t′)|ω(x− x′, T − t′) dx dx′dt′

=

∫ T

0

∫
Rn

∑
ν∈Zn

∫
Iν

|UKν − u2|ω(x− x′, T − t′) dx dx′dt′

and∫ T

0

∫
Rn

∫
Rn
|u1(x, 0)− u2(x′, t′)|ω(x− x′, 0− t′) dx dx′dt′

=

∫ T

0

∫
Rn

∑
ν∈Zn

∫
Iν

|U0
ν − u2|ω(x− x′, 0− t′) dx dx′dt′,

so that Λε0ε (u1, u2, T ) equals∫ T

0

∫
Rn

K−1∑
k=0

∆t
∑
ν∈Zn

∫
Iν

∆+
t |Ukν − u2|ω(x− x′, tk+1 − t′) dx dx′dt′

−
∫ T

0

∫
Rn

∫ T

0

∫
Rn

n∑
j=1

F̄j(u1, u2)ωxj (x− x′, t− t′) dx dt dx′dt′.

We now hope to transform the spatial derivatives into something man-
ageable. Let’s fix j and analyze one term alone:

−
∫ T

0

∫
Rn

K−1∑
k=0

∫ tk+1

tk

∑
ν∈Zn

∫
Iν

F̄j(U
k
ν , u2)ωxj(x− x′, t− t′) dx dt dx′dt′.
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18 Chapter 3. Monotone Finite Difference Methods

We’ll first substitute F̃j(U
k, u2)ν for F̄j(U

k
ν , u2); on each interval Iν we

incur an error of

(4.8) fj(U
k
ν ∨ u2)− fj(Ukν ∧ u2)

− [f−j (Ukν+ej ∨ u2) + f+
j (Ukν ∨ u2)− f−j (Ukν+ej ∧ u2)− f+

j (Ukν ∧ u2)].

We’ve defined f+
j and f−j so that fj = f+

j + f−j , so we can rewrite (4.8) as

f−j (Ukν ∨ u2)− f−j (Ukν+ej ∨ u2)− f−j (Ukν ∧ u2) + f−j (Ukν+ej ∧ u2).

The above expression is bounded by

|f−j (Ukν+ej )− f
−
j (Ukν )|,

as can be seen by examining the cases u2 ≤ min(Ukν+ej , U
k
ν ), u2 ≥

max(Ukν+ej , U
k
ν ), and min(Ukν+ej , U

k
ν ) ≤ u2 ≤ max(Ukν+ej , U

k
ν ). In total,

we have incurred an error by this substitution of at most∫ T

0

∫
Rn

K−1∑
k=0

∫ tk+1

tk

∑
ν∈Zn

∫
Iν

|f−j (Ukν+ej )−f
−
j (Ukν )| |ωxj(x−x′, t−t′)| dx dt dx′dt′.

The only factor in the integrand that now depends on x′ and t′ is |ωxj (x−
x′, t− t′)| = |ωx′j (x − x

′, t− t′)|. When we integrate with respect to t′ we

get a factor of ∫ T

0

ηε0(t− t′) dt′ ≤ 1;

the integral equals 1 except possibly when t < ε0 or t > T − ε0. Integrating
with respect to each of the variables x′i, i 6= j, yields additional factors of
1; however, integrating with respect to x′j gives a factor of

1

ε
‖η′‖L1(R),

because of the scaling ηε(x
′
j) := η(x′j/ε)/ε. The terms involving x and t are

constant for x ∈ Iν and tk ≤ t < tk+1, so integrating with respect to x and
t on each space time interval Iν × [tk, tk+1] gives a factor of hn∆t. So, we
can bound the sum of the errors incurred in each coordinate direction by

hn∆t

ε
‖η′‖L1(R)

K−1∑
k=0

n∑
j=1

∑
ν∈Zn

|f−j (Ukν+ej)− f
−
j (Ukν )|

Because |f−j (ξ)−f−j (ζ)| ≤M |ξ−ζ|, where M ≤ L and because of (5) from

Theorem 2.1 and (2) of Lemma 3.2 and Lemma 3.1, the the error incurred
by this substitution is bounded by

hn∆t

ε
‖η′‖L1(R)KM‖U0‖BV(Zn) ≤

hTM

ε
‖η′‖L1(R)‖u0‖BV(Rn).

Note that there is no error if all the functions fj are nondecreasing.
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§4. Convergence of the Engquist-Osher Method 19

ATTENTION: BIG NOTATIONAL SIMPLICATION AHEAD!

The notation in n dimensions for what I want to do next is too arcane
to be useful, so for this next estimate (which is the main estimate), I shall
restrict attention to one space dimension. In n dimensions one performs
the same calculation in each coordinate direction separately.

In one dimension we shall work with

−
∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

F̃ (Uki , u2)ωx(x− x′, t− t′) dx dt dx′dt′.

On each interval Ii, F̃ (Uki , u2) is constant in x, so we can integrate ωx to
get

−
∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

F̃ (Uki , u2)ωx(x− x′, t− t′) dx dt dx′dt′

= −
∫ T

0

∫
R

K−1∑
k=0

h

∫ tk+1

tk

∑
i∈Z

F̃ (Uki , u2) ∆+
x ω(xi − x′, t− t′) dt dx′dt′

=

∫ T

0

∫
R

K−1∑
k=0

h

∫ tk+1

tk

∑
i∈Z

∆+
x F̃ (Uki , u2)ω(xi+1 − x′, t− t′) dt dx′dt′

=

∫ T

0

∫
R

K−1∑
k=0

h

∫ tk+1

tk

∑
i∈Z

∆−x F̃ (Uki , u2)ω(xi − x′, t− t′) dt dx′dt′

(Summation by parts does not have a boundary term because ω(x−x′, t−t′)
has bounded support in x for each fixed x′, t, and t′.) So, with an error of
at most hTM

ε
‖η′‖L1(R)‖u0‖BV(R), Λε0ε (u1, u2, T ) is equal to∫ T

0

∫
R

K−1∑
k=0

∆t
∑
i∈Z

∫
Ii

∆+
t |Uki − u2|ω(x− x′, tk+1 − t′) dx dx′dt′

+

∫ T

0

∫
R
h

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∆−x F̃ (Uki , u2)ω(xi − x′, t− t′) dt dx′dt′

=

∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

∆+
t |Uki − u2|ω(x− x′, tk+1 − t′) dx dt dx′dt′

+

∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

∆−x F̃ (Uki , u2)ω(xi − x′, t− t′) dx dt dx′dt′.

If ω were evaluated at the same arguments in each term above, then
Λε0ε (u1, u2, T ) would be no greater than zero and all would be well; for (4.7)
declares that the terms involving Uki are nonpositive for all values of i, k,
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20 Chapter 3. Monotone Finite Difference Methods

and u2(x′, t′). That is,

∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

[∆+
t |Uki − u2|+ ∆−x F̃ (Uki , u2)]ω(x− x′, t− t′) dxdt dx′dt′ ≤ 0.

Now |∆+
t |Uki − u2| | ≤ |∆+

t U
k
i | so the error incurred by substituting ω(x−

x′, t− t′) for ω(x− x′, tk+1 − t′) is bounded by∫ T

0

∫
R

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

|∆+
t U

k
i | |ω(x−x′, t−t′)−ω(x−x′, tk+1−t′)| dx dt dx′dt′.

Only the terms involving ω, which can be written as

ω(x−x′, t− t′)−ω(x−x′, tk+1− t′) = ηε(x−x′)[ηε0(t− t′)−ηε0(tk+1− t′)],

depend in any way on x′ and t′. When we integrate with respect to x′ we
get a factor of 1; integrating with respect to t′ yields∫

R
|ηε0(t− t′)− ηε0(tk+1 − t′)| dt′ ≤

∫
R

∫ tk+1−t′

t−t′
|η′ε0(ξ)| dξ dt′

=
(tk+1 − t)

ε0
‖η′‖L1(R).

Therefore, the error in the time term is bounded by

1

ε0
‖η′‖L1(R)

K−1∑
k=0

∫ tk+1

tk

∑
i∈Z

∫
Ii

|∆+
t U

k
i | (tk+1 − t) dx dt

=
∆t2h

2ε0
‖η′‖L1(R)

K−1∑
k=0

∑
i∈Z
|∆+

t U
k
i |

≤ LK∆t2

2ε0
‖η′‖L1(R)‖U0‖BV(Z)

≤ LT∆t

2ε0
‖η′‖L1(R)‖u0‖BV(R).

For the spatial term, we have that |∆−x F̃ (Uki , u2)| ≤ |∆−x f t(Uki )|. Arguing
in the same way as for the time term, we can see that substituting ω(x−
x′, t− t′) for ω(xi − x′, t− t′) introduces an error of at most

∆th2

2ε
‖η′‖L1(R)

K−1∑
k=0

∑
i∈Z
|∆−x f t(Uki )| ≤ LK∆th

2ε
‖η′‖L1(R)‖U0‖BV(Z)

≤ LTh

2ε
‖η′‖L1(R)‖u0‖BV(R).

In several space dimensions exactly the same arguments are used, only
now they are repeated in each of the n spatial dimensions. The same bound
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§4. Convergence of the Engquist-Osher Method 21

results:

Λε0ε (u1, u2, T ) ≤
[
LT∆t1

2ε0
+
LTh1

2ε
+
MTh1

ε

]
‖η′‖L1(R)‖u0‖BV(Rn).

This bound does not depend in any way on the fact that u2 is another
approximation generated by the Engquist-Osher scheme. In other words,
for all measurable, locally integrable v(x′, t′) we have

(4.9) Λε0ε (u1, v, T ) ≤
[
LT∆t1

2ε0
+
LTh1

2ε
+
MTh1

ε

]
‖η′‖L1(R)‖u0‖BV(Rn).

We can determine η as we choose, as long as it satisfies our hypotheses.
By letting η → 1

2χ[−1,1], we have ‖η′‖L1(R) → 1. Therefore, we can use
(4.1), (4.3), and (4.9) for u1 and u2 to see that for any 0 ≤ t ≤ T

(4.10)

‖u1( · , t)− u2( · , t)‖L1(Rn)

≤ [h1 + h2 + 2ε+ 2ε0L+ (
3

2
∆t1 +

1

2
∆t2)L]‖u0‖BV(Rn)

+

[
LT∆t1

2ε0
+
LTh1

2ε
+
MTh1

ε

]
‖u0‖BV(Rn)

+

[
LT∆t2

2ε0
+
LTh2

2ε
+
MTh2

ε

]
‖u0‖BV(Rn)

At this point our purpose is to show that the sequence of numerical ap-
proximations is Cauchy in C([0, T ], L1(Rn)). We just note that h2 ≤ h1,
∆t2 ≤ ∆t1, and if we set ε = ε0 = (h1T )1/2 we have that

‖u1( · , T )− u2( · , T )‖L1(Rn) ≤ C(h1 + ∆t1 + (h1T )1/2)‖u0‖BV(Rn).

Since h1 ∈ {2−M}, this shows that, indeed, the approximations generated
by the Engquist-Osher scheme are Cauchy in C([0, T ], L1(Rn)) for any fixed
T > 0. Therefore, they converge in C([0, T ], L1(Rn)) to a function u(x, t).
By letting h1 and ∆t1 tend to zero in (4.9), we can conclude by the Lebesgue
Dominated Convergence theorem that for fixed ε and ε0 and for all bounded
v we have

(4.11) Λε0ε (u, v, T ) ≤ 0.

By Kuznetsov’s theorem, there is at most one function in C([0, T ], L1(Rn))
that satisfies (4.11), and it is the limit of our numerical approximations.

We shall now show that u satisfies the entropy condition. From our
numerical entropy condition (4.7), we know that for all c ∈ R, all T =
K∆t > 0, and all φ ∈ C1

0 (Rn+1) with φ ≥ 0, we have

0 ≥
K−1∑
k=0

∫ tk+1

tk

∑
ν∈Zn

∫
Iν

[∆+
t |Ukν − c|+

n∑
j=1

∆−j F̃j(U
k
ν , c)]φ(x, t) dx dt
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22 Chapter 3. Monotone Finite Difference Methods

= −
K−1∑
k=0

∫ tk+1

tk

∑
ν∈Zn

∫
Iν

|Uk+1
ν −c|∆+

t φ(x, t)+
n∑
j=1

F̃j(U
k
ν−ej , c)∆

−
j φ(x, t) dx dt

+
∑
ν∈Zn

∫
Iν

|UKν − c|φ(x, T ) dx−
∑
ν∈Zn

∫
Iν

|U0
ν − c|φ(x, 0) dx,

by summation by parts. As h and ∆t tend to zero, uh → u, |uh−c| → |u−c|,
and F̃j(u

h, c)→ F̄j(u, c) in C([0, t], L1(R)), while ∆+
t φ(x, t)→ φt(x, t) and

∆−j φ(x, t) → φxj (x, t) boundedly in Rn+1. As u is uniformly bounded, by
the Lebesgue Dominated Convergence theorem we conclude that

−
∫ T

0

∫
Rn
|u(x, t)− c|φt(x, t) +

n∑
j=1

F̄j(u(x, t), c)φxj(x, t) dx dt

+

∫
Rn
|u(x, T )− c|φ(x, T ) dx−

∫
Rn
|u(x, 0)− c|φ(x, 0) dx ≤ 0,

or Λ(u, c, φ, T ) ≤ 0. Thus, we can conclude that u is the unique entropy
solution of (0.1).

§5. Properties of the Entropy Solution

In this section we derive the properties of entropy solutions of (0.1) that
we expected to find on the basis of our heuristic calculations with smooth
solutions and the viscosity approximation in Chapter 1.

Theorem 5.1. Assume F : R → Rn is Lipschitz continuous, that
there exists a constant L such that supξ

∑n
j=1 |F ′j(ξ)| ≤ L, and that that

u0 and v0 are bounded and in BV(Rn). Then there exist unique functions
u(x, t) and v(x, t) in C([0, T ], L1(Rn)) that are weak entropy solutions of
(0.1) with initial data u0 and v0, respectively. Furthermore, we have:

(1) If u0(x) ≥ v0(x) a.e. then u(x, t) ≥ v(x, t) a.e.
(2) For all t > 0, ‖u(x, t)− v(x, t)‖L1(Rn) ≤ ‖u0(x)− v0(x)‖L1(Rn).
(3) For all t > 0, ess supx∈Rn u(x, t) ≤ ess supx∈Rn u0(x) and

ess infx∈Rn u(x, t) ≥ ess infx∈Rn u0(x).
(4) For all t, t′ > 0, ‖u( · , t)− u( · , t′)‖L1(Rn) ≤ L|t− t′|‖u0‖BV(Rn).
(5) For all t > 0, ‖u( · , t)‖BV(Rn) ≤ ‖u0‖BV(Rn).

Finally, for any t > 0, u(x, t) for |x| ≤ R depends only on u0(x) for
|x| ≤ R+ Lt.

Proof. We have shown that the limits in C([0, T ], L1(Rn)) of uh and
vh are entropy weak solutions of (0.1). That u and v are unique follows from
Theorem 1.1 of Chapter 2. Our numerical approximations uh satisfy (1),
(2), (3), and (4), so u and v, the limit in C([0, T ], L1(Rn)) and pointwise
almost everywhere of uh and vh as h → 0, also satisfy these properties.
Property (5) follows immediately from Property (2) with v0(x) := u0(x +
hej), j = 1, . . . , n. Finally, if R = Nh, then uh(x, k∆t) for |x| ≤ R depends
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§6. Error Bounds for Monotone Finite Difference Methods 23

on uh(x, (k − 1)∆t) for |x| ≤ R + h ≤ R + L∆t. The final remark follows
by induction.

§6. Error Bounds for Monotone Finite Difference Methods

In this section we shall derive rather sharp error bounds for the discrete
(∆t > 0) and the semidiscrete (the limit as ∆t → 0) Engquist-Osher
schemes. We also remark about error bounds for general conservative,
consistent, monotone finite difference methods for (0.1). We give an exam-
ple where we estimate (rather than bound) the error in the Engquist-Osher
scheme, and show that our bounds are close to the estimate.

To bound the norm of the error u− uh we can take the limit of (4.10)
as h2 and ∆t2 tend to zero. This shows that
(6.1)

‖uh( · , T )− u( · , T )‖L1(Rn) ≤ [h+ 2ε+ 2ε0L+
3

2
∆tL]‖u0‖BV(Rn)

+

[
L∆tT

2ε0
+
LhT

2ε
+
MhT

ε

]
‖u0‖BV(Rn).

We wish to choose ε and ε0 to minimize this bound on the error. Any
expression of the form aε+ b/ε is minimized when ε =

√
b/a; the minimum

value is 2
√
ab. Therefore, the minimum value of the right side of (6.1) is

(6.2)

[
h+

3

2
∆t+ 2

√
L2∆tT + 2

√
(L+ 2M)hT

]
‖u0‖BV(Rn).

This is our final error bound for the discrete Engquist-Osher scheme.
Note that as ∆t increases our error bound (6.2) also increases. (Re-

member, though, that our CFL condition requires that L∆t ≤ h.) We can
imagine a so-called semi-discrete scheme, where the values at each point
ν ∈ Zn are not discrete values Ukν , where k = 0, 1, . . . , but are defined for
all t > 0, Uν(t). This corresponds to letting ∆t→ 0 in the definition of the
scheme:

dUν(t)

dt
+

n∑
j=1

[∆−j f
+
j (Uν(t)) + ∆+

j f
−
j (Uν(t))] = 0, ν ∈ Zn.

We can set ∆t = 0 in (6.2) to find an error bound for the semi-discrete
method:

(6.3) ‖uh( · , T )− u( · , T )‖L1(Rn) ≤
[
h+ 2

√
(L+ 2M)ht

]
‖u0‖BV(Rn).

We claimed at the beginning of this chapter that the analysis for other
conservative, consistent, monotone schemes will be so similar as to not
warrant repeating. Here we make good on this claim. If our scheme is of
the form

∆+
t (Uk)i +

F (Uki−N , . . .U
k
i+N+1)− F (Uki−N−1, . . .U

k
i+N )

h
= 0, i ∈ Z,
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24 Chapter 3. Monotone Finite Difference Methods

then the analysis for the Engquist-Osher scheme goes through if we can
find an L such that if L∆t/h ≤ 1 then the scheme is monotone and (4)
of Theorem 2.1 holds. The constant M is taken so that the bound on
F̃ (Ukν , c)− F̄ (Ukν , c) holds. In general, we can take

L =
N+1∑
i=−N

∣∣∣∣∣∂F (Uk−N , . . . , U
k
N+1)

∂Uki

∣∣∣∣∣
and

M =
N+1∑
i=−N

|i|
∣∣∣∣∣∂F (Uk−N , . . . , U

k
N+1)

∂Uki

∣∣∣∣∣ .
Note that this gives us the correct bounds for the Engquist-Osher scheme.

It is natural to ask if our O((hT )1/2 + (∆tT )1/2) error bound is sharp,
i.e., if the error in the numerical scheme is actually of this order. For the
simple linear problem

(6.4)

ut + ux = 0, x ∈ R, t > 0,

u(x, 0) =

{
0, x ≤ 0,

1, x > 0,
x ∈ R,

we can calculate an asymptotic expression for the error in the Engquist-
Osher scheme. Of course, the solution of (6.4) is simply u(x, t) = u0(x− t).
For this problem the numerical method is given by

U0
i =

{
0, i < 0,

1, i ≥ 0,
i ∈ Z, and

Uk+1
i = Uki −

∆t

h
(Uki − Uki−1)

=
∆t

h
Uki−1 +

(
1− ∆t

h

)
Uki , i ∈ Z, k ≥ 0.

We claim that Uki can be given the following probabilistic interpretation.
Consider an off-balance coin with a probability p := ∆t/h of coming up
heads and q := 1 − p = 1 − ∆t/h of coming up tails, and let Xk be the
random variable that is the number of heads that come up in k tosses of
our coin. Then if we define V ki := Prob{Xk ≤ i} of our funny coin, we have

V 0
i =

{
0, i < 0,

1, i ≥ 0,
i ∈ Z,
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§6. Error Bounds for Monotone Finite Difference Methods 25

while

V k+1
i = Prob{Xk+1 ≤ i}

= Prob{Xk ≤ i− 1}+ Prob{Xk = i} × Prob{a tail}

= V ki−1 + (V ki − V ki−1)
(
1− ∆t

h

)
=

∆t

h
V ki−1 +

(
1− ∆t

h

)
V ki ,

for k ≥ 0 and i ∈ Z. Thus Uki and V ki satisfy the same initial condition
and the same recurrence relation, so Uki = V ki for all k ≥ 0 and i ∈ Z. We
let T = K∆t. By the binomial theorem,

UKi =

min(i,K)∑
j=0

(
K

j

)
pj(1− p)K−j ,

and Xk has mean

µ = pK =
∆t

h
K =

T

h

and variance

σ2 = Kp(1− p) =
T

h

(
1− ∆t

h

)
.

The Central Limit Theorem says that

Xk − µ
σ

−→ N(0, 1),

where N(0, 1) denotes the normally distributed random variable with dis-
tribution

1√
2π
e−x

2/2.

If, as before, we set uh(x, T ) :=
∑

i∈Z U
K
i χIi(x), then the error in the

numerical method is

1√
h
‖u( · , T )− uh( · , T )‖L1(R)

=
1√
h

∫ ∞
−∞
|u(x, T )− uh(x, T )| dx

=
1√
h

∫ T

−∞
uh(x, T ) dx− 1√

h

∫ ∞
T

(1− uh(x, T )) dx

−→ 2σ
√
h√

2π

∫ 0

−∞

∫ x

−∞
e−ξ

2/2 dξ dx
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26 Chapter 3. Monotone Finite Difference Methods

as h → 0. The last integral has value 1 (change the order of integration),
so we have that asymptotically

‖u( · , T )− uh( · , T )‖L1(R) ∼
2hσ√

2π

=
( 2

π

)1/2
h
(T
h

)1/2(
1− ∆t

h

)1/2
=
( 2

π

)1/2
(hT )1/2

(
1− ∆t

h

)1/2
as h tends to zero.

Thus, the error in our approximation is ≥ C(ht)1/2, so our error bound
is the right order. The error is zero when ∆t = h; this is because the
numerical and real discontinuities move exactly one space interval in each
time step.

For the Engquist-Osher method applied to (6.4), we have that L = 1,
M = 0 (f− = 0), and ‖u0‖BV(R) = 1, so if we ignore terms of order ∆t and
h, our bound is

‖u( · , T )− uh( · , T )‖L1(R) ≤ 2
√

∆tT + 2
√
hT

= 2
√
ht

(
1 +

(∆t

h

)1/2)
.

So if ∆t is much less than 2h, our bound is no more than 3 times as large
as the real error. This is fairly sharp, as error bounds go!

§7. Existence and Error Bounds without Bounded Variation

Existence and uniqueness of entropy weak solutions of (0.1) for initial data
u0 that does not have bounded variation, together with error bounds for
numerical methods applied to such solutions, can easily be derived. We
shall do the first here with a limiting argument; the second result can be
derived by assuming that ω1(u0, ε) ≤ Cεα for some α ≤ 1 and deriving the
other bounds where we have previously used the bounded variation of u0.

Given any initial data u0 ∈ L1(Rn) and an ε > 0 we can calculate the
smoothed initial data

uε0 = u0 ∗ ηε,
where ηε is our standard molifier introduced in Chapter 2. Then one can
derive

‖uε0‖BV(Rn) ≤
C

ε
‖u0‖L1(Rn),

and
‖u0 − uε0‖L1(Rn) ≤ Cω1(u0, ε) −→ 0

as ε → 0. If we denote by uε1 and uε2 the entropy weak solutions of (0.1)
with initial data uε10 and uε20 , respectively, then for all T > 0 we have

‖uε1( · , T )− uε2( · , T )‖L1(Rn) ≤ ‖uε10 − uε20 ‖L1(Rn),
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§7. Existence and Error Bounds without Bounded Variation 27

so the set {uε} is Cauchy in C([0,∞), L1(Rn)). Therefore, the sequence
converges to a function u ∈ C([0,∞), L1(Rn)); it is this u that we consider
to be the entropy weak solution of (0.1) with initial data u0. Because each
of the functions uε satisfies the weak entropy condition, u also satisfies the
weak entropy condition; u also satisfies

ω1(u, ε) ≤ ω1(u0, ε)

for all ε > 0. Thus, Kuznetsov’s theorem shows that u is unique.
I’ll have to get around to doing the error estimates for numerical meth-

ods for non-BV data later.

TO BE CONTINUED
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Chapter 4

Godunov’s Method and the Random Choice Method

In this chapter we discuss Godunov’s method and Glimm’s random choice
method, two numerical methods that are of great historical importance
both computationally and theoretically, mainly for their applications to
hyperbolic systems of nonlinear conservation laws. Both schemes are based
on the solution of the Riemann problem, which we discuss in §1 for the
scalar problem in one space dimension. In §2 we present a corollary of
Theorem 1.2 in Chapter 2, proved originally by Kuznetsov. We use this
corollary to provide, in §3, error bounds for the random choice method
applied to scalar problems, and then, in §4, error bounds for Godunov’s
method.

§1. The Riemann Problem

In this section we consider the solution of the so-called Riemann problem

(1.1)

ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) =

{
uL, x ≤ 0,

uR, x > 0,
x ∈ R.

In one-dimensional gas dynamics this problem arises when a gas is contained
in a tube with an impermeable membrane at the point x = 0; the gas has
constant density and pressure on each side of the membrane. At time t = 0,
the membrane is removed and we study the evolution of the system. Our
problem is much simpler, as we consider only the scalar equation.

Necessary and sufficient conditions were given in Chapter 1 for a piece-
wise smooth function u to be a solution to the scalar conservation law; we
shall construct the solution of (1.1) from this class of functions. Let us
assume first that uL > uR and that f ′(u) is continuous and in BV(R). We
consider the set S, defined to be the convex hull of the set

{(u, v) | v ≤ f(u), uR ≤ u ≤ uL},

and the function f̃(u) := sup(u,v)∈S v. Note that as u declines from uL to

uR, f̃ ′(u) increases monotonically, with f̃ ′ constant on intervals where f̃ is

linear. Under our assumptions on f , f̃ ′ is onto the interval [f̃ ′(uL), f̃ ′(uR)].
We claim that if u(x, t) solves (1.1), then u(x, t) := u(x/t, 1) :=

(f̃ ′)−1(x/t). (Wherever f̃ ′ is constant, u has a shock, and we consider
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2 Chapter 4. Godunov’s Method and the Random Choice Method

u to be multivalued.) In other words, x/t = f̃ ′(u). In an interval where u

is smooth, so that f̃ ′′ is strictly negative, then f̃(u) = f(u) and

ut + f(u)x =
1

f ′′((f ′)−1(x
t
))

(− x
t2

) + f ′(u)
1

f ′′((f ′)−1(x
t
))

(
1

t
) = 0.

Wherever f̃(u) ≥ f(u) is linear on a maximal interval (u1, u2), then there
is a discontinuity in the solution u(x, t) between u = u1 and u = u2 at the

location x/t = f̃ ′(u) = (f(u1) − f(u2))/(u1 − u2); one sees that both the
Rankine-Hugoniot condition and the entropy condition are satisfied for this
shock, since the line joining the points (u1, f(u1)) and (u2, f(u2)), is, by

the definition of f̃ , above the graph of f(u).

When uL < uR, we define S to be the convex hull of the set

{(u, v) | v ≥ f(u), uL ≤ u ≤ uR},

and the function f̃(u) := inf(u,v)∈S v. The same construction as before now

works to define u(x, t) by x/t = f̃ ′(u).

We shall also want to solve the Riemann problem in the case when f(u)
is a continuous, piecewise linear function in u. By the above construction,
f̃ is always piecewise linear, but it is not C1. Let us consider when f̃
has discontinuities in its first derivative at the points uR = u0 < u1 <

· · · < uN = uL. Then, we say that u(x, t) = v for x/t ∈ [f̃ ′(v−), f̃ ′(v+)].
We find that u is now piecewise constant, with constant states u0, . . . , uN ,
separated by discontinuities at the points x/t = f̃ ′(u−k ), k = 1, . . . , N .
Where u is constant, it obviously solves (1.1), and one can see trivially that
the discontinuities satisfy the Rankine-Hugoniot condition and the entropy
condition. One can obviously make the same construction when uL < uR.
Therefore, this is the solution of the Riemann problem for any piecewise
linear flux f .

§2. A Corollary of Kuznetsov’s Theorem

There are many important numerical methods based on the solution of the
Riemann problem. In this section we discuss the random choice method for
the scalar hyperbolic conservation law

(2.1)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

Glimm introduced and used this scheme to prove the existence of global
weak solutions to hyperbolic systems of conservation laws. In the next
section we discuss Godunov’s method, one of the first successful numerical
methods for hyperbolic conservation laws.

To analyze versions of the random choice method and Godunov’s
method, we prove the following lemma, due to Kuznetsov.
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§2. A Corollary of Kuznetsov’s Theorem 3

Lemma 2.1. If u0 is in BV(R), f is Lipschitz continuous, and u
is the entropy weak solution of (2.1) on [0, T ], and v is a function that
is right continuous in t, uniformly bounded in BV(R) for t > 0, and an
entropy weak solution of vt + f(v)x = 0 in each strip R × [tk, tk+1) for
0 = t0 < t1 < · · · < tK = T , then

(2.2) ‖v( · , T − 0)− u( · , T )‖L1(R) ≤ ‖u0 − v( · , 0)‖L1(R) + 2ε‖u0‖BV(R)

+
K−1∑
k=1

[ρε(v(tk), u(tk))− ρε(v(tk − 0), u(tk))],

where ρε(w, z) =
∫
R
∫
R

1
ε
η(x−y

ε
)|w(x)−z(y)| dx dy, and η is any nonnegative

smooth function with support in [−1, 1], integral one, and η(−x) = η(x).

Proof. We shall use Theorem 1.2 of Chapter 2 and a bound on
Λε0ε (v, u, T − 0) to bound the difference ‖v( · , T − 0)− u( · , T )‖L1(R).

Because v is an entropy weak solution of vt + f(v)x = 0 on each strip
R×[tk, tk+1), we know that with ω := ω(x−x′, t−t′) := ηε(x−x′)ηε0(t−t′),
u := u(x′, t′), and v := v(x, t), we have

−
∫ T

0

∫
R

∫ tk+1

tk

∫
R
|v − u|ωt + sgn(v − u)(f(v)− f(u))ωx dx dt dx

′dt′

+

∫ T

0

∫
R

∫
R
|v(x, tk+1 − 0)− u(x′, t′)|ω(x− x′, tk+1 − t′) dx dx′dt′

−
∫ T

0

∫
R

∫
R
|v(x, tk)− u(x′, t′)|ω(x− x′, tk − t′) dx dx′dt′ ≤ 0.

(Here we use v(x, tk+1 − 0) because we assume that v is right continuous,
so v may have a jump in t at t = tk+1.) We add each of these bounds for
tk ≤ t < tk+1 to see that

Λε0ε (v, u, T − 0) =

−
∫ T

0

∫
R

∫ T

0

∫
R
|v − u|ωt + sgn(v − u)(f(v)− f(u))ωx dx dt dx

′dt′

+

∫ T

0

∫
R

∫
R
|v(x, T − 0)− u(x′, t′)|ω(x− x′, T − t′) dx dx′dt′

−
∫ T

0

∫
R

∫
R
|v(x, 0)− u(x′, t′)|ω(x− x′, 0− t′) dx dx′dt′

≤
K−1∑
k=1

[∫ T

0

∫
R

∫
R
|v(x, tk)− u(x′, t′)|ω(x− x′, tk − t′) dx dx′dt′

−
∫ T

0

∫
R

∫
R
|v(x, tk − 0)− u(x′, t′)|ω(x− x′, tk − t′) dx dx′dt′

]
.

We shall let ε0 tend to zero and see what our bound for Λε0ε (v, u, T −0)
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4 Chapter 4. Godunov’s Method and the Random Choice Method

tends to. We see that if ε0 ≤ mink |tk − tk+1| and 0 < k < K then∫ T

0

∫
R

∫
R
|v(x, tk)− u(x′, t′)|ω(x− x′, tk − t′) dx dx′dt′

=

∫ T

0

∫
R

∫
R
|v(x, tk)− u(x′, tk)|ω(x− x′, tk − t′) dx dx′dt′ + E

=

∫
R

∫
R
|v(x, tk)− u(x′, tk)| ηε(x− x′) dx dx′ +E

where E is an error that is no greater than∫ T

0

∫
R

∫
R
|u(x′, t′)− u(x′, tk)|ω(x− x′, tk − t′) dx dx′dt′

=

∫ T

0

∫
R
|u(x′, t′)− u(x′, tk)| ηε0(tk − t′) dx′dt′

≤ sup
|t′−tk|≤ε0

‖u( · , t′)− u( · , tk)‖L1(R)

≤ Lε0‖u0‖BV(Rn).

Therefore, for any fixed ε0, we have by Theorem 1.2 that

‖v( · , T − 0)− u( · , T )‖L1(R)

≤ ‖u0 − v( · , 0)‖L1(R) + 2ε‖u0‖BV(R) + ε0L‖u0‖BV(Rn)

+
K−1∑
k=1

[ρε(v(tk), u(tk))− ρε(v(tk − 0), u(tk))]

+ (K − 1)ε0L‖u0‖BV(Rn) + ε0L sup
0<t<T

‖v( · , t)‖BV(Rn).

We now let ε0 → 0 to prove the lemma.

§3. The Random Choice Method

The random choice method, introduced by Glimm, is a probabilistic
method for proving existence of solutions for the hyperbolic system of con-
servation laws (2.1). Glimm showed that if the total variation of u0 is
sufficiently small, and if the equation is hyperbolic and genuinely nonlinear
in the sense of Lax, then the approximate solution generated by his scheme
converges almost surely to a weak solution of (2.1); later Harten and

Lax showed that any Glimm weak solution satisfies the entropy condition.
Glimm’s scheme has also been applied with some success as a numerical
method. Here we bound the expectation of the L1 error of the approximate
solution in the special case where (2.1) is a scalar equation. In particular,
we prove the following theorem.
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Theorem 3.1. If un(x, t) is the solution of Glimm’s method for tn ≤
t < tn+1, u(x, t) is the entropy solution of (2.1), and T = (N + 1)∆t, then

E(‖u( · , T )− uN( · , T )‖L1(R)) ≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV(R),

where h is the mesh spacing, ∆t is the time step, and tn = n∆t.

We note first that although Glimm’s scheme is usually defined on al-
ternating meshes (the approximate solution is piecewise constant on the
intervals [ih, (i + 1)h) at time tn if n is even, and piecewise constant on
[(i − 1/2)h, (i + 1/2)h) when n is odd) this in no way affects the error es-
timates given below. Consequently, a fixed mesh is used for all time as a
notational convenience.

We prove Theorem 3.1 for the following formulation of Glimm’s
scheme. We assume that u0 has bounded variation, and that ‖f ′‖L∞(R)

is finite. Choose a positive mesh size h. For each integer i, let Ii be
[ih, (i + 1)h), and let χIi be the characteristic function of Ii. We assume
that the time step, ∆t, satisfies 0 < ∆t ≤ h/(2‖f ′‖L∞(R)), and we define
tn = n∆t. For each nonnegative integer n, we define a function Un : Z→ R
of bounded variation in the following way. Let

(3.1) U0
i =

1

h

∫
Ii

u0(x) dx

for each integer i. If Uni has been defined for all i, solve the initial value
problem

(3.2)

unt + f(un)x = 0, x ∈ R, tn < t < tn+1,

un(x, tn) =
∑
i∈Z

Uni χIi(x), x ∈ R.

The function un(x, t) is found by piecing together the solutions of the Rie-
mann problems at the points ih, i ∈ Z. The nontrivial parts of these
solutions do not overlap because of our bound on ∆t.

We now choose a random variable Xn+1, uniformly distributed on
[0, h), so that the set of random variables {X1, . . . , Xn+1} are independent;
the values of Un+1

i are then given by

(3.3) Un+1
i = un(ih+Xn+1, tn+1)

for every i. Chorin seems to have been the first to use exactly one random
choice for all intervals Ii.

As can be seen from the definition, Un is itself a random variable
that depends on the sequence of random variables X1, . . . , Xn; we propose
to bound the expected value of the error at time tN+1, E(‖u( · , tN+1) −
uN ( · , tN+1)‖L1(R)).
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6 Chapter 4. Godunov’s Method and the Random Choice Method

Because, for any values of X1 through XN , the approximate solution
satisfies the differential equation exactly for (x, t) ∈ R× (tn, tn+1), Lemma
2.1 applies to bound the error. From this lemma it follows that

E(‖u( · , tN+1)− uN ( · , tN+1)‖L1(R))

≤ ‖u0( · )− u0( · , 0)‖L1(R) + 2ε‖u0‖BV(R)

+
N∑
n=1

E(ρε(u
n(tn), u(tn))− ρε(un−1(tn), u(tn))).

If we let En(f) denote the conditional expectation of f given X1, . . . , Xn−1

and Xn+1, . . . , XN , then (writing t for tn, X for Xn, and ηε(x) for 1
ε
η(x

ε
)),

(3.4) En(ρε(u
n(t), u(t))− ρε(un−1(t), u(t)))

=

∫
[0,h)

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)

× 1

h

{
|un−1(ih+X, t)− u(y, t)| − |un−1(x, t)− u(y, t)|

}
dx dy dX

=

∫
R

∑
i∈Z

∫
Ii

∫
Ii

ηε(x− y)

× 1

h

{
|un−1(z, t)− u(y, t)| − |un−1(x, t)− u(y, t)|

}
dz dx dy

=
1

2

∫
R

∑
i∈Z

∫
Ii

∫
Ii

(ηε(x− y)− ηε(z − y))

× 1

h

{
|un−1(z, t)− u(y, t)| − |un−1(x, t)− u(y, t)|

}
dz dx dy

≤ 1

2

∫
R

∑
i∈Z

∫
Ii

∫
Ii

|ηε(x− y)− ηε(z − y)|

× 1

h
|un−1(z, t)− un−1(x, t)| dz dx dy.

If we now integrate over y, we find that

∫
R
|ηε(x− y)− ηε(z − y)|dy ≤ |z − x|

‖η′‖L1(R)

ε
.

Trivially, |un−1(z, t) − un−1(x, t)| ≤ ‖un−1(t)‖BV (Ii). So it follows that
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(3.4) is bounded by

1

2

∑
i∈Z

∫
Ii

∫
Ii

|z − x|
h

dz dx
‖η′‖L1(R)

ε
‖un−1(t)‖BV(Ii)

≤
∑
i∈Z

h2

6

‖η′‖L1(R)

ε
‖un−1(t)‖BV(Ii)

=
h2

6

‖η′‖L1(R)

ε
‖un−1(t)‖BV(R)

The inequality ‖un−1(t)‖BV(R) ≤ ‖u0‖BV(R) is clear, because the choice of

the initial data (3.1), the evolution of un−1 through (2.1) (3.2), and the
random choice process (3.3) are all variation diminishing. Thus,

En(ρε(u
n(t), u(t))− ρε(un−1(t), u(t))) ≤ h2

6

‖η′‖L1(R)

ε
‖u0‖BV(R)

uniformly with respect to the other random variables Xi, implying that
E(ρε(u

n(t), u(t)) − ρε(u
n−1(t), u(t))) is bounded by the same quantity.

Therefore, if T = (N + 1)∆t, by using an obvious bound for the initial
error, we have

(3.5) E(‖u( · , T )− uN ( · , T )‖L1(R))

≤ h‖u0‖BV(R) + 2ε‖u0‖BV(R) +
T

∆t

h2

6

‖η′‖L1(R)

ε
‖u0‖BV(R).

By letting η → 1
2χ[−1,1], ‖η′‖L1(R) may be chosen arbitrarily close to 1.

Minimizing (3.5) with respect to ε gives

(3.6) E(‖u( · , T )− uN ( · , T )‖L1(R))

≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV(R).

The theorem is proved. We remark that if one chooses to interpret Glimm’s
method as providing that the approximate solution is equal to Uni on [ih, (i+
1)h)× [tn, tn+1), then the above inequality still holds with a small change
for the error incurred in at most one time step.

Extensive numerical evidence, and some theoretical work, shows that
monotone finite difference schemes, such as the Engquist-Osher scheme,
perform better for problems with uniformly convex fluxes than for problems
with linear fluxes; in fact, the Engquist-Osher method is O(h) accurate for
the problem

(3.7)
ut + (

u2

2
)x = 0, x ∈ R, t > 0,

u(x, 0) = χ(−∞,0](x), x ∈ R.
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8 Chapter 4. Godunov’s Method and the Random Choice Method

For problems, such as this one, whose solution consists of a single shock
of height one, the expected error in Glimm’s scheme can be estimated
directly by applying the Central Limit Theorem. If the shock speed is s,
and p = s∆t/h, then after N time steps, the probability distribution of the
shock location (measured in spatial intervals) is binomial with parameters
N and p; therefore, for large N , the shock location error is approximately
normal with mean 0 and variance σ2 = Np(1 − p)h2. Asymptotically, the
expected value of the L1(R) error, which is the absolute value of the shock
location error, is

1√
2π σ

∫ ∞
−∞
|ξ|e−ξ2/2σ2

dξ =

√
2

π
σ

∫ ∞
0

e−ξ
2/2σ2

d
ξ2

2σ2
=

√
2

π
σ

or ( 2
π
p(1−p) h

∆t )
1/2(Th)1/2, where T = N∆t. Our bound on the ratio ∆t/h

implies that 0 ≤ p ≤ 1/2. For example, when Glimm’s scheme is applied
to (3.7) with ∆t = h/2, p = 1/4, the expected value of the error is about
0.3455( h

∆t )
1/2(hT )1/2. Theorem 1 gives a bound of 1.1547( h

∆t )
1/2(hT )1/2

independently of the value of p, a fairly close result. Note that Glimm’s
scheme does not converge for this problem when h2/∆t does not tend to
zero as h and ∆t tend to zero.

§4. Godunov’s Method

Godunov’s method was one of the first numerical methods for hyperbolic
systems of nonlinear conservation laws. We shall give two different bounds
for the error in Godunov’s method applied to the scalar equation (2.1).
The first bound is derived by showing that Godunov’s method falls into
the general class of monotone scheme. The second bound, which we shall
use later, can be derived much as our previous bound for the random choice
method.

Godunov’s scheme differs from Glimm’s scheme only in that Godunov
determines Un+1

i by averaging un( · , tn+1) over Ii:

(4.1) Un+1
i =

1

h

∫ h

0

un(ih+X, tn+1)dX.

We first determine how to calculate these quantities efficiently when ∆t
and h satisfy the CFL condition.

We shall consider specifically how to calculate U1
0 . Because u0(x, t)

depends only on u0(ξ) for |ξ−x| ≤ Lt, where L = supξ |f ′(ξ)|, if we restrict

L∆t ≤ h then the value of u0(0, t) for t < ∆t depends only on U0
−1 and U0

0 .
OK, I don’t really understand yet what’s going on, but I want to hand

out these notes tomorrow when I’ll try to offer an explanation. So let me
just define

F (uL, uR) :=

{
minuL<u<uR f(u), uL < uR,

maxuR<u<uL f(u), uR < uL.
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§4. Godunov’s Method 9

Then the Godunov scheme can be written

Uk+1
i − Uki

∆t
+
F (Uki , U

k
i+1)− F (Uki−1, U

k
i )

h
= 0, i ∈ Z, k ≥ 0.

This scheme is monotone because the underlying differential equation and
the averaging process (4.1) are monotone. Thus, it can be analyzed using

the techniques of Chapter 3, and it has an error bound of C(
√

∆tT +√
hT )‖u0‖BV(R). This bound decreases as ∆t decreases. Our next bound,

based on Lemma 2.1, decreases as ∆t increases. This makes sense in a way,
because the only entropy “violation” occurs when we average uk(x, tk+1)

on each interval Ii to obtain Uk+1
i ; the approximation can be considered

an exact entropy solution between time steps.
The following theorem shows that the error in Godunov’s method is

bounded by the same expression that bounds the expected error in Glimm’s
scheme.

Theorem 4.1. If un(x, t) is the solution of Godunov’s method for
tn ≤ t < tn+1, u(x, t) is the entropy solution of (2.1), and T = (N + 1)∆t,
then
(4.2)

‖u( · , T )− uN ( · , T − 0)‖L1(R) ≤
(
h+

2√
3

(
h

∆t

)1/2

(hT )1/2

)
‖u0‖BV(R).

Proof. We proceed as in Theorem 3.1. Again, with t = tn,

ρε(u
n(t), u(t))− ρε(un−1(t), u(t))

=

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)
{
|Uni − u(y, t)| − |un−1(x, t)− u(y, t)|

}
dx dy

=

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)

× {| 1
h

∫ h

0

un−1(ih+X, t) dX − u(y, t)| − |un−1(x, t)− u(y, t)|}dx dy

≤
∫ h

0

∫
R

∑
i∈Z

∫
Ii

ηε(x− y)

× 1

h

{
|un−1(ih+X, t)− u(y, t)| − |un−1(x, t)− u(y, t)|

}
dx dy dX.

One may now follow the series of inequalities in (3.4) and the subsequent
arguments to obtain the estimate in the statement of the theorem.

The estimate is rather sharp, as can be seen by considering

(4.3)

ut + ux = 0, x ∈ R, t > 0,

u(x, 0) =

{
0, x ≤ 0,

1, x > 0,
x ∈ R.
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10 Chapter 4. Godunov’s Method and the Random Choice Method

For this problem, Godunov’s method and the Engquist-Osher method are
identical. In §3.6 we showed that the Engquist-Osher scheme has an as-
ymptotic error of ( 2

π

)1/2
(hT )1/2

(
1− ∆t

h

)1/2
;

when ∆t/h = 1
2 the error is asymptotically ( 1

π
)1/2(Th)1/2 = 0.564(Th)1/2,

compared to our estimate of 2
√

2
3 (Th)1/2 = 1.633(Th)1/2.

Note that our analysis applies even if the CFL condition ∆t <
h/‖f ′‖L∞(R) is violated, as long as the wave interactions in the solution
of (3.2) are calculated exactly; this will prove important in the next chap-
ter.
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Chapter 5

Stability and Moving Grid Numerical Methods

Beginning in this chapter, we shall study more closely the properties of
scalar conservation laws in one space dimension. In §1 we shall study the
stability of conservation laws when the flux, as well as the initial data, is
perturbed. We shall use this result in §2 to analyze a moving grid method
introduced by Dafermos based on piecewise constant approximations that
will exhibit a convergence rate of first order in the number of parameters;
this is to be contrasted with the convergence rate of order 1

2 exhibited by
monotone finite difference schemes. We go on in §3 to devise a numerical
method based on piecewise linear approximations on a moving grid that
achieves second order approximation in the number of parameters. In the
next chapter we shall study what these new approximation results imply
about the regularity of solutions of such scalar conservation laws.

§1. Stability

In this section we consider the stability of the entropy weak solution of the
conservation law

(1.1)
ut +∇ · f(u) = 0, x ∈ Rn, t > 0,

u(x, 0) = u0(x), x ∈ Rn,

under changes in the flux f as well as the initial data u0. Specifically, we
prove the following theorem.

Theorem 1.1. Assume that u(x, t) is the entropy weak solution of
(1.1) and that v(x, t) is the entropy weak solution of

vt +∇ · g(v) = 0, x ∈ Rn, t > 0,

v(x, 0) = v0(x), x ∈ Rn,

with u0 and v0 ∈ BV(Rn) ∩ L∞(Rn) and f and g Lipschitz continuous.
Then

(1.2) ‖u( · , T )− v( · , T )‖L1(Rn) ≤ ‖u0 − v0‖L1(Rn)

+ T‖ |f ′ − g′| ‖L∞(R) min(‖u0‖BV(Rn), ‖v0‖BV(Rn)).

Proof. For notational convenience we first prove the result in one
dimension.
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2 Chapter 5. Stability and Moving Grid Numerical Methods

We shall use Kuznetsov’s approximation Theorem 1.2 of Chapter 2
to compare u and v, considering v as an approximation to u. Because
we are considering two different fluxes f and g, we shall use the slightly
expanded notation Λε0ε (w, z, T, f) and Λε0ε (w, z, T, g) for the average entropy
inequality for the fluxes f and g respectively.

When we consider v as an approximation to u, we need to bound
Λε0ε (v, u, T, f) in Theorem 1.2 of Chapter 2. We set v := v(x, t), u :=
u(x′, t′), and ω := ω(x − x′, t − t′) and note that Λε0ε (v, u, T, g) ≤ 0 to
calculate
(1.3)

Λε0ε (v, u, T, f)

= −
∫ T

0

∫
R

∫ T

0

∫
R
|v − u|ωt + [f(v ∨ u)− f(v ∧ u)]ωx dx dt dx

′dt′

+

∫ T

0

∫
R

∫
R
|v(x, T )− u|ω(x− x′, T − t′) dx dx′dt′

−
∫ T

0

∫
R

∫
R
|v(x, 0)− u|ω(x− x′, 0− t′) dx dx′dt′

= −
∫ T

0

∫
R

∫ T

0

∫
R
|v − u|ωt + [g(v ∨ u)− g(v ∧ u)]ωx dx dt dx

′dt′

+

∫ T

0

∫
R

∫
R
|v(x, T )− u|ω(x− x′, T − t′) dx dx′dt′

−
∫ T

0

∫
R

∫
R
|v(x, 0)− u|ω(x− x′, 0− t′) dx dx′dt′

−
∫ T

0

∫
R

∫ T

0

∫
R

[(f − g)(v ∨ u)− (f − g)(v ∧ u)]ωx dx dt dx
′dt′

= Λε0ε (v, u, T, g)

−
∫ T

0

∫
R

∫ T

0

∫
R

[(f − g)(v ∨ u)− (f − g)(v ∧ u)]ωx dx dt dx
′dt′

≤ −
∫ T

0

∫
R

∫ T

0

∫
R

[(f − g)(v ∨ u)− (f − g)(v ∧ u)]ωx dx dt dx
′dt′.

This is the basic inequality of this theorem; we must now bound the right
side of (1.3) in a suitable way.

We define h(v) := (f−g)(v) and h̄(v, u) := h(v∨u)−h(v∧u). Note that
|h̄(v1, u)−h̄(v2, u)| ≤ |h(v1)−h(v2)|. Because u, v, and ωx are bounded, we
have by the Lebesgue Dominated Convergence Theorem that the absolute
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§2. Moving Grid Methods I: Dafermos’s Method 3

value of the right side of (1.3) is equal to the limit as ∆x→ 0 of∣∣∣∣ 1

∆x

∫ T

0

∫
R

∫ T

0

∫
R
h̄(v, u) [ω(x+ ∆x− x′, t− t′)− ω] dx dt dx′dt′

∣∣∣∣
=

∣∣∣∣ 1

∆x

∫ T

0

∫
R

∫ T

0

∫
R

[h̄(v, u)− h̄(v(x−∆x, t), u)]ωdx dt dx′dt′
∣∣∣∣

≤ 1

|∆x|

∫ T

0

∫
R

∫ T

0

∫
R
|h(v)− h(v(x−∆x, t))|ω dx dt dx′dt′

≤ 1

|∆x|

∫ T

0

∫
R
|h(v)− h(v(x−∆x, t))| dx dt

≤ ‖h′‖L∞(R)
1

|∆x|

∫ T

0

∫
R
|v − v(x−∆x, t)| dx dt

≤ T‖f ′ − g′‖L∞(R)‖v0‖BV(R).

This bound is independent of ∆x, ε, or ε0. We let these parameters tend
to zero in Theorem 1.2 of Chapter 2, to see that

‖u( · , T )− v( · , T )‖L1(R) ≤ ‖u0 − v0‖L1(R) + T‖f ′ − g′‖L∞(R)‖v0‖BV(R).

The theorem follows from symmetry in u and v.
In several space dimensions we note that

|f ′(ξ)− g′(ξ)| := max
1≤j≤n

|f ′j(ξ)− g′j(ξ)|

and apply the same argument in each space dimension.

Remark 1.1. Just as in Kuznetsov’s theorem, the right side of (1.2)
can be written in different ways depending on how one bounds (1.3).

§2. Moving Grid Methods I: Dafermos’s Method

Dafermos came up with a technique for proving the existence of entropy
solutions of

(2.1)
ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
that involves solving a perturbed problem. We can interpret his construc-
tion as a numerical method for approximating solutions of (2.1). Hed-

strom implemented his technique as a numerical method both for scalar
equations and hyperbolic systems of two conservation laws.

We shall assume that u0 has bounded variation, and additionally that
the support of u0 is contained in a finite interval, [0, 1], say. We choose a
positive number N and set h = N−1 and Ii := [ih, (i + 1)h). The initial
approximation ũ0 is given by

ũ0(x)|Ii =
1

h

∫
Ii

u0(s) ds.
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4 Chapter 5. Stability and Moving Grid Numerical Methods

We now choose an approximation f̃ to f . The function f̃ will be continuous,
piecewise linear, with breakpoints at the points ih, such that f(ih) = f̃(ih)
for i ∈ Z. We solve the following perturbed problem exactly :

(2.2)
ũt + f̃(ũ)x = 0, x ∈ R, t > 0,

ũ(x, 0) = ũ0(x), x ∈ R.

We must show two things: that the error is bounded in a reasonable way,
and that we can in fact solve (2.2) in a finite number of steps.

If we wish to apply Theorem 1.1, we need to bound ‖f ′ − f̃ ′‖L∞(R).
On the interval (0, h), we have that

|f ′(ξ)− f̃ ′(ξ)| = |f ′(ξ)− f(h)− f(0)

h
|

= |f ′(ξ)− 1

h

∫ h

0

f ′(η) dη|

≤ 1

h

∫ h

0

|f ′(ξ)− f ′(η)| dη

≤
‖f ′′‖L∞(R)

h

∫ h

0

|ξ − η| dη

≤
‖f ′′‖L∞(R)

2N
(achieved when ξ = 0 or ξ = h).

The same inequality holds for any ξ. We have the by now obvious inequal-
ities ‖u0 − ũ0‖L1(R) ≤ h‖u0‖BV(R) and ‖ũ0‖BV(R) ≤ ‖u0‖BV(R). Therefore,
Theorem 1.1 allows us to conclude that

‖u( · , T )− ũ( · , T )‖L1(R) ≤
(
1 +

1

2
‖f ′′‖L∞(R)T

) 1

N
‖u0‖BV(R), T > 0.

We must bound the complexity of solving the perturbed problem (2.2)
if we are to consider this a practical numerical method. We shall assume
that f , and hence f̃ , are convex. First, we bound the number of constant
states that can occur immediately after t = 0. Because we assumed that
the initial data has support in [0, 1], we start with N + 2 constant states
in ũ0 (including the zero values for x < 0 and x > 1), denoted by Ui,
i = 0, . . . , N + 1. In order to solve (2.2) we must solve the N + 1 Riemann
problems between Ui and Ui+1. We have described the solution of the
Riemann problem for a piecewise linear flux in §1 of Chapter 4; in our case
a constant state in ũ(x, t) will arise for each j with Ui < j/N < Ui+1,

since the break-points of f̃ are at the points j/N . We can bound the
number of these new constant states in terms of the variation of ũ0 by
noting that if there are Ni constant states introduced between Ui and Ui+1,
then |Ui − Ui+1| ≥ (Ni − 1)/N . Therefore, Ni ≤ 1 +N |Ui − Ui+1| and the
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§2. Moving Grid Methods I: Dafermos’s Method 5

total number of added states is bounded by

N−1∑
i=−1

Ni ≤ N + 1 +N

N−1∑
i=−1

|Ui − Ui+1|

= N + 1 +N‖ũ0‖BV(R) ≤ N + 1 +N‖u0‖BV(R).

Therefore, for a short time after t = 0, there are no more than 2N + 3 +
N‖u0‖BV(R) constant pieces in ũ(x, t). These pieces are separated by shocks
that move at a speed determined by the Rankine-Hugoniot condition. (Here
we abuse our previous terminology, and refer to all discontinuities as shocks,
even if they can be considered rarefaction waves of the piecewise linear flux.)

These moving shocks could collide, or interact, for large times. If f̃
is convex, then each time two shocks collide, with three constant states
given by uL (to the left of the left shock), uM (between the two shocks),
and uR (to the right), then only one shock emerges, with left state uL,
right state uR, and speed given by the Rankine-Hugoniot condition. (This
can easily be shown based on a trivial, but tedious, case analysis of the
six possible orderings of uL, uM , and uR.) Thus, interaction of waves
causes a reduction in the number of constant states. Since there are O(N)
constant states initially, there can be at most O(N) wave interactions in
the solution of ũ(x, t) for all time. Thus, one can completely determine
the solution ũ(x, t) as constant on O(N) polygonal regions in the x-t plane,
with all of the regions determined by at most O(N) line segments.

One would program this numerical method as a simulation, where the
events are the intersection of two shocks. We shall briefly describe an
algorithm that allows one to completely calculate ũ(x, t) for all x ∈ R and
t > 0 in O(N logN) steps.

First, one determines, left to right, all the constant states and shocks
that will emerge from the initial data. The shocks to the left and right of
each constant state are noted, as are the constant states to the left and
right of each shock. This takes O(N) time.

For each pair of adjacent shocks, the time of intersection is noted (if
the shocks are diverging, then this time is infinite); this information is put
on a heap. A heap is a binary tree with the following properties. The tree
is complete, i.e., all levels but the last are full, and the last level has all its
vacancies on the right. There is an ordered key associated with the heap (in
our case it is the time of intersection), and the key of each node in the tree
is smaller than the keys of the children (if any) of that node. Consequently,
the earliest time of intersection between two shocks will be at the root of
the tree.

There are simple algorithms for adding and removing elements from
a heap while maintaining these data invariants. Each algorithm takes but
O(logN) time. Therefore, it takes O(N logN) operations to construct the
heap originally.

The root of the tree contains the first wave interaction that will occur
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6 Chapter 5. Stability and Moving Grid Numerical Methods

in the solution of ũ. Let’s say that it involves the three states uL, uM , and
uR, and that there are states uLL to the left of uL and uRR to the right
of uR. After the uL/uM and uM/uR waves interact, the state uM and the
uL/uM and uM/uR waves no longer exists, so these are removed from the
list of states and waves, respectively, The new shock between uL and uR
is calculated, and the root of the tree, which used to represent the wave
interaction is removed from the tree. The interaction between the uLL/uL
shock and the uL/uM shock, now no longer valid, is removed from the tree;
so is the similar interaction on the right. Finally, the interaction between
the uLL/uL shock and the new uL/uR shock is added to the tree; again, a
similar calculation is performed on the right.

When manipulated in this way, a heap serves as a priority queue, a
useful tool for programming simulations. The data manipulations for each
wave interaction in ũ requires O(logN) operations to calculate; since there
are at most O(N) wave interactions, the calculation of ũ requires at most
O(N logN) operations.

Our analysis is summarized in the following theorem.

Theorem 2.1. Let u0 ∈ BV(R) have support in [0, 1] and assume that
there exists a constant M such that 0 ≤ f ′′ ≤ M . Let u(x, t) denote the
solution of (2.1). Then for each positive N , there exists a function ũ(x, t)
that is piecewise constant on no more than 2N + 3 +N‖u0‖BV(R) polygonal
regions in x-t space, and

‖u( · , t)− ũ( · , t)‖L1(R) ≤
(
1 +

1

2
Mt
) 1

N
‖u0‖BV(R), t > 0.

Furthermore, ũ can be calculated as the solution of (2.2) in O(N logN)
operations.

Dafermos’s method is much more computationally efficient than mono-
tone finite difference methods. On an interval in x-t space, [0, 1] × [0, T ],
say, it takes O(N2) operations to calculate the solution of a monotone finite
difference method (with h = 1/N) that achieves an accuracy of O(N−1/2).
In other words, Error = Work−1/4 for monotone finite difference schemes.
In contrast, Dafermos’s method achieves an error of O(N−1) with roughly
O(N) operations (log2 N is bounded by 20 for N ≤ 1, 000, 000), achieving
Error = Work−1.

§3. Moving Grid Methods II: The Large-Time-Step Godunov
Method

LeVeque introduced several interesting techniques in a numerical method
for (2.1) that he considered to be a large-time-step generalization of Go-
dunov’s method. We shall describe and analyze a variant of his method in
this section.

We shall again assume that 0 ≤ f ′′ ≤ M , that u0 is of bounded vari-
ation and has support in [0, 1], and that N is a positive integer parameter
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§3. Moving Grid Methods II: The Large-Time-Step Godunov Method 7

with h = 1/N . The approximation to the initial data u0 is the piecewise
constant average of u0 on each interval [ih, (i+ 1)h), i = 0, . . . , N − 1.

A procedure, called (appropriately enough!) an approximate Riemann
solver, is used to approximate the solution of the Riemann problem between
adjacent constant states with the flux f . (Approximate Riemann solvers
are an integral part of many numerical methods.) This approximate Rie-
mann solver works in the following way. If the solution of the Riemann
problem consists of a single shock separating the two constant states of
the initial data, then that is also the solution of the approximate Riemann
solver. If, however, the solution of the Riemann problem for f consists of a
rarefaction wave, then that rarefaction wave is replaced by a “staircase” of
small, entropy violating shocks (whose speeds are still determined by the
Rankine-Hugoniot condition for f), between the left state and the right
state. To be precise, we shall assume that the added, artificial, constant
states are located only at the points u = j/N for uL < j/N < uR. Thus,
the height of these entropy-violating shocks is at most 1/N .

LeVeque wished to have a Godunov-type scheme, where after some
time ∆t he would project the approximate solution onto the original grid,
but one must decide how to deal with the interaction of the waves generated
by our approximate Riemann solver when ‖f ′‖L∞(R)∆t ≥ h/2. In later pa-
pers LeVeque allowed these waves to pass through each other as though in a
linear wave equation, but in his first paper his algorithm strove to calculate
their interaction exactly ; i.e., whenever two waves came together, he would
calculate anew the waves that arose from the new Riemann problem. The
method continues in this way for a time ∆t, at which point the approxi-
mate solution is projected onto the original grid and the process starts over
again.

LeVeque presented intriguing computations in his paper that showed
that as one increased the time step, until eventually ∆t = T , the error in
his scheme decreased. Our analysis will be able to account for this behavior.

The method as we have described it can (almost) be analyzed as a
combination of Dafermos’s method and Godunov’s method. The intro-
duction of entropy-violating shocks is algebraically identical to Dafermos’s
piecewise linear approximation f̃ to f ; in each case the discontinuity speed
between the states uL = j/N and uR = (j + 1)/N is

f(uL)− f(uR)

uL − uR
=
f̃(uL)− f̃(uR)

uL − uR
.

The speed of numerical shocks will differ slightly between the two methods,
however, because for general u 6= j/N , f(u) 6= f̃(u). Therefore, let us as-
sume that LeVeque’s ingeneous entropy-violating “staircase” arises from the
piecewise linear approximation of f by f̃ . Thus, the approximate Riemann
solver and the exact calculation of wave interactions can be considered an
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8 Chapter 5. Stability and Moving Grid Numerical Methods

approximation by problem (2.2), which introduces an error bounded by

‖u( · , T )− ũ( · , T )‖L1(R) ≤
(
1 +

1

2
MT

)
h‖u0‖BV(R).

The averaging step can be considered an application of Godunov’s method
to (2.2), which was analyzed in §4 of Chapter 4; it introduces an error
bounded by

2√
3

(
h

∆t

)1/2

(hT )1/2‖u0‖BV(R).

(The O(h) term is missing because the initial data of (2.2) is piecewise
constant on the grid of size h.) Thus, we achieve the final bound for the
large-time-step Godunov method of

‖u( · , T )− ũ( · , T )‖L1(R) ≤
(
h+

1

2
MTh+

2√
3

(
h

∆t

)1/2

(hT )1/2
)
‖u0‖BV(R).

Thus, when ∆t ≈ h, (e.g., when the CFL number is 1), the error is
O((hT )1/2) and the method is order– 1

2 accurate If, however, ∆t = T ,
and only one time step is taken, then the error is O(h) and the method
is first-order accurate. This explains the success of LeVeque’s numerical
experiments.

§4. Moving Grid Methods III: Piecewise Linear Approxima-
tion

In this section we describe a method for approximating solutions of (2.1)
by piecewise linear functions, and in so doing we achieve an approximation
rate of O(N−2) with O(N) linear pieces. Just as for Dafermos’s scheme,
the computational complexity will be O(N logN).

This method is based on several observations. The first observation is
that if f(u) := au2 + bu+ c is quadratic in u, and u0(x) := αx+ β is linear
in x, then u(x, t) will be linear in x for as long as the solution exists. We
calculate from the method of characteristics

u = u0(x− f ′(u)t) = α(x− (2au+ b)t) + β,

so that

(4.1) u(x, t) =
αx+ β − αbt

1 + 2αat
.

The second observation is that the above property is purely local. For
example, if

u(x, 0) =


0, x < 0,

x, 0 ≤ x ≤ 1,

1, x > 1,
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§4. Moving Grid Methods III: Piecewise Linear Approximation 9

and f(u) is quadratic only for u ∈ [0, 1], then between the characteristics
emenating from x = 0 and x = 1, the solution of (2.1) is linear. Thus,
one need track only the trajectories of these two points, and the solution is
linear between them.

The third and final observation is that one can determine exactly the
trajectory of a shock at x = 0, say, when immediately to the left of the
shock u is linear and f(u) is quadratic, and to the right u is a possibly
different linear function and f(u) is a different quadratic function. This
follows from the following shock propagation condition, which is equivalent
to the Rankine-Hugoniot condition.

Let us consider a shock propagating from x = 0 at time t = 0 along
a curve x = ξ(t). At each point (ξ, t) on the curve, let (xL, 0) and (xR, 0)
be the starting points of the characteristics passing through the point (ξ, t)
from the left and right, respectively. Then xL < 0, xR > 0, and xL, xR, ξ,
and t satisfy the two equations

(4.2) ξ = xL + f ′(u0(xL)) t

and

(4.3) ξ = xR + f ′(u0(xR)) t.

The points (xL, 0), (xR, 0), and (ξ, t) form the vertices of a triangle T in
the x-t plane. If we assume that the solution u of (2.1) is smooth to the
left and right of the shock, we can integrate (2.1) over T to see that

(4.4)

0 =

∫
T
ut + f(u)x dx

=

∫
∂T

(f(u), u) · n dσ

= − [f(u0(xL))− f ′(u0(xL))u0(xL)] t

+ [f(u0(xR))− f ′(u0(xR))u0(xR)] t

−
∫ xR

xL

u0(x) dx.

Here we have used the fact that u, and hence f(u) and f ′(u), are constant
along the top sides of T , and that the length of the top left line segment of
T , for example, is√

t2 + (ξ − xL)2 =
√
t2 + [f ′(u0(xL))t]2 = t

√
1 + [f ′(u0(xL))]2.

Thus, the propagation of the shock is totally determined by the system
of equations (4.2), (4.3), and (4.4). This is a system of three (nonlinear)
equations in ξ, t, and the two auxiliary variables xL and xR. In our example,
we have that

u0(x) =

{
αLx+ βL, x < 0,

αRx+ βR, x ≥ 0,
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10 Chapter 5. Stability and Moving Grid Numerical Methods

with

f(u) =

{
aLu

2 + bLu+ cL, u near u0(0−) = βL,

aRu
2 + bRu+ cR, u near u0(0+) = βR.

In this case, (4.2), (4.3), and (4.4) form a system of polynomial equations in
ξ, t, xL and xR, and the two auxiliary variables can be eliminated through
a process called, well, elimination, leaving us a single equation in the two
variables of interest, ξ and t. We can use MACSYMA to find this equation,
which leads to

(2αLaLt+ 1)(2αRaRt+ 1)

(2αLαRaRtξ
2 − 2αLαRaLtξ

2 − αRξ2 + αLξ
2

− 4bLαLαRaRt
2ξ + 4bRαLαRaLt

2ξ + 4βLαRaRtξ

− 4βRαLaLtξ + 2bRαRtξ − 2bLαLtξ − 2βRξ + 2βLξ

+ 8cRαLαRaLaRt
3 − 8cLαLαRaLaRt

3 + 2b2LαLαRaRt
3

− 2b2RαLαRaLt
3 − 4β2

LαRaLaRt
2 + 4β2

RαLaLaRt
2

− 4βLbLαRaRt
2 + 4cRαRaRt

2 − 4cLαRaRt
2

+ 4βRbRαLaLt
2 + 4cRαLaLt

2 − 4cLαLaLt
2 − b2RαRt2

+ b2LαLt
2 + 2β2

RaRt− 2β2
LaLt+ 2βRbRt

− 2βLbLt+ 2cRt− 2cLt) = 0.

The first two factors are zero when the solution to the left and right of
the shock no longer exists; compare with the denominator in (4.1). The
third factor is a cubic polynomial in ξ and t, which the shock trajectory
must satisfy. Thus, the shock trajectory forms part of the zero set of a cubic
polynomial, or a cubic curve. (Newton attempted to classify these curves in
Enumeratio linearum tertii ordinis, published as an appendix of his Opticks
in 1704 and excerpted extensively in A Source Book in Mathematics, 1200–
1800, edited by D. J. Struik. Struik indicates that Newton’s paper formed
the greatest advance in algebraic geometry since the time of the Greeks.)
In fact, since the equation is quadratic in ξ, the shock path can be written
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§4. Moving Grid Methods III: Piecewise Linear Approximation 11

down as a function of t:

ξ =
{
±
[
(−1)(2αLaLt+ 1)(2αRaRt+ 1)

(4αLcRαRaRt
2 − 4cLαLαRaRt

2 − αLbR2αRt
2 + 2bLαLbRαRt

2

− 4αLaLcRαRt
2 + 4cLαLaLαRt

2 − bL2αLαRt
2 − 2β2

LαRaRt

+ 2αLβ
2
RaRt− 2βLbRαRt− 2cRαRt+ 2β2

LaLαRt+ 2βLbLαRt

+ 2cLαRt+ 2αLβRbRt− 2αLaLβ
2
Rt− 2bLαLβRt

+ 2αLcRt− 2cLαLt− β2
R + 2βLβR − β2

L)
]1/2

+ 2αLαR(bLaR − aLbR)t2

− (2βLαRaR + bRαR − 2αLaLβR − bLαL)t

+ βR − βL
}
/(2αLαR(aR − aL)t− αR + αL).

If f is convex then an entropy-satisfying shock has βL > βR, so the plus
sign is needed to ensure that ξ = 0 when t = 0. If αL = αR, then we need
to find a more useful expression for the shock trajectory near zero.

To summarize, our new formulation of the shock condition allows us
to solve for the shock trajectory exactly when u is piecewise linear near the
shock and f is piecewise quadratic near the values taken on by u near the
shock.

From these observations we can build a numerical method based on
piecewise linear approximations that achieves an error of O(N−2) when
there are O(N) pieces in the approximation. In some sense, this method
is the next higher-order generalization of Dafermos’s method, in that we
solve (2.2) with approximations f̃ to f and ũ0 to u0.

We choose a parameter N , set h = 1/N , and we assume f̃ is a C1,
piecewise quadratic function with breakpoints at j/N , such that

f̃ ′(
j

N
) = f ′(

j

N
), j ∈ Z, and f̃(0) = f(0).

Then for ξ ∈ (0, h) we have that

f ′(ξ)− f̃ ′(ξ) = f ′(ξ)− (h− ξ)f ′(0) + ξf ′(h)

h

=

∫ ξ

0

f ′′(η)− f ′(h)− f ′(0)

h
dη

=

∫ ξ

0

f ′′(η)− 1

h

∫ h

0

f ′′(ζ) dζ dη

=
1

h

∫ h

0

∫ ξ

0

f ′′(η)− f ′′(ζ) dη dζ.

=
1

h

∫ h

ξ

∫ ξ

0

f ′′(η)− f ′′(ζ) dη dζ.
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12 Chapter 5. Stability and Moving Grid Numerical Methods

Thus,

|f ′(ξ)− f̃ ′(ξ)| ≤
‖f ′′′‖L∞(R)

h

∫ h

ξ

∫ ξ

0

ζ − η dη dζ.

≤
‖f ′′′‖L∞(R)

h

1

2
h(h− ξ)ξ(4.5)

≤ 1

8
‖f ′′′‖L∞(R)h

2.

The same inequality holds for all ξ. Therefore, Theorem 1.1 shows that if
ũ0 is any approximation to u0 with ‖ũ0‖BV(R) ≤ ‖u0‖BV(R), then

‖u( · , t)− ũ( · , t)‖L1(R) ≤ ‖u0 − ũ0‖L1(R) +
t

8
‖f ′′′‖L∞(R)‖u0‖BV(R)

1

N2
.

For example, if u0 is C2 and has support in [0, 1], then the continuous,
piecewise linear interpolant at the points j/N , j = 0, . . . , N , satisfies

‖u0 − ũ0‖L1(R) ≤ ‖u0 − ũ0‖L∞(R) ≤
1

8
‖u′′0‖L∞(R)

1

N2
.

In this case we have the error bound

‖u( · , t)− ũ( · , t)‖L1(R) ≤
1

8
[‖u′′0‖L∞(R) + t‖f ′′′‖L∞(R)‖u0‖BV(R)]

1

N2
.

Just as for Dafermos’s method, we must now characterize the form of the
solution ũ(x, t) and bound the computational complexity of an algorithm
to calculate it.

TO BE CONTINUED
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