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THE AVERAGING LEMMA

RONALD DEVORE AND GUERGANA PETROVA

1. INTRODUCTION

Averaging lemmas arise in the study of regularity of solutions to nonlinear trans-
port equations. The present paper shows how techniques from Harmonic Analysis,
such as wavelet decompositions, maximal functions, and interpolation, can be used
to prove averaging lemmas and to establish their sharpness.

Let f(z,v) be a real-valued function defined on R¢ x 2, where €2 is a bounded
domain in R?. In applications ) is a set of velocity vectors. Associated to f, we
have the velocity average

(1.1) f(z) :z/ﬂf(m,v)dv.

By an averaging lemma, we shall mean a result which deduces smoothness for f
from assumptions about f and the function

(1.2) g(z,v) :=v-V,f.

Note that g(-,v) only gives information about the smoothness of f(-,v) in the
direction v. We shall restrict our attention to the nontrivial case d > 2. The
simplest version of an averaging lemma is the following.

Theorem 1.1. If f,g € Ly(R? x Q), d > 2, then f is in the Sobolev space
W/2(Ly(RY)) and

(1.3) I Fllwirzr,@ayy < C I lpa@ixa) + 19l L@axay] >
where C' depends only on d and €.

This theorem is easily proved using Fourier transforms [g].
We are interested in generalizations of the averaging lemma in which the role
of Ly is replaced by Lj, p # 2. We shall use the abbreviated notation B, :=

B3 (Lp(R?)) for this Besov space. Note that W'/2(Ly(R?)) = B;/Z(Lg(Rd)). We
shall prove the following averaging lemma in §3.
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Theorem 1.2. If f,g € L,(R% x Q), d > 2, then the average f is in the Besov

space B,r,“i““/’”l/’” and

(1.4) ||f||B;nin<1/p,1/p'> <CIflle,@ixe) + l9ll,®ixa)] >
where C' depends only on d and €.

As noted above, the case p = 2 of this lemma was first proved by Golse, Lions,
Perthame, and Sentis [§] and is a quite elementary application of Fourier transforms.
This latter paper also proves that when f,g € L,, then f is in each of the Besov
spaces B, 0 < s < min(1/p,1/p'). DiPerna, Lions, and Meyer [7] remark that
Theorem [[2 holds for p > 2 and also show for p < 2 that f,g € L,(R? x Q) implies
fe B;/p, (L,(R%)). Later, Bezard [2] showed that in the case 1 < p < 2, the

space B;/p/ (L,(R%)) can be replaced by the (smaller) potential space £/7" (L, (R?)).
The conclusion in Theorem is slightly stronger than Bezard’s result because
le,/p, (L,(RY)) is properly embedded in £/?'(L,(R?%)). The proofs of the previous
authors for 1 < p < 2 are based on Littlewood-Paley theory and in the case of
Bezard on an analysis of the averaging lemma for p = 1 involving Hardy spaces.
One of the main points of the present paper is to show how Theorem [L.2] follows
immediately from the following facts about the real method of interpolation:

(1.5) (L1(RY), By *(La(RY)))ajp p = BYP (Ly(RY), 1<p<2,
and
(1.6) (Loo(RY), By/*(La(RY)))a/p.p C BYP(Ly(RY)), 2 < p < oo

The second of these interpolation theorems is a simple consequence of existing
interpolation results and covers the case 2 < p < oo in Theorem On the other
hand, (LX) uses (simple) new ideas based on maximal functions in its proof. We
feel that the new technique will prove useful in other settings.

We should note that to derive Theorem[L.2/from the above interpolation theorems
is elementary and utilizes only the obvious result that f € L,(R? x Q) implies
fe Lp(Rd), p = 1,00, together with the simple case p = 2 already noted above.

We shall also show that Theorem [T.2] is sharp in the following sense.

Theorem 1.3. For each bounded domain Q C R? and each 1 < p < oo and q <
p, there is a function f with f,g € L,(R% x Q), d > 2, such that f is not in

min(1/p,1/p’
B! (1/p /p)(Lp(Rd)).

In the case 1 < p < 2, Lions [9] has shown the weaker result that for each
s > 1/p’ there exists f,g € L, for which f is not in B;. He has also formulated
some negative results in the case 2 < p < 0o but not in the above form.

We shall also go into a deeper analysis of the averaging lemma near the endpoint
p = 1. We show that if  is bounded away from 0, then, whenever f, g € L1(R¢xQ),
the wavelet coefficients of f are in weak-f;. Note that for a function in L, it is
generally not true that its wavelet coefficients are in weak-¢;. We want to stress
however that the proof of Theorem does not require this weak-£; theorem.

Our main vehicle for analyzing the averaging operation is wavelet decomposi-
tions. Wavelets give simpler characterizations of Besov spaces (in terms of wavelet
coefficients) than those from the Littlewood-Paley decompositions.

We have restricted our attention in this paper to a specific setting for averaging
lemmas. Many variants are possible such as replacing v by a more general function



THE AVERAGING LEMMA 281

a(v) in v- V. f or taking a weighted average over R? in place of the average over ().
The techniques put forward in this paper can be applied to these variants as well.
However, we feel that the main point of this paper is to understand how certain
elements from Harmonic Analysis can be used in the analysis of averaging lemmas.
Therefore, we do not strive to give the most general results but rather to illustrate
these simple techniques and to show how they give sharp results.

An outline of this paper is as follows. In §2, we introduce the known results
on wavelet decompositions and their characterization of Besov spaces that we shall
need in this paper. In §3, we prove the interpolation results (1.5)—(1.6). In §4, we
prove Theorem [[.2l In §5, we prove Theorem [[L3. The final section is devoted to
the weak-£1 result.

2. BESOV SPACES AND WAVELETS

In this section, we introduce wavelet decompositions and explain how they char-
acterize the classical smoothness spaces. General references for the material in this
section are Meyer [10] and Daubechies [4]. Let E’ denote the set of vertices of the
cube [0,1]? and let E denote the set of nonzero vertices. Let 1 be a univariate con-
tinuously differentiable wavelet function with compact support which is obtained
from the scaling function ¢. Examples of such wavelets and scaling functions were
given by Daubechies [3]. We could also use biorthogonal wavelets or even noncom-
pactly supported wavelets but at the expense of technical complications. We shall
use the notation 9° := ¢ and ' :=1). For each e € E’, we define the multivariate
wavelets

(2.1) (@1, ma) = (@) - Y (2a).
Let D denote the set of dyadic cubes in R? and let D; denote those dyadic

cubes which have side length 277 and D, := szo D;. For any dyadic cube I =
279(k +[0,1]¢) in D and any e € E', we define the wavelet

(2.2) B5(2) = ¢ (23 — k),

which is a wavelet scaled to I. Notice that these functions are normalized in L.
To simplify the notation that follows, we introduce the indexing set A which

consists of all pairs (I,e) with I € Dy and e € E (e € E' if I € D). We also let

Aj:={(I,e) € A: 1€ D}, j>0. For any locally integrable function h on R?, we

define its wavelet coefficients

(2.3) aj(h) = (h,v7), (I,e)€A.

Moreover, we let

+|ag(h)| I €Dy
2.4 h = EGEE |aI( ) ) )
24 ar(h) { >eer lag(h)], IeDy, j=>1.

These wavelet coefficients are normalized for L;(R).
There are times when we shall need normalizations of the wavelet functions and
coefficients for L,(R%). We define

(2.5) W5, = [I7YPys, (Ie) €A,
and

(2.6) a§ ,(h) = [I7Y7 ag(h), arp(h) = [I|7Y% az(h).
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Each function h which is locally integrable on R? has the wavelet expansion

(2.7) h = Z a7 2(R)Y] 5.

(I,e)eA

The functions appearing in (27) form a complete orthonormal system for Lo(R?).

Let s > 0, 0 < ¢q,p < co. The Besov space B;(L,,(]Rd)) is usually defined by
means of moduli of smoothness or Fourier transforms. It is a smoothness space
with s giving the order of smoothness (analogous to the number of derivatives), p
giving the space in which smoothness is to be measured (namely L,(R%)), and ¢
giving a finer distinction of these spaces which is important in many applications.
We refer the reader to any of the standard treatments of Besov spaces ([6], [10],
1), ).

There are equivalent characterizations of Besov spaces in terms of wavelet co-
efficients. We shall use these as our definition of the Besov spaces. Given s > 0,
let 7 > s, let ¢ and 9 be in C", and let 9 have at least r vanishing moments. For
1<p<o0,0<s<r,0<q< oo, we define the Besov space B;(L,,(Rd)) by means
of the (quasi-)norm

(2.8)
oo s a/p\ V4
<Zj=0 27%4 (ZIeDj al,p(h)p) ) ) 0 < g < oo,

. 1/p
SUp;>o 2’ (EIED] alm(h)p> ; q = o0.

We note, but shall not use, the fact that the smoothness condition on v assumed
for (ZR) can actually be weakened to only requiring that ¢ € B5F¢(L,) for some
e > 0. Each choice of ¢ and 1 with the above-mentioned properties gives a norm
in (2-8)) which is equivalent to the Besov norm.

In going further, we shall use the abbreviated notation

(2.9) BS = Bi(Ly(RY), 5>0,1<p<o0.

In the special case that ¢ = x|o,1], the wavelet ¢ is the Haar function and 7 is
supported on I for each I € D, e € E'. The Haar function is not completely suffi-
cient for our purposes (it barely misses characterizing the Besov spaces of interest
to us), because of its lack of smoothness. However, it does provide one direction of
the characterization in (2.8).

121l B3 (L, (Ra)) =

Remark 2.1. If a function h is in the Besov space Bg(L,(R%)), 0 < s < 1,0 <
¢,p < 0o, then its Haar coefficients ay ,(h) satisfy

a/p\ /1

o0
(2.10) ZQM Z arp(h)? < Cllbllps(z, @)
=0

1€D;
with C depending only on s and d.

This follows from well-known results on approximation by piecewise constant
functions. For example, let P; denote the orthogonal projector which maps f into
the piecewise constant function P;f which takes the value fr := ﬁ J; f on each
dyadic cube I in D;. Then, it is well known and easy to prove that

(2.11) If = Pifllr, @) < ClflBe (L, @an2 7"
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holds for all f € BY (L,(R9)), 0 < a < 1. Obviously, the left side in (ZI1]) can be
replaced by [|P;f — Pj—1f| 1, ®e). This latter expression is simply the ¢, norm of
the L, normalized Haar coefficients from the dyadic level j. This gives Remark 2]
in the case ¢ = co. Choosing a; < s < ap and interpolating between B (L, (R))
and B (L,(R%)) gives Remark 20l for all 0 < s < 1, 0 < ¢ < oo.

We can always assume that the scaling function ¢ and the wavelet 1) are sup-
ported in [0,¢] with ¢ an odd natural number. Then, when I € D; and I =
279(k + [0,1]¢), the functions 1%, e € E’, are all supported in

(2.12) I:=279(k+1[0,0%).

The overlapping support causes technical difficulties which can be overcome with
the following lemma (see Lemma 4.3 in [5]).

Lemma 2.2. There exist disjoint sets of dyadic cubes I'v,... Iy, with v = v(d),
such that
(i) D= Uzzl I,
(ii) T, N Ty, = 0, n#Fm, o B B
(ii) if I, J € Ty, either I C J or J C I orint() Nint(J)

0.

3. AN INTERPOLATION THEOREM

In this section, we shall prove the interpolation results ([H) and (LG). Given
a pair of quasi-normed linear spaces X,Y which are continuously embedded in a
Hausdorff space X', the K-functional for this pair is defined by

(3.1) K(f,t):= K(f,; X,Y) := ;nf [follx +tllfrlly, ©>0.

The real interpolation space (X,Y)g 4, 0 <8 < 1,0 < g < oo, consists of all f € X
such that

01 —6 q dt\1/9
(3.2) 11l xx)e., = {(fo K (f0119) ", 0<g< oo,

SuptZO tieK(fv t)a q = 00,

is finite. The expression in (3.2]) defines the (quasi-)norm for this space.

The fundamental interpolation theorem for the 6, ¢ spaces is the following. If U
is a linear operator which boundedly maps Xy to X; and Y; to Y7, then, for each
0<f<1land0<qg<oo,U also boundedly maps (Xo, Yp)g 4 into (X1,Y¥7)g,4 and
we have

(33) ||Uf||(X17Y1)9,q < C||f||(X07YO)9,q

for every f € (Xo,Y0)o,q-

The real interpolation spaces have been characterized for many pairs (X,Y"). We
shall need such characterizations only for certain sequence spaces and we restrict
the following discussion to the cases we need. Let w be a weight function defined
on (I,e) € A and consider the spaces £,(w) consisting of all sequences (cf)(s,e)ea
for which

1/p
€ I7 ; p) ) )
B4 1 roealiw = (Zaacsul el 0<p<oo
SUP(1.e)en w((17e))|61|7 b =00,

is finite. We shall only be concerned with weights w of the form w((1,e)) := |I|*,
s e R.
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If wo((L,e)) = |I|** and wq((I,e)) = |I|°* are two weights of this form and
0<6<1andO0 < pg,p1 < oo, then (see [1], p. 119)

(3.5) (f,,o (wo), lp, (wl))e,p = Ep(“’G)v

where
1 1-6 0

(3.6) Z= + =, we(l) =11, sp=(1—0)p=2 +op>L.
p Po p1 Po p1

It is also possible in the above interpolation results to replace the ¢, spaces by
Lorentz spaces. We shall only need this in the case of the weak-¢;(w) spaces which

correspond to the Lorentz space {1 o (w). The quasi-norm on weak-¢;(w) is given
by

1(eD)aerealles o) = sup ew{(l,e) € A:|c7[ > €}
(37) =sup € Z |I|s
e>0
(I,e):|c§|>e

In the case s =0 and w((I,e)) = 1, for all (I, e), we refer to the space weak-£1(w)
as simply weak-¢1. If w((I,e)) = |I|® for some s € R, then (see [I], p.113)

(3.8) (41,00 (W), L2(w))o,p = Lp(w),
where
1 1-6 6

Note that the weight w in ([B8]) is not varying.
We shall prove (LH) and (Lf) by using wavelet sequences. If a function h €
L1 (R?), we can estimate its L; normalized wavelet coefficients by

(3.10) ja5(B)] < Co / ),

where [ is as defined in (ZIZ). It follows that the sequence of wavelet coefficients
(af(h))(1,e)en, are in £y for each j = 0,1,.... However the combined sequence
(a(h))(1,eyea does not have this property. In fact, simple examples show that this
latter sequence need not even be in weak-¢;. The following lemma shows that a
substitute for the weak-¢; property holds.

Lemma 3.1. For any s > 1 and w((I,e)) := |I|®, there exists a constant Cs > 0
such that for each h € L1(R%), we have

(3.11) > w((I,e)) =e > []* < Csl|hl|yray, € > 0.
(I,e):|ag(h)|>e|I]* (I,e):lag(h)|>€lI]®
Proof. From (B.10), for any (I,e) € A,
(3.12) lag(h)| < CO[|h| dx =: bj(h) =: br(h),
I

where the equalities serve to define b$(h) and br(h). We fix € > 0 and let A :=
{(I,e) € A :b5(h) > €¢|I|*}. For each m, let A,,, := {(I,e) € A: I €Ty}, where
the T',,, are the sets of Lemma [2.2] which partition D. It is enough to show that

(3.13) e Y I <Ol e
(I,e)eAm
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We fix m and prove (BI3). We say a cube I € A, is maximal if I is not
contained in any other cube J with (J,e) € A, for some e. We next show that for
any maximal cube I, we have

(3.14) e > P §0[|h|.
(J,e)EAm,JCT I

Indeed, for k& > 0, there are at most £92*92¢ indices (.J,e) such that J C I and
|I| = 2%4|.J| and therefore

(3.15) S IE <)Y MO < Ol < Cethr = ce*1[|h|,
(J,)€Am,JCT k=0 1

where the next to last equality is the criterion for membership in A,, and the last

equality is (8:I12). This completes the proof of ([B.I4). We now add the inequalities

(BId) and use the fact that the maximal cubes are disjoint to arrive at (3I3]). This
completes the proof of the lemma. O

We can now prove our main interpolation theorem.

Theorem 3.2. We have the following relations between interpolation spaces and
Besov spaces on R%:

(3.16) (L1, By"®)aypp = BV, 1<p<2,
and
(3.17) (Loos By'*)ajpp C BYP, 2 < p < o

Moreover, the norm for the interpolation space on the left side of (BI0)) is equivalent
to the norm of the Besov space on the right side. Likewise, the norm of the Besov
space on the right side of BIL) is less than a fized multiple of the norm of the
interpolation space on the left side.

Proof. We first prove (3I6). Let w((I,e)) := |I|*, s := 1 and let ¢§(h) =
[I|~%a$(h) with a$(h) the L; normalized wavelet coefficients of h given by (23).
We consider the linear operator U which maps h into (c§(h))(1,e)ea. Lemma Bl
gives that U boundedly maps L; into weak-¢1(w). The definition of the Besov space

le/ 2 gives that U boundedly maps this Besov space into f2(w). By (33]), we have

that U boundedly maps (L1, 321/2)94) into ¢,(w) when 6 satisfies % =104 8 je.

2
6 =2/p'. From the definition (ZJ)) of the Besov spaces, we have
(3.18) Clilci(m)a,eyealle,wy = 17l g

This gives that the interpolation space on the left of (BI0) is embedded in the
Besov space on the right and

(3'19) ”h”B;l,/p/ < C”hH(Lthl/z)Q/p,yp'

We can reverse this embedding as follows. We consider the operator V' which

maps a given sequence d = (df)(re)ea to the function V(d) = }7 7 )en d797 ;-
d+1

Then V boundedly maps ¢; into L; and £2(ws) into B;/Q when wy((I,€)) :=|I|” = .
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_dt1p . .
Thus, defining w,((I,e)) := |I|” ¢ » and using (Z3), we obtain that V' maps
. 1/2
£y (wyp) into (Ll,BQ/ )2/p',p and

(3'20) ”VdH(Lthl/z)Q/p, < CHdHlp(wp) < C”VdHB;/I,/.

The set of functions Vd, d € ¢,(w,), equals B;/ P and therefore we have reversed
the inequality (3I9). This completes the proof of ([BI6).
The proof of the embedding (3I7) is similar to the proof of (3I9) except that

we use (34 in place of (3J). O

4. PROOF OF THEOREM

In this section, we show how Theorem[L2 can be proved by using the interpola-
tion results of the previous section. Throughout this section, Q C R? is a bounded
set. We introduce below a linear operator T' and examine its mapping properties.
From these mapping properties we easily deduce the averaging lemma.

For any function F' € Li(R% x Q) + Lo (R? x ), the differential equation

(4.1) fHrv-V,f=F

has a solution

(4.2) flz,v) = / e *F(x — sv,v) ds,
0

which is also in L1 (R? x Q)+ Loo (R? x Q). Note that if FF € L,(R?xQ),1 < p < oo,
then so is f and
(4.3) Iz, maxa) < 1FlL,®ixa)-
Also, we have
(4.4) [v-Vafllr,®ixe) = I1F = fllo,®ixo) <20F| L, ®ixo)-
We define the linear operator T by

(4.5) TF)@) = f@) = [ fla)do
where f is given by ({Z). For each 1 < p < oo, we have
(4.6)  ITF |1, (r) < (meas() /P |||, maxe) < (meas() 7| Fl1, @ixa).

where the last inequality is (E3).
Let us consider more closely the action of 7' on La(R? x Q). If F € Ly(R? x Q),
then from Theorem [[T] (i.e. the case p = 2 of the averaging lemma), we have

47 TFl g < C (Ifla@ixe) + 10 Vafl@ixe) < ClF | L®ixa);

where the last inequality uses (E3) and (&4)). In other words, T is a bounded
mapping from Ly(R¢ x ) into the Besov space 321/2.

In summary, we have shown that T' boundedly maps L,(R¢ x Q) to L,(R?),
1 < p < oo, and boundedly maps Ly(R¢ x Q) into B;/2. It follows that for
1 < p < o0, we have

(4.8) ||TF||B;nin(1/p,1/p'> < C|F|L,mixa)y, F € Ly(R? x Q).

For example, the case 1 < p < 2 follows from Theorem and the fact that
(Ll(Rd X Q), LQ(Rd X Q))Q/;D'JJ = Lp(Rd X Q)
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Proof. Proof of Theorem [L2AIf f € L,(R? x Q) and g := v - V,f € L,(R¢ x ),
then the function F := f + g is also in L,(R? x ). The differential equation (E.))
with this choice of right side F has f as its unique solution. Thus TF = f and the
theorem follows from (H.8). O

5. THE SHARPNESS OF THEOREM

In this section, we prove Theorem [[3]in the case 2 < p < oo. Similar techniques
(which we do not give) will also prove the case 1 < p < 2 (see [12]).

Let Q C R? be an arbitrary but fixed bounded domain. It follows that there is
a constant M > 0 such that

(5.1) | <M, vef.
By rotating 2 if necessary, we can, without loss of generality, assume that s :=
Qn{v=(v1,...,vq): v; >0, i=1,...,d} satisfies meas({2s) # 0 for some § > 0.
We shall use the piecewise linear function of one variable which satisfies
u+d+1, —d—1<u<—d,
(5.2) Fu):=¢ 1, —d<u<d,
—u+d+1, d<u<d+1,
and is zero otherwise.
We shall build the function f called for in Theorem[[3]as a sum of functions f
which we now describe. Let
I:=[9(k —1)d, 27"+ 9(k — )d]¢, k=1,2,...,

be the family of dyadic cubes centered at ¥ = (zF, ... ,m’;), where

eh=2""1 49k -1d, i=1,...,d
From F we construct the family of multivariate functions
Fi(z) := F(x1)X (50,50 (T2) - - X600, (Ta), O =27V,

Note that F} is one on the ball of radius 2-%v/d centered at the origin. For v € Qs
let Fi(-,v) denote the function whose graph is obtained from that of Fj(-), by a
shift of the origin to ¥ and then a rotation of the x1-axis to the v-axis (there are
many such rotations and the analysis that follows holds for any of them). Then,
Fy(-,v) is one on the ball of radius 27%v/d centered at z*.

In this section, we use the notation ¢y, := Hy, , for the following L, normalized
multivariate Haar function with support Ix:

V() = 287 H(2%2y — 9d(k — 1)2F)x(2F 2o — 9d(k — 1)2%)
Cox(2Fxg — 9d(k — 1)2%)
where x := X[o,1- Note that for all v € Qs, Fj.(-,v) = 1 on the support of vy.
We denote by H, the hyperplane which is orthogonal to v and passes through

the origin, and we denote by P, the projector onto H,. For a multivariate function
h, we let fL(P 2) h be the line integral of h along the line L(P,z), which consists of

all points in R? which project onto P,x.
For each k > 1, let

(5.3) fr(x,v) == { gk(x’U)Sgn(fL(Pvz) V), Z i 3‘5\’ 0.
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Given any sequence § := () of positive real numbers from ¢, we define

(5.4) ) = FoB) = 3 2HD/P B (- v).

k=1

As usual, g is defined via
(5.5) g:=v-V.f.

In this construction every sequence 3 € {, generates a corresponding function
f(-,3). The smoothness of f is governed by the behavior of 3. We investigate this
relation closer and show how different requirements, imposed on 3, lead to different
regularity of f. We will need the following lemma.

Lemma 5.1. Let Qg, I, and vy, be defined as above. Then, for every v € Qs and
k> 1, we can find a set W (v, k) C P,I;, C H, with the properties:

(a) measq_1 (W (v, k)) > c2~ k(=1

(b) for every v € Qs and w € W (v, k) we have

[ ] > e,
L(w) N
with the constant ¢ > 0 depending only on § and €.
Proof. We shall prove a result similar to (a) and (b) for the unit cube. Then,

the lemma follows by dilating and translating. Let @ := [0,1] and let Hy be the
following Haar function supported on Q:

[, 0<z <1/2, 0<a;<1, i=2,....,d,
(5.6) Ho(x){—L 1/2<z1 <1, 0<z; <1, i=2,...,d.

Let W:={xeQ: 1/2<x1 <3/4,0<2; <3/4,i=2,... ,d—1, x4 = 0}. For

eachv € Qs and x € W, z 4+ tv € Q if and only if t > 0 and
(57) i+t <1, i=1,...,d.

This means that if v € Qs5, x € W, and = + tv € @, then Ho(z + tv) = —1. Note
that (5.7) holds for

11—z
0<t< min — 20,
i=1,...,d v;
Since for x € W and v € Qg
1—ux; 1 1
> >
v,  4dv; — 4AM

we have (5.7) for 0 <t < ;:-. Hence for each x € W the line segment L(P,z) N Q
has length > -4, because |v| > §. Now, let W (v) be the projection (by P,) of W
onto H,. Then, measqg_1(W(v)) > ¢ measq_1(W) with ¢ depending only on ¢ and
M, because 6 < v; < M, ¢ =1,...,d. This shows property (a) for Q. Also, for

w € W(v),

)
[ owl= [ =g
L(w) L(w) 4M

which verifies (b). O
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The following theorem implies Theorem [[3] for 2 < p < co.

Theorem 5.2. Let Q C R? be a fized bounded domain. For every sequence [3 € Ly,
2 < p < o0, the functions f and g, defined in (54) and (5H), are in L,(R? x Q)
and the velocity average f is in B;/p(Lp(Rd)), If B € ly\ 1ty q <p, then f ¢
By/* (L (RY)).

Proof. We start with a direct calculation of the L, norm of f. We use the fact that

for each fixed v € 5 the supports of fx(-,v) are disjoint since the points x* are
sufficiently separated from each other. This gives

11 oy = [ [ Vol dodo = 3724005 [ [ fie.o)p dado,
Q5 JR4 1 Q5 JR

Since || fx (-, v)|| .. (re) < 1, we have that for every v € Q;,

(5.8) /]Rd | fi(z,v)|P de < meas(supp fr(-,v)) < 2~ k(d=1)

Therefore, we derive

M8

(5.9) ||f||1£p(]Rd><Q) < C'meas(Qs) 6£ < 00,

k=1

and hence f € L,(R? x Q).

We next prove that g is also in L,(R% x Q). For each fixed v € Qs, g(-,v) =
[v|Dy(f(-,v)), where Dy, (f(-,v)) := ro] - Vaf is the derivative of f in direction 7.
Thus,

9117, axey = [ 10PIDu(f oD ey do
PRI T [ »(BY)

< 022’9(*”/32/0 1Dy (fi (s 0D gy -
k=1 ’

Now, for each v € Qs, we have ||Dy(fr(-,v))|lL ey < 1, and Dy(fx(-,v)) = 0
outside of the support of fi(-,v). Therefore, as in (B8), we get the inequal-
ity [|Do(fe(-,0)II5 ®e) < C27 %=1 This result and the previous estimate for

HQHiP(Rde) lead to

o0
(5.10) gll} (gaxqy < € meas(Qs) Zﬁz < 0.
k=1

Therefore, by Theorem [[[2} f € B;/ P(L,(R%)) and the first part of the theorem is
proved.

Going further, we consider only sequences 5 € ¢,. We shall show that f ¢
B;/p(Lp(Rd)), q < p, whenever (3, used in the definition of f, is not an element of
¢,. For this purpose, we calculate ar, ,(f) (see (Z6)) which is the sum of the L,
normalized Haar coefficients of f for I;. One of the Haar coefficients that appears
in the sum defining ay, , is obtained from the inner product of f with v which
is the same as the inner product of 2(4=1/P3, £ with 1. Therefore, using the
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definition (B3) of fi, we obtain

lan, p(F)] > | / ) / G, (0,0} o)
veEQs Jaxely

= [ aMé-vig, / / Fin
vEQNS WE Py Iy L(P,z)

By construction, fr =1 or fi = —1 along the line segment L(P,z) N I, where the
sign of fi is determined by the sign of fL(P 2) 1. Therefore we have

lar, » ()] > / 2k(d71)/p5k/ |/ Y| dwdv.
vENS weP, I}, JL(Pyx)

Now, we use Lemma BTl and derive that

dwdv|.

lar p(F) = C [ 2K/ 0 kok/P meas(W (v, k) )dv
vEQS
> C meas(€s) 3,284 1)/Po—kokd/v'g=kd=1) _ 03 o=F/p,
Hence, we get

(O arp(HIYP > |ag, o(F)] = CB27H7,

I1€Dy,
and then
[e.e] B (oo}
@Y ar, (NP = CY B
k=0 1€Dy, k=1
For every 8 € £, but not in ¢,, the right side is infinite and Remark 2T shows that
fé B;/p(Lp(Rd)). This proves the theorem. O

6. WEAK-/; ESTIMATES

In the proof of Theorem[.2] we have not used any special properties of averaging
near Li. We have only used the fact that f € L;(RYx ) implies that f is in Ly (R%).
In this section, we want to show that the condition f,g € L;(R? x Q) gives extra
information about f. We first consider domains € which satisfy

(6.1) Qc{veR!: 0< M <|v| <M},

for some positive numbers 0 < M < M’.
To a function h € L1 (R%) we associate the sequence
A= A(h) := (ar(h))rep+,
where a; is defined by (Z4). As we remarked earlier, for a general function h €
L1(R%) and for any j > 0, the sequence (ar(h))sep, is in £1. However the combined
sequence A(h) is not necessarily in ¢; and in fact need not even be in weak-£1. We
shall show however that when f,g € L1(R? x ), then A(f) is in weak-¢;.

The main new ingredient in the weak-{; estimate for wavelet coefficients is given
in the following lemma. For its formulation, we need to introduce some notation.
For any cube @, we let £(Q) denote its side length. Given a vector v and a cube
@, we denote by Q(v) the smallest (finite) cylinder which contains @) and has axis
passing through the center of @ and in the direction v . We recall our notation I
for the support cube associated to I (see (ZIZ)) and P, for the projector along v
(see the paragraph preceding (5.3)). Given a dyadic cube I, the cube I together
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with some of its translates form a tiling of R?. We let I’ denote the union of I
with all of the neighboring cubes of I in this tiling. Each neighboring cube can be
written as J for some dyadic cube J with |J| = |I|. Therefore,

n
(6.2) =1
j=1
with the number y of dyadic cubes in (6.2) depending only on d. We note that
I(v) C I for all v € Q.

Lemma 6.1. Let Q be any bounded domain in R? and f,g € L1(R? x Q). Then
for every I and J € D, for which J C I, we have

(6.3) //|fxv|da:dv<0 ///<|fa:v|+€()|(||)|>dxdv

where C' depends only on d and M.

Proof. We fix dyadic cubes I and J € D for which J C I. Note that J(v) C I(v)
for all v € . We fix v and consider any translate K := av + J(v) of J(v) which is
contained in I(v). For every v € Q\{(0,...,0)}, we can write g as g(-,v) = [v|D, f,
with D, f the directional derivative of f(-,v) in the direction ro7- Then, for cach

x € J(v), we have

(6.4) @) < 1@+ av,0)] + / 9, )

L(P,x) |v]

)

where P,z is the projection of z onto H, and L(P,x) is the line segment consisting
of all points in I(v) which project onto P,z. When we integrate (G.4) over J(v) we
get

o o)l
(6.5) /}(v)|f<x,v>|dx< /K | (,0)| de + CE() / 9@, 0)l 4,

I(v) v

There are at least C S ch01ces of a such that the sets K are disjoint. Therefore,

by summing the correspondmg inequalities (6H), we obtain

oI -
c(—,)/ (2, v)| dz g/ |f(x,v)|da:+0€([)/ otz )l
0J) Jiw) I(v) I vl
We have that J C J(v) and I(v) C I’ for all v, and therefore

(6.6) /|f 2,v)|dz </ <|f(:c o) + el )|g(|x |“)|) da.

We integrate over v € 2 and arrive at (E3). O

We shall use the two auxiliary sequences

(6.7) b= b (f —co//<|fxv|+€()|(||)|> dz dv

and

(6.8) b= b (f —co///<|fxv|+€()|(||)|> da dv,
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where the constant cg := 2¢ max(||¢)|\%x(R), ||¢H%x(R)). It follows that

(6.9) ar(f) < br(f) <br(f).

To prove that (ar(f))rep, is in weak-¢1, it will be enough to estimate the number
of elements in the set

A(f,e) :=={I €D : by > e}
For this purpose, we define a cube I € A(f,€) to be special if
(6.10) by < 2ubr,

where the constant p is defined by (62). We denote by A®(f,€) the collection of
special cubes in A(f,€). The following lemma gives an estimate for the cardinality
of A(f,€) in terms of special cubes.

Lemma 6.2. Let f and g € Li(R? x Q) where Q satisfies (G1). Then for every
€ > 0 we have

(6.11) AfesC > 1og

TeAs(f.e)

where C' depends only on d. Here and later log denotes logarithm to the base 2.
Proof. Let us observe that for every cube J € DV we have
~ C
b < 57 [ [ 150 + lote, o)l dade
M Jo )y
(6.12)
C
< M(”f”Ll(]Rde) 119l Ly (rixa))

because ¢(J) < C and |v| > M for v € (.
If J € A(f,¢€) is not a special cube, we have that

(6.13) by > 2uby.

It follows from (6.13) that there is a cube J; with |J;| = |J|, which is one of the
cubes, participating in J’ (see (6.2))), such that

(6.14) by, > 2by.
If Jp is a special cube, we stop. If not, we repeat the same procedure for J; and
get a cube Jy (J2 & {J, J1}) such that
by, > 2bs, > 2%by,
where in the last inequality we use (EI4). This process will terminate after a finite
number of steps, because from (GI2) it follows that on the n-th step we have

C ~ -
27 Il axmay + 1gllz, maxra)) 2 bs, = 2705

Let I be the special cube which terminates this sequence, i.e. I = J, and
B[ > ZnBJ > 2%,

Hence we have

b
(6.15) n < log ?I
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Therefore, every J € A(f, €) is contained in a ball with center, the center of a special

cube I = I(J), and radius < Cnf(J) < C4(J)log * b with C depending only on d.
This gives

#Nro<C Y (oglyt

I€A3(f,€)
and the proof is complete. O
To each special cube I € A®(f,€) we associate an index m(I) := m([, f,€) as
follows. Let J be the smallest special cube in A(f,€), such that
(6.16) Jcl.

Note that b tends to 0 as |.J| — 0 because f, g € Ly (R?x Q). Therefore, a smallest

J does exist. We define
|I|1/d

Then, m(I) is an integer which represents the difference between the dyadic level
of I and J. Recall that since J is a special cube, we have by > € and 2uby > by.

Lemma 6.3. Let f,g € L1(R? x Q). If I € A*(f,€) is a special cube, then
(6.17) by > 0c2mWe,
where C' is a constant, depending only on cg, £ and d.

Proof. Let I € A°(f,¢) and let J be the smallest special cube in A® (f,€), such that
J C I. Then ¢(J)2™0) = ¢(I) and by > e. We multiply this last inequality by
2m(I) and obtain

%co/ﬂ/jﬁ(x,vﬂdxdv+co/ﬂ/j€([‘)w dady > 27D e

Now we use ([E3) of Lemma [Tl and derive

C//I[If |+£()|g(|x|” ]ddv—f—c// |gx” dadv > 2D

Since J C I C I', the above inequality gives

C/Q/ [|f(x,v)|+£([)%] dzdy > 2™ We,

But the cube I is special (see (610)) and therefore

i = () ~or = o [ [ i@+ 6028 dnao > camive
Q

]
This proves the lemma. [l

The next theorem gives us the weak-£; estimate.

Theorem 6.4. If f € Li(R? x Q), g :== v-V.f € L1(R? x Q) and Q satisfies

assumption [G), then A(f) is in weak-¢1 and

- C
(6.18) A ler oo < =5 [”fHLl(]Rde) + ||g||L1(Rde)] )
M

where C' is a constant, depending only on cg, ¢ and d.
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Proof. Given any € > 0, we need to show that

C
(6.19) #A(f,e) < e Ly raxay + 9L, mixe)] -
Lemma [62] gives that
log &) _
#A( Z 1og d - g Z %61
As(f.€) € renro  (2)

Since for I € A(f,€), we have by > €, there is an absolute constant C' such that

B_I d ~ —1/2

(b_z) €

and therefore
C AN
. .

< = htl

(6.20) #A(f,€) < - Z < - ) br.
As(fe)

For each I € A%(f,¢), Lemma B3 gives

;o\ V2
(6.21) (—I> <272,

€
Also, for v € Q and I € DT, we have
(6.22) by < —/ / (If (z,v)| + |g(z, v))x(x) dedv.

When we combine ([6.20), [6.2I), and (6.22), we obtain
C
a2 S [ [ ol +lote o) K ) deds,
eM Q JRA
where
K(x):= Y 27™D2(x).
ITeAs(f,e)

We will use Lemma to show that K is bounded, which will complete the
proof. We let T'(¢, f,¢€) := A®(f,e) NT;, i =1,...,v. Then, we can write

~
K=Y K,
i=1
where

Kio= S 2z
I€r(i,f,¢€)

and it is enough to show that each of the functions K; is bounded. In other words,
we need to show that for every z € R?

(6.23) o el <e i=12,..
Ier*(i,f,e,x)

where T'*(i, f,e,x) := {I € T*(i, f,¢) : = € I}. To prove this inequality, we fix a
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point z for which the sum in (§23) is not zero. We make the following observations
about the cubes appearing in this sum:

(i) There is a smallest cube I* € T'*(4, f, ¢, x) (because f, g € L1(R? x R%)).

(ii) There is at most one I € D;, j > 0, in T'*(4, f, €, z) because of the defining
property of the sets T';.

(iii) If I € T*(4, f, €, x), then m(I) > m(I*)+¢q, where g is the difference between
the dyadic level of I and I*.

It follows from (i)—(iii) that

Z 27777,(])/2 < i27n/2 < C,

1€ (i,f,€,x) n=0
as desired. O

Notice that the smaller the M in (6I), the bigger the constant & in (GI).
However, one can allow M to go to zero if we restrict our attention only to certain
wavelet coefficients as the following result shows.

We fix an arbitrary n > 0 and consider domains 2 such that

(6.24) Qc{veR?: 27" < |v| <M}, n>0.
For f € L1(R? x ), let
A(f) = (a1(f))jeps, with D == | ] D;.

jzn

Corollary 6.5. Let f € Li(R? x Q) and g := v - Vof € Li(R? x Q) where Q
satisfies assumption (6:24). Then, A\, (f) is in weak-f1 and

||/\n(f)||€1,oo <C [HfHLl(Rde) + ||9||L1(1Rdx9)] ;

where C' is an absolute constant.

Proof. This can be proved by dilation or alternatively by repeating the proof of
Theorem and using the fact that for v € Q and I € D;f', we have % <C. O
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