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1. Introduction

We wish to consider the saturation of positive convelution operators in the
space C*[—~=, n] of 2n-periodic and continuous functions. For this purpose, let
(L,) be a sequence of operators given by the convolution formulae

1 T
. L{fx) = (fxdp) () = — [ S+ 1)dp, (1)
1 =
where each dp, is 2 non-negative, even, Borel measure on [ — =z, 7] with — f i, () =1.
z J %

We also suppose that the Fourier—Stieltjes -coefficients Onn =— f coskt du, (ty
_ %
satisfy

) lim =8 _ g 20, k=12, ...

n-‘-m]- 1.n

The requirement {2) is a standard assumption for saturation theorems. In -
parrtcular, under these assumptions, we have that for f¢C*

3) I f~LA f)i[ = o0(l—g;,), if and only if fis constant, .

where || —{| denotes the supremum norm. This is the “o™ part of the general situra-
tion theorem of SuNoucHI—Wartar: [8] and is easily proved using transformis.
Namely, if | f—L,(f}l =0(1—¢;,,) then it follows by taking transforms that f(k)—
—f()er,» = 0(1—¢y,,). Because of (2) we have f(k)=0, k0.

The situation becomes more difficult if we seek a characterization of the func-
- tions f which satlsfy a pointwise “o” condition

4) J&)—L,(f,x}) = 0,(1—g,,) for each x¢[-m, 7]

Here, the simplest case occurs when ¥, =k2. This is equivalent [7] to having for each
S;=[—=, A]\(~¢, 8, =0

©) Jdn(@®) = o(l~0,,).

e
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POINTWISE SATURATION 365

1other equivalent formulation is that the asymptotic formula

lim (1 —gy) = (La(fs %)= f(x)) = 17 (x)
hold for all functions f with two continuous derivatives. Because of (3), it is
e to use the parabola technique of BaJsanski and BojanIc [2] to obtain
twise “o” theorem. 7
sketch of the argument is as follows. If fis a continuous function on [, =]
satisfies (4) then subtracting a constant if necessary, we can assume f{—z)=

=0, We also suppose that f(x,)=0 for some x, €(—=, 7). So that from Lenima

436

. it follows that there is a point ¥ €(—=, 7} and a parabola @(x) = a(x—y)>+
-¥)+f(»), with a<0, such that Q(x)=f(x} for x¢[—n, n]. Therefore,

LUN 10 == [ U0~ dmfx—y) =
= J @@-00Ndu - =

:%_f (x—y)zdnu(x—y)*"g' f(x_y)du,,(x—y)-

is easy to show that the second term on the right hand side of (7)is o (1 — gl )
1g (5) and the fact that dy, is even. Therefore,

LUN~SW) s = [ G-pduG-5)+o(i-e,,) =

s an [ sin? [xg—y] din (x—y)+0(1 =0y 2) = an?(1 -0y ) +0(1 - 04,,),

. . . t
we have used the inequality sin — = P for 0=r=mn.

nce o<0, this contradicts (4) for the point y. Thus f(x)=0 for all x¢[—m, #].
iing f by —f in the above argument we conclude that f(x)=0 on [—m, ]
us f=0 on [—=, n] as desired.

1e parabola technique cannot be applied directly when (5) does not hold

n this case the terms f (x—y) d_u,,(xw y) are not negligible. The object of

per is to prove a gencral pointwise “o” thcorcm with no restrictions on ().

i
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366 R. A. DEVORE

2. Main resnlts R

Tueorem: Let (L,) be a sequence of positive convelution operators of the forin
(1) where the Fourier coefficients of du, satisfy (2). If f€C* then

® JX)—-L(f. %) = 0.(1—0,,,) for each x€[~n,x]
if and only if f is constant on {~m=, n). '

Proor: The “if”” part of the theorem is obvious. The proof of the “only if”
part is based on a trigonometric analoguee of the parabola technique of BAISANSKI
Boianic. However, we must first prove two lemmas which give some properties of
functions which satisfy (8). Of course, ultimately we wish to show that such functions
are constant.

If x is a point in [~=, n], such that, for each neighbourhood 7 of x we have
f du,(t) = o{l—g, ,), then we shall say x is an essential point. Otherwise; we say
I
x is a negligible point. Let f'be a function which satisfies (8). We set M = max ¥iQ}

—HEIER

and when xge{—m, ], with f{xg)=M, we let M (xo)={t: ¢ is an essential point
and flxo+1) = M}. Also, let M= N M(x,). We consider all points modulo 2.

Lemma 1: If x§IR, then x is a negligible point.

PROOF: Suppose x ¢ M (x,) for some x, with f(x,)=M. Then either x is-.xiegiigible
or f(xg-+x) < M. In the latter case, let 7= {y:f(x;+y) < J[M+flxq+x)]. 1 is
a neighbourhood of x and :

M —f(o+2)] [dpa®) = [ 1F(x6)—fo+ D1 dita ).
¥4 . 1

However

= JUE -t 0l = % [ Ut0—retOlamm =
=f(x0)_'Ln(.fs xO) = 0(1 —Q-l.n)e

This shows that [ d,(t) = o(1—g, ) and thus x is negligible.
. I

Lemma 2: If f is not constant, then M has only a Jinite number of po’iic?{s'. Also,
if x is any point in M then x=2nx where « is rational. -

PROOF: Suppose first that (x,) is a sequence of distinct points each of which is
in M. Choosing a subsequence if necessary we can assume X, —+x where 0= x<2g,
We write x,=2nrx, and x=2nx. :

Let x, be any point in [—=, n], where f{x,)=M. Then, f(x,+x,) = M and
Xa € M(xo+x,), so that f(xg+2x,) = M. More generally, for each positive integer
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k, we have f(xy-+kx,) = M. By continuity, f(x,+kx) = M for each positive integer
k.1f ‘e is irrational then the points ko taken modulo 1 are dense m [0, 1] so that the
points kx taken modulo 2n are dense in [0, 2x}. Thus, in this case, f=M on a set of
points which are dense in [x,, x,+2n] and therefore J=M on {x4, x,+27]. From
periodicity, we conclude that fis constant.

If « is rational then the points kx, = k (x+8,) where 054, ~0, taken modulo 1,
are dense in [0, 1]. Therefore, we again have that Jis constant. This shows that M
has no limit point in [0, 2] and hence must consist of only a finite number of points.

Finally, if 2 point of the form x=2x« with a irrational were in M then, as we
.have mentioned before, f(xy+kx) = M for each positive integer % so that f=M
on a set of points which is dense in [xq, xo-+27]. This again gives that f is con-
stant. ‘

PROOF OF THE THEOREM: Let f be a function which satisfies (8) and suppose fis.
not constant. By subtracting a constant, if necessary, we can suppose that f{—a)=
=f(n)}=0. Also suppose M >0. Then, it follows from Lemma 2 that there is a po-

, k
sitive integer m such that MM < {-—E: k=0, &1, +2,..., im}. Let
_ m

= ] [k:z n krn n]

T Em T N[~=, z).

k= —m

Since each point y ¢ 9 is negligible we could use a compactness argument to
show that for S={—=, 1\J '

© Jdm ) =o0(1—p, ).
5

The fanction A(x) =—M sin® mx+2M is zf(x) on [~m ). Let ¢ =
= m_ijn (R(1)~f(t)). Then, h(x)—c = J(x} on I and for some yet
1€

| h(y)~c = f(3).
Therefore,
(10) S @~ kOGN~ 3) = [ 1))t (- ).
7 i
But A(x)—A(y) = — M cos (Zmy) sin? m(x—y) —%{- sin (2my) sin 2m(x—y) and thus
:; __[ hC) — h(p)ldpa (- y) = —-gcos (2my)_{ sinm(x—y)dp, (x~y) =

= - I;—J- €os Zmy(l - Qz:n.n)' |
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Here, we have used the fact that dy, is even to drop the term involving sin 2m(x—y)
which would normally appear. Because of (9), we have

~ [~ b iy ) =
= = [ ) —hONditnx =3~ & [T~ k(e x - 7) =
o s ‘ _

M
=T cos 2my {1 ~ @zmm) + 0 (1 ~ 0y n)-
Finally, from (10)

LU ~10) = [UC N = +oli—ai) =
= o [ ~hONdi ) +oll~ ) =

= —%COS 2my(l — gy +o(l —0y ) = —%‘—cos 2myp(1— 01 p)¥2m+0{l —y )
where for the last cquality we have used (2).

Since cos 2my >0 and ¥,,,>0, we must have f())—L,(f, ) = o(l —p , ) Which
is the desired contradiction and therefore M=0. This shows f{x)=0 on [—=, z}. To
see that f(x)=0 on [—=, n}, we merely work with the function —f in place of f
in the above argument. This completes the proof of the theorem.

3. Remarks The first pointwise saturation theorem appears to be the “o”
theorem for the Fejér operators (o,) which was given by ANDRIENKO [I] In this

case, it is possible to weaken (4) by discarding certain small sews (e.g. countablc)
and still conclude that f is constant.

This cannot be done in general. For example, if (L,) is any sequcncc satlsfymgA
(2) with ¥, =k? then the function f(f)=|t| satisfies

JO-L(fx) =0l—e,) (—m<x=m x0)
ANDRIE‘NKO has also given local “o™ theorems for the Fejér operatars. Na.mely, if
fR)—0,(fi x) = 0(n™")  (a=x=b)
then fis constant on [a, 5], To see that this cannot be done in general, let

1

n

. , . -2 :
d#ﬂ = E- {I """é“ H”Z] (dt?“-l +ab—n"’) +{14_ (dg"fl +dg._xf2) :

439




POINTWISE SATURATION 369

where dgxn denotes the Dirac measure at x,. Then

I—osn=n"2+0@n"3
and

( Qk n) kz kﬂ

If fis any function in C* which is twice continuously differentiable on { —-%, _g}
th’e_rl : | .

fim 202(Lu(f, 3)~f()) = S"(5) + 5 [f[x+;] +f[x ] 2f(x)]

for x¢ [ —-g-, ;—;] Thus, we can take any such f and define it outside [-%, —-;—t-] in

such a way that
f[x+32t—] —f-f[x—«g..] = 2f(x)—2f"(x) [-%{Jc-f.-g-], |
and then f will satisfy
f(x)" Ln(f'! x) = x(l —Ql.n) [_g {x<“18r_] -

In an unpublished paper, H. Berens has shown the pointwise *“o” theorem
for the case when there is an O0<a=2 such that Yi=k% k=1, 2, ... . Here, the proof
is based on knowing that the function 4,(t) whose Fourier cocﬁicaents are X~ has
the property that

[
[ h()dt >0
for each ~n=g<b=x.

In this same vein, if we let di (1) = 2(1—gy ) ‘Sm --d;z,,{t) then

— f ldA,(t)|=1. Therefore, there is a subsequence (1) and a measurc d1 such that

d by, —~d4, weak x. Our essential points are just the points in the support of d/ if
the support of dA is all of { —mn, x], the proof of the theorem can be given as we argued
in Section 1.

For the Cesaro means [3} and more generally the typical means [4] of the Fourier
series, H. Berens has given both pointwise “s™ and “0” theorems, When lllt"kz
k=1,2, ..., then there is a companion pointwise “0” theorem which slso is due
to BERENS {5] However, there is no general pointwise “O” theoremn which is companion

24 Lipear Operators and Approsimation
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3%

to our “¢” theorem. For such a “0” theorem, it will be necessary to assume the
multiplier condition

I_Qk n ]Oﬂ
I .L..” L, Lw, Lm y
['l’k(l _"Ql,u) k=0€,( }

since this is needed even in the norm case. (See for example DEVoRE [6].)

Regarding the form such a “0” would most likely take, we note that when the
multiplier condition holds then there is an asymptotic formula for (I;—,,)i IfDis
the distribution with D(k)=y,, then there is a subsequence (1;) such that for each
JFEC* with f+ D continuous we have

lim (1— gy 0)~ (Lo, (fs ®)—f(¥)) = f*D.

oo

This asymptotic condition indicates that the “0O” theorem should read: If g€ Z, and
O lim () ML D) = 200 = T (10,0 (L D),

ne—ca

then f«D¢L, and f*D =g a.e.
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