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Abstract— Vision-based control of agile autonomous vehicles
in complicated 3-D environments requires fundamental and
ground breaking innovations in multiple, related disciplines.
These disciplines include control theory, vision processing,
signal processing, sensor development, micro-computer tech-
nology and the design and instrumentation of micro-air-
vehicles (MAVs). Extremely agile small vehicles with acute
situational awareness are required for flying through complex
environments such as urban canyons confined by buildings,
trees, . . . etc. Vision-based navigation of such vehicles in the
neighborhood of ground vehicles, civilians, as well as in poor
weather likewise requires a host of innovations in robust vision
estimation. Robust vision estimation includes tasks such as
feature point extraction, feature point tracking, image registra-
tion, segmentation, object detection and object identification.
Control of these agile autonomous vehicles requires innovative
control methodologies that synthesize image plane inputs in
real-time. This problem can be construed as a feedback control
problem with millions of raw input channels, the pixels in the
image plane. Observation aggregation techniques, rigorously
stable “visual servoing” methods, robust sensor fusion methods
and fundamental theoretical studies of the controllability and
observability of such flight systems are just some of the
control theoretic issues that are currently lacking. This paper
outlines progress and several open problems in vision-based
estimation for MAVs. It introduces and summarizes several
critical technologies that are currently being applied to this
overall objective.

I. INTRODUCTION

The vital and increasing role of unmanned autonomous
vehicles (UAVs) throughout the military is now well-
appreciated. It has been increasingly apparent that small
or “micro” UAVs are emerging in numerous applications
of interest to the military. Fixed wing micro-air-vehicles, or
MAVs, have been defined as those vehicles that have a wing
span less than six inches in length. Perhaps most significant
are those applications relating to observation, measurement
or surveillance. Brief reflection suggests a host of applica-
tions of interest to the Department of Defense, Department
of Homeland Security and civilian law enforcement.

A. A Simple, Prototypical Vision-Based Control

A simple example easily illustrates the deep, diverse
and numerous technical issues that must be resolved to
enable autonomous flight of MAVs in urban environments.

Consider the MAV depicted in Fig. 1. This vehicle has a

(a) (b)

Fig. 1. (a) six-inch UF MAV; (b) six-inch MAV in flight.

wing span of approximately six inches and a single forward
looking camera. It is but one of a collection of carbon
fiber composite, membrane wing, small UAVs that have
been used as flight testbeds at the University of Florida.
Topics such as inner loop control, real-time vision process-
ing, aeroelastic response, aerodynamic characterization and
autopilot design have been studied for this class of vehicle.

Consider what is perhaps one of the most simple, direct
applications of vision-based control for this class of MAV:
horizon-detection for feedback roll stabilization. Although
this problem is remarkably simple in nature, it employs
elementary versions of fundamental vision processing tasks
that must be employed in general, 3-D flight vehicle control,
to be discussed shortly. It includes rudimentary image
segmentation, real-time optimization, elementary multilevel
filtering and feedback stabilization. Fig. 2 depicts a single
frame collected from the onboard camera in a MAV flight.
As illustrated schematically in the figure, simple image
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Fig. 2. (a) original image; (b) optimization criterion J as a function of
bank angle and pitch percentage, that is, vertices along the perimeter of
the image; (c) resulting classification of sky and ground pixels in RGB
space.
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segmentation is achieved via a real-time optimization that
finds the best separating hyperplane that distinguishes the
ground from the sky. This simple segmentation provides
a one channel measurement for feedback to achieve roll
stabilization. As summarized in [1], this inner loop con-
trol scheme provides an enormous practical advantage for
guidance and navigation of remotely piloted MAVs.

Still, there are numerous ways in which such a rudi-
mentary control structure can fail. Consider, for example,
Fig. 3 which depicts the performance of the segmentation
algorithm discussed above when the horizon is not a clean,
isolated image feature. In this frame, at least three distinct
image regions can be associated with the nearby field, dis-
tant mountains and clouds overhead. This simple example

Fig. 3. Multiple peak, ambiguous horizon example.

illustrates the difficulty in processing complex imagery with
multiple visual features, indistinct features or “cluttered
environments.”

In addition, the real-time operation of the segmentation
procedure relies on an inherent tradeoff in all such vision-
based control applications. Real-time throughput constraints
dictate that certain detailed features of the image are not
employed. Image decimation, or more generally, image mul-
tiscale filtering, is required to match processor throughput
to image granularity. In this case, image decimation or
multilevel filtering has a direct consequence in terms of
performance. The precision of the horizon angle estimate is
quantized in direct relation to the granularity of the image.

Fig. 4 illustrates a distinctly different impediment to the
functionality of the simple, prototypical control algorithm
discussed above. Video noise and image artifacts can play
havoc with the feedback control algorithm. Because analog
transmission is employed for this particular hardware im-
plementation, the real-time processing burden is passed to
a computational ground station. Interference and corrupted
transmission frames are common.

If the only application of vision-based control for MAVs
is the simple, prototypical example just described, any
number of ad hoc patches might address the summarized
deficiencies. If the underlying assumption is that the scene

or environment is uncluttered, or that significant a priori
knowledge of the operating environment is available, any
number of existing vision and control algorithms can be
expected to be viable.

The Special Session on Vision-Based Guidance, Navi-
gation and Control of Small and Micro Unmanned Au-
tonomous Vehicles must address numerous complex esti-
mation and control problems that are based on vision-based
measurement systems that operate in complex, “cluttered”
environments. A number of challenges and open questions
will need to be addressed in the special session. Some of
these challenges are discussed in the following sections.

B. Bandwidth Challenges

One of the foremost constraints in realizing the above
research goal is bandwidth. In this context, bandwidth
refers to the time to conduct hardware processing, sen-
sor processing, signal processing and also computational
throughput. Bandwidth constraints emerge in this problem
in numerous fashions. In vision processing for flight control,
many tasks must be undertaken including denoising, feature
recognition, segmentation, registration, correlation, etc. The
incorporation of complex vision processing tasks as part
of a closed loop feedback control will, in many instances,
dictate the complexity of the vision processing analysis.
Scalable algorithms that trade speed for approximation error
are desirable. Understanding the essential tradeoff between
the complexity of the vision analysis task, the required
bandwidth of the feedback controller, the stability of the
closed loop and the performance of the closed loop system
is a primary goal of this session.

C. Robust and Real-Time Vision Estimation Challenges

It is now well-accepted that many classical vision-
processing tasks such as structure from motion (SFM),
denoising, segmentation, feature detection and identification
can be computationally solved, at least in an academic
sense. In some cases, the solution procedures require ideal
image sequences, sufficient computational time, and per-
haps, ad hoc or heuristic user input. However, flight test-
ing with aircraft-borne CCD cameras makes it clear that
images gathered under flight conditions are hardly ideal.
Video dropout, video transmission noise, video artifacts, and
rapidly varying scene sequences associated with forward
flight velocity render many classical image processing tasks

Fig. 4. Example of a corrupted frame.
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inadequate in this context. Thus, at a primitive vision-
processing level, novel methodologies for real-time denois-
ing, segmentation, image registration, feature extraction,
optic flow estimation and geometry estimation must be
developed. These techniques must be real-time executable
and robust with respect to noise and artifacts.

II. ROBUST 3D VEHICLE STATE ESTIMATION IN

COMPLEX ENVIRONMENTS

The robotics community has studied the problem of es-
timating camera kinematics from camera measurements for
decades. Collectively, many of these pertinent algorithms
are known as “Structure From Motion,” or SFM, techniques.
Numerous excellent overview papers exist in the robotics
literature that study advances in SFM techniques. Unfor-
tunately, many of these algorithms are not well-suited for
the task of real-time estimation from cameras fixed to flight
vehicles that are rapidly navigating cluttered environments.
The algorithms may be designed for the movie industry,
in which the scene analysis can be carried out with an
“unlimited” computational budget. Feature points, or persis-
tent point landmarks between frames, are required for many
SFM algorithms and must be identified during computation.
The feature points may be selected based on a priori user
input information which is not possible in our context. The
issues associated with automatic registration, or tracking
of feature points between frames, as well as numerous
other properties of current generation SFM algorithms, are
discussed in [2], also presented in this Special Session.

Fig. 5. Successive frames in vision sequence with automated feature
points.

Fig. 5 depicts two frames from a sequence of flight video
collected by the MAV in Fig. 1. These frames depict auto-
matically correlated feature points obtained using analysis
and tools provided by the authors of [2]. It must be recalled
that, for our application, they must be generated in real-time
for flight-relevant SFM algorithms. The problem of robust
and real-time feature point tracking is also discussed in [2].

One class of SFM algorithms that may be amenable to
general vision-based control in complex 3D environments

is based on Kalman filtering. This approach relies on
correlated feature points as input, such as those depicted in
Fig. 5. Significant progress has been made by authors that
have derived and studied recursive Kalman filtering-based
SFM in [3], [4], [5]. While these studies are exceptional
in that they constitute foundational work in the field, they
treat “academic problems” that do not include the complex
imagery as viewed in Fig. 5. For the most part, the model,
or propagator, in the extended Kalman filter in these papers
has been a simple random walk. For the treatment of state
estimation for flight vehicles, the formulation is consider-
ably more complex. Extensions of the work in [3], [4], [5]
can be found, for example, in [6]. The formulation therein
employs the full, nonlinear 3D aircraft state equations as
the state propagator, and the subsequent corrections are
based on the so-called “subspace constraint” discussed in
[3], [4], [5]. The assumption that detailed aerodynamic
models are available for MAVs does not produce a robust
algorithm: MAV aerodynamics are notoriously difficult to
characterize. In recent work by some of the authors, aircraft
equations with simplified aerodynamics are used as the state
propagator in [7] and subsequent corrections are derived
from the epipolar constraint.
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Fig. 6. Performance of the vision-based state estimator for varying levels
of measurement noise in the pixel plane.

Fig. 6 depicts the performance of the methodology
presented in [7]. In this example, the full, nonlinear, 3D
aircraft equations are used to generate the measurements
of simulated feature points in the pixel plane of a CCD
camera. The propagator in the implicit extended Kalman
filter does not incorporate the full nonlinear aerodynamic
terms that appear in the equations of motion. Instead,
simplified nonlinear aerodynamic terms are incorporated
into the propagation model. This simplified model seeks to
avoid the use of detailed aerodynamics, and consequently,
provide for an estimation algorithm that is robust with
respect to modeling error. In [7], the performance of this
vision-based Kalman filter is evaluated for a simulated roll
doublet maneuver. Eight aircraft states are estimated for
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a case where the initial conditions provided to the filter
are in significant error. Furthermore, the robustness of the
algorithm with respect to measurement noise is explored
by adding varying amounts of Gaussian white noise to the
simulated feature point positions in the pixel plane. Fig. 6
depicts, as an example, the estimation of one component
of the body angular velocity for noise levels varying from
0 to 3 pixels standard deviation. For this state, the true
initial condition is 0 deg/s while the estimator has been
given an erroneous initial condition of 57.3 deg/s. The figure
shows the estimates provided by the Kalman filter as well
as those obtained using the propagator with no measure-
ment updates. In this case, while the propagator eventually
converges to the true angular velocity, the vision-based
estimator does so significantly faster. As the noise level
increases, the estimator still converges to the vicinity of
the true state but exhibits increasing oscillations. Therefore,
it is clear that sensitivity to noise is a critical concern in
vision-based, implicit extended Kalman filtering approaches
to SFM. This problem is discussed in more detail in [7].

III. MULTISCALE ANALYSIS FOR ROBUST AND

SCALABLE ALGORITHMS

As noted in the introduction, it is believed that mul-
tilevel filtering can play an essential role in vision-based
GNC algorithms that seek to respect the tradeoff between
computational burden and image detail. This section will
additionally illustrate that multilevel methods often exhibit
an “inherent” robustness in vision estimation. This is due
to the fact that multilevel filtering often induces implicit
denoising in transforming high fidelity images to a lower
granularity. In this section and the next, we discuss two
such approaches. This section presents recent progress
in Multiscale Linear Discriminant Analysis (MLDA) for
robust, multiscale vision estimation tasks. Details of this
approach can be found in [8] and [9].

An MLDA atom w is a piecewise constant function on
either side of a linear discriminant that intersects a square in
vertices vi and v j, as illustrated in Fig. 7. The discriminant
(vi,v j) divides the square into two regions characterized by
µ0 and µ1, which represent the mean vectors of RGB pixel
color values for the two regions. Decomposing the image
into a number of dyadic squares and finding their corre-
sponding MLDA atoms, we obtain the MLDA dictionary
over a finite range of locations, orientations and scales.

MLDA image-feature extraction is performed by search-
ing through the MLDA dictionary for the atoms that best
represent the analyzed image with respect to two com-
peting criteria: discrimination and parsimony. As the size
of squares decreases, we achieve better piecewise linear
approximation of boundaries between regions in the im-
age, as illustrated in Fig. 7. Thus, the analyzed image is
decomposed into dyadic squares organized in the MLDA
tree T . The MLDA tree T is incomplete, because atom
generation stops at different scales for different locations

in the image. The leaf nodes of T store the final MLDA
image representation.

1 2
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Fig. 7. (a) MLDA graph: the dashed line depicts the actual curve;
(b) corresponding MLDA tree: ellipsoid nodes represent the leaf MLDA
atoms.

To control the generation of children dyadic squares, we
impose the second optimization criterion (i.e. parsimony),
as a counter-balance to accuracy. Essentially, a penalty
term is added to the optimization criteria used to achieve
discrimination. The penalty term may consist of the number
of terminal nodes multiplied by a scale factor, for example.
Clearly, an exhaustive search in tree space for the minimum
cost function is computationally prohibitive. Therefore, we
implement a one-step optimization procedure, as in [10].

Instead of stopping at different terminal nodes, we con-
tinue the MLDA decomposition until all leaf squares are
small in size, resulting in a large tree. Then, we selec-
tively prune this large tree upward. We can regulate the
pruning process by increasing the penalty to obtain a finite
sequence of subtrees with progressively fewer leaf nodes.
This process is repeated until the actual number of leaf
nodes is equal to or less than the desired number of leaf
nodes. We note that the pruning process described above
is computationally fast and requires only a small fraction
of the total tree construction time. Starting with a complete
tree, the algorithm initially trims off large subtrees with
many leaf nodes. As the tree becomes smaller, the procedure
tends to cut off fewer nodes at a time.

MLDA implicitly encodes information about spacial fre-
quencies in the image (i.e. texture) through the process
of tree pruning. Furthermore, the MLDA tree can easily
be examined for spacial interrelationships of its linear
discriminants, such as connectedness, collinearity and other
properties of curves in images. Therefore, the MLDA rep-
resentation is appropriate for computer-vision tasks where
both color and texture are critical features.

In benign flight video, the horizon-detection problem can
be adequately solved by computing only the root atom of the
MLDA tree, where the linear discriminant of the root is the
optimal solution for the horizon estimate, as illustrated in
Fig. 2; in fact, the work presented in [1], [11] is equivalent
to this special case.

There are, however, unfavorable image conditions (e.g.,
when the horizon is not a straight line and/or an image is
corrupted by video noise), when it is necessary to examine
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discriminants at finer MLDA scales. For example, in Fig. 8,
we show that the discriminant of the root MLDA atom does
not coincide with the true horizon due to video noise.

Expanding the MLDA tree corresponds to image filtering
and leads to more accurate positions for the linear discrim-
inants, which then give more accurate evidence of the true
horizon’s location in the image. Also, in Fig. 9, we show
an example where MLDA detects the true horizon more
correctly as compared to a single-line discriminant.

This general framework has many extensions. It can
be used to construct multilevel and scalable vision-based
estimation sub-tasks including feature detection and feature
tracking. As an example, Fig. 10 illustrates the use of
MLDA for object recognition in successfully identifying the
car in the image. A detailed discussion can be found in [8]
and [9].

IV. LEARNING AND GENERALIZATION FOR OBSTACLE

ESTIMATION

In the last section, it was shown that multilevel tech-
niques lend themselves to scalable and robust algorithms for
segmentation, feature identification, . . . etc. In this section,
we will outline a class of multilevel techniques applicable
to geometric estimation. This approach is based on recent
developments that synthesize progress in learning theory
[12] and multilevel approximation [13]–[15].

To motivate the presentation, consider the task of rapid
path planning. While excellent algorithms for path planning
have been developed over the years, the constraint that the
method be implementable in real-time is severely restrictive.
The authors of [16] have derived a rapid planning algorithm
that solves sequences of small, local optimization problems
to traverse a 3D urban environment. While there are in-
teresting and nontrivial open problems associated with the
stability and convergence of the technique, the formulation
is quite amenable to rapid execution. Also, the technique
assumes that estimates of the urban environment in the
form of “blocky geometric primitives” are available, as
depicted in Fig. 11. Thus, the context of the estimation
problem is clear. From an incoming, real-time collection
of scattered data (such as the global coordinates of feature
points obtained from an SFM algorithm), we seek real-time
estimates of “blocky geometry.” We wish our algorithm to

(a) (b) (c)

Fig. 8. MLDA efficiently filters video noise: (a) noise degraded original
image; (b) MLDA root atom with the discriminant not equal to the true
horizon; (c) MLDA atoms at finer scales as clues for the true horizon
position.

(a) (b) (c)

Fig. 9. Non-straight-line horizon: (a) original image; (b) the root MLDA
atom with the discriminant not equal to the true horizon; (c) MLDA atoms
at finer scales as clues for the true horizon position.

(a) (b)

(c) (d)
Fig. 10. The hierarchy of visual contexts conditions gradual image inter-
pretation: (a) a 64×64 MAV-flight image; (b) MLDA image representation;
(c) localization: recognition of global objects; (d) car recognition using
CWT and HSI features.

be scalable and robust. The analysis that follows describes
an adaptive, multilevel wavelet method that is designed to
have these properties. Details may be found in [14].

For Banach spaces X ,Y let ρ denote a probability mea-
sure on the Cartesian product Z := X ×Y , write dρ =
dρ(y|x)dρX (x) and define the regression function

fρ(x) :=
∫
Y

ydρ(y |x) (1)

that gives the conditional expectation of the random variable
y at x. Here and in what follows it will always be assumed
that for some constant M one has ‖y‖Y ≤ M. It is easy to
check that fρ is the minimizer of the functional

E ( f ) :=
∫
Z

(y− f (x))2dρ (2)

over the weighted space L2(ρX ,Y ) which consists of all
functions from X to Y which are square integrable with
respect to ρX . The objective is to find an estimator fZ for
fρ based on the sample vector Z = (z1, . . . ,zm)∈ Zm where
each zi = (xi,yi), i = 1, . . . ,m. A common approach is to
obtain fZ , in analogy to (2), as

fZ := argmin f∈H EZ ( f ) (3)
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B

A

Fig. 11. Example path through urban environment, local optimization of
[16].

where

EZ ( f ) :=
1
m

m

∑
i=1

(yi − f (xi))2 (4)

The hypothesis class H typically depends on a finite
number N of parameters that are unknown. The key issue
is then to obtain error estimates for the probability

ProbZ

{‖ fρ − fZ ‖L2(ρX ,Y ) ≥ η
}

(5)

or the expectation

E
(
‖ fρ − fZ ‖2

L2(ρX ,Y )

)
(6)

In this paper we propose a class of constructive schemes
that will be applicable to the case when Y = R and X
is a compact subset in R

d . In fact, we will organize our
presentation by choosing d = 1 and X = [0,1]. This choice
enables a succinct presentation of the key results, and at the
same time, makes it clear that the results are easily extended
to the case when d > 1.

Consider a partition Λ of [0,1] into N = |Λ| intervals
and denote by SΛ the space of all piecewise constant
functions with respect to Λ. The elements in Λ are allowed
to have arbitrary size. We adopt the above assumptions on
the probability space Z = [0,1]×Y and the corresponding
distribution ρ , i.e., ‖y‖L∞ ≤ M. Since there is no more risk
of confusion we shall briefly write in a slight abuse of
notation L2(ρ) instead of L2(ρX ,Y ) and ρI instead of ρX (I)
for any I ⊂ [0,1] = X . If the distribution ρ is known, it
would be possible to compute

PΛ fρ := argmin f∈SΛE ( f ) (7)

which is the L2(ρ)-projection into SΛ. Since we are focused
on applications where ρ is not known, we are limited to
the use of empirical data. Define a minimization over the
empirical data

fZ ,Λ := argmin f∈SΛEZ ( f ) (8)

= argmin f∈SΛ

1
m

m

∑
i=1

(yi − f (xi))
2 (9)

i.e.,
fZ ,Λ = ∑

I∈Λ
cI(Z )χI (10)

where
cI(Z ) = argminc∈R ∑

i∈I
(yi − c)2 (11)

The geometric estimation algorithm presented in this
system relies on the development of wavelet bases that are
defined on a partition that is adapted to the empirical data.
Let Do denote the set of all dyadic subintervals of [0,1],
including the interval [0,1] itself. The set D can be viewed
as a tree with root [0,1]. Each I ∈ D has two children
I−, I+, the left and right dyadic subintervals of I. Note that
together with the characteristic function χ[0,1], the functions
ψI := 1

ρ(I−) χI− − 1
ρ(I+) χI+ for I ∈ D form an orthogonal

system in L2(ρ). For convenience we extend Do to D by
an “index” I∗ and write ψI∗ := χ[0,1]. The whole orthogonal
basis can be written as Ψ = {ψI : I ∈ D}. Normalizing these
functions in L2(ρ), i.e. setting

ψI,2 := ψI/‖ψI‖L2(ρ) (12)

one can check that the corresponding wavelet coefficients
are given by

dI = dI( fρ) =
1∫

0

fρ(x)ψI,2(x)dρX (13)

=

√
ρ(I−)ρ(I+)

ρI

(
cI+ − cI−

)
for each I ∈ Do. We define dI∗ := c[0,1]. It is easy to show
that

∑
I∈D

d2
I = ‖ fρ‖2

L2(ρ) (14)

The goal of defining such a wavelet basis adapted to a
non-uniform partition is to obtain a good approximation
to fρ from a few terms in the infinite wavelet expansion
of fρ . It is well-known that such approximations can be
obtained by thresholding the wavelet coefficients. For a
positive threshold τ define the set of intervals

Iτ := {I ∈ D : |dI | ≥ τ} (15)

We want to associate a partition of [0,1] to this set of “large
wavelet coefficients,” which may be quite small depending
on the value of τ . Clearly, the elements of Iτ may not
cover [0,1]. Let Tτ ⊂D denote the smallest tree containing
Iτ . Moreover, let us define for any tree T ⊂D that has as
its root the interval [0,1] the set of outer leaves by

∂T := {I ∈ D : I /∈ T but the parent of I belongs to T }
(16)

The set of outer leaves defines a partition of [0,1]. It can
be shown that a good approximation to fρ would then be
given by P∂Tτ fρ for a suitable selection of τ .

With these definitions in mind, the crucial choice that
must be made is the selection of the set of functions H

1640

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 6, 2008 at 17:43 from IEEE Xplore.  Restrictions apply.



over which the approximations will be made. Fix any small
number γ > 0, say γ < 1/2, and define for 0 < s ≤ 1 the
positive number µ via the equation

1
µ

= s+
1
2
− γ (17)

Let dI( f ) denote the wavelet coefficients with respect to the
ρX -normalized Haar basis of a given function f ∈ L2(ρ).
Now let

Bs :=

{
f ∈ L2(ρ) : ∑

I
|I|−γµ |dI( f )|µ := | f |Bs ≤ ∞

}
(18)

and define
‖ f‖µ

Bs := ‖ f‖µ
Lµ

+ | f |µBs (19)

This set of functions will play the role of the prior class
in the theoretical development that follows. For the de-
velopment of a constructive approximation, it is useful to
note that the wavelet coefficients dI( f ) have for f ∈ Bs a
scalewise decay

|I|−γ |dI( f )| ≤C (20)

whenever s > γ . This property can be viewed as a statement
that such a function f so selected exhibits some minimal
smoothness in L2(ρX ).

We now concentrate on developing in more detail what
might be called the empirical wavelet coefficients. We
cannot compute the partitions discussed above because we
do not know the probability measure ρ . Hence, we likewise
do not know the basis Ψ and cannot compute the wavelet
coefficients dI . However, we can expect to guess good
partitions from the observed data Z . We cannot expect
useful information from such partitions when the threshold
becomes too small relative to the sample size. We shall
essentially restrict the discussion to

τ ≥ τm := log m/
√

m (21)

To describe a computational scheme that is realizable, let
us fix a small parameter γ > 0 and choose a limiting
threshold τm = log m/

√
m. From (20), we can expect to

find significant wavelet coefficients only for intervals of the
size |I| ≥Cτ1/γ

m . Define the empirical measure of the interval
I as

ρI(Z ) :=
1
m

m

∑
i=1

χI(xi) (22)

The empirical wavelet coefficients are then simply given by

dI(Z ) :=⎧⎨
⎩

√
ρI− (Z )ρI+(Z )

ρI(Z )

(
cI+(Z )− cI−(Z )

)
if (C1)

0 otherwise

The condition (C1) is defined to be true whenever ρI(Z ) �=
0 and |I| ≥Cτ1/γ

m . Of course, they are obtained just as the dI

by forming an orthonormal basis with respect to the discrete
measure.

In analogy with the definition of partitions discussed
above in terms of the measure ρ , a similar procedure can
be carried out for the empirical measure. Define for any
threshold τ > 0 the set of τ significant empirical coefficients

Iτ(Z ) := {I ∈ D : |dI(Z )| ≥ τ} (23)

and let Tτ(Z ) ⊂ D denote the smallest tree containing
Iτ(Z ). For Tτ(Z ) defined above and any τ ≥ τm let

Λτ(Z ) := ∂Tτ(Z ) (24)

and define

fZ ,τ := argmin f∈SΛτ (Z )EZ ( f ) = ∑
I∈Λτ (Z )

cI(Z )χI (25)

We can now state the main result of this section.
Theorem 1: There exists a constant c depending on γ > 0

(but not on m,ρ ,τ ≥ τm) such that whenever fρ ∈ Bs one
has for

r :=
1
γ

>
1
2s

+1 (26)

that

ProbZ

{
‖ fρ − fZ ,τ‖L2(ρ) ≥ τ

s
2s+1

}
≤ τ−re−cmr2

(27)

In particular, defining

fZ := fZ ,τm , τm := log m/
√

m (28)

one has

ProbZ

{
‖ fρ − fZ ‖L2(ρ) ≥

(
(log m)2

m

) s
2s+1

}

≤Cmr/2e−c(log m)2

and hence

E(‖ fρ − fZ ‖L2(ρ)) ≤
(

(log m)2

m

) s
2s+1

(29)

In reviewing the preceding analysis, it is important to realize
several features of this formulation.

• In contrast to much of the foundational work in learn-
ing theory, including for example [12], the approach
above is constructive.

• As discussed more fully in [14] and [15], the method-
ology above attains an optimal rate of convergence that
is again, an improvement over that attained in [12].

• The algorithm described above exhibits a universality
in that it is optimal for a range of smoothness spaces
(or hypothesis spaces).

• The methodology summarized in Theorem 1 can be
implemented in a recursive, or block recursive, manner.
As such, it has excellent potential to realize the vision-
estimation problem required for the rapid path re-
planning as illustrated in Fig. 11.

A piecewise linear version of the wavelet-based learning
algorithm has been implemented, but theoretical conver-
gence results are still under development. The performance
of the piecewise constant and piecewise linear learning
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Fig. 12. Piecewise constant and piecewise linear terrain mappings from
images taken during the MAV flight shown in Fig. 5.

algorithms are depicted in Fig. 12. Using the methodology
in [2], a set of 3D feature points was obtained from images
during a MAV flight, as shown in Fig. 5. The piecewise
constant approximation of the terrain is shown on the left
(with the flight path shown in black) and the piecewise
linear reconstruction is shown on the right. Fig. 13 and 14
show results from a simulated MAV flight over mountainous
terrain obtained from satellite imagery. Fig. 13 shows a
single image frame with identified context-dependent fea-
ture points. The red points corresponding to the clouds
are detected as outliers and removed. The estimated 3D
positions of the feature points are subject to error in the
SFM algorithm, and the deviations of the points from the
true surface are depicted in the lower left plot. Finally,
the figure shows the piecewise linear reconstruction of the
terrain. Fig. 14 shows an overhead view of the simulated
MAV flight (shown in yellow) with the full spread of
identified feature points. Also shown is an overhead view
of the piecewise linear approximation of the terrain. Note
that, in 2-D, the piecewise linear reconstruction is defined
over triangular elements, and the high density of triangles
in certain regions denotes locations where feature points are
plentiful.

V. CONCLUSION

This paper has given an overview of many of the
challenges associated with the realization of vision-based
control of autonomous micro-air-vehicles in complex en-
vironments. Representative results from several enabling
technologies have been presented, including vision-based
state estimation, multiscale linear discriminant analysis
(MLDA) for horizon and object detection, and wavelet-
based learning algorithms for terrain reconstruction and
obstacle estimation.
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