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Abstract

Constructing a good approximation to a function of many variables suffers from the “curse of
dimensionality”. Namely, functions on RN with smoothness of order s can in general be captured
with accuracy at most O(n−s/N ) using linear spaces or nonlinear manifolds of dimension n. If
N is large and s is not, then n has to be chosen inordinately large for good accuracy. The large
value of N often precludes reasonable numerical procedures. On the other hand, there is the
common belief that real world problems in high dimensions have as their solution, functions
which are more amenable to numerical recovery. This has led to the introduction of models
for these functions that do not depend on smoothness alone but also involve some form of
variable reduction. In these models it is assumed that, although the function depends on N
variables, only a small number of them are significant. Another variant of this principle is that
the function lives on a low dimensional manifold. Since the dominant variables (respectively
the manifold) are unknown, this leads to new problems of how to organize point queries to
capture such functions. The present paper studies where to query the values of a ridge function
f(x) = g(a · x) when both a ∈ RN and g ∈ C[0, 1] are unknown. We establish estimates on how
well f can be approximated using these point queries under the assumptions that g ∈ Cs[0, 1].
We also study the role of sparsity or compressibility of a in such query problems.

1 Introduction

We are interested in approximating functions f defined on a domain Ω ⊂ RN from their point
values when the dimension N is large. Such problems arise when modeling physical processes that
depend on many variables, for example in learning theory (see e.g. [23]), in modeling physical and
biological systems (see e.g. [12]), and in parametric and stochastic PDEs (see e.g. [4]). We shall
assume that Ω = [0, 1]N throughout this paper.

It is well-known that the general problem of approximating a function f of a large number of
variables suffers from the so-called “curse of dimensionality”. Namely, if all we know about f is that
it has a smoothness of order s > 0 then the best approximation order we can receive is O(n−s/N )
where n is the dimension of the underlying approximation process or the number of computations
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used to find the approximation. If N is very large then the smoothness would have to be very
high to overcome this curse. This fact has led to the search for other reasonable ways to classify
functions in high dimension which hopefully represent real world settings. One such approach is
to assume that the target function has a sparse representation in some underlying basis. However,
the assumption of sparsity is very close if not the same as a smoothness condition in most settings
(see e.g. the characterization of nonlinear approximation orders by Besov smoothness [6]). Another
approach, which will be the direction taken in this paper, is to assume that most of the variables
have no effect in f (or a rather weak effect). This is a common assumption in manifold learning
(see for example [5, 13]) and sliced inverse regression or sensitivity analysis in statistics (see e.g.
[21]).

Another ingredient in the problem of approximating a high dimensional function concerns the
type of information we have (or can ask) about f . There are many possible settings. Our interest
will be in the following problem. We are allowed to only ask for a fixed number n of point values
of f and from this information, we must construct our approximation. This can be thought of as
a problem in directed learning [15] or optimal recovery [22]. Recent results on problems of this
type were given in [8] where the assumptions on f were that it depended on a smaller number of
unknown coordinate variables. There are two natural types of point query algorithms: non-adaptive
and adaptive. In the former, the set of points where f will be queried are set in advance and do
not depend on f . In the latter, each new query point is allowed to depend on the previous query
points and the value of f at these points. The algorithms put forward in this paper are adaptive.

Certainly, many other possible models for f can be put forward. A quite general assumption
would be that f(x1, . . . , xN ) = g(Ax) where A is a m × N matrix with m considerably smaller
than N . Our primary interest in this paper will be the case where A is 1 × N , i.e. A = a is a
vector in RN . This means that f is a ridge function. In addition to our assumption on the form
of A, we shall assume some smoothness condition on the underlying function g. This is a common
assumption in statistics, where these models are often called single index models. Some algorithms
have been provided in this context and minimax bounds investigated see for instance [16],[19],[17]
and [18]. The main differences with our approach lie in the fact that the points of observations are
supposed to be given in advance and not chosen (as here), and the dimension N of the variable x
is supposed to be small in the sense that it does not grow with the number of observations (which
would correspond to the case N < n here) and does not interfere in the rates. The closest paper
to our setting would be [20], where the function g is supposed to be extremely regular.

To put our results in a precise setting we introduce the following class of functions. Given
s > 0, we define R(s) to be the set of all ridge functions f(x) = g(a · x) where g ∈ Cs[0, 1] and
a = (a1, . . . , aN ) 6= 0 satisfies ai ≥ 0, i = 1, . . . , N . If λ =

∑N
i=1 ai, then f(x) = g(a ·x) = g̃(a ·x/λ)

with g̃(t) := g(λt) and so we can assume without loss of generality that
∑N

i=1 ai = 1. It follows
that a · x ∈ [0, 1], whenever x ∈ Ω. We use the following norm on Cs[0, 1]. If k < s ≤ k + 1 with
k ∈ N, then we define

‖g‖Cs := ‖g‖Cs[0,1] := |g(k)|Lip(s−k) +
k∑
j=0

‖g(j)‖C[0,1], (1.1)

where for 0 < β ≤ 1,

|g|Lip(β) := sup
x 6=y

|f(x)− f(y)|
|x− y|β

.
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We shall also use the following semi-norm on Cs:

|g|Cs := |g|Cs[0,1] := |g(k)|Lip(s−k). (1.2)

The most important coordinates i in a are those where ai is large. Thus the complexity of f is
in part measured by how many coordinates of a are large. To describe this we take the traditional
approach of measuring the compressibility of a. It is well known that the compressibility of a is
measured in the form of its membership in `q spaces (or weak `q spaces). We recall that a is in
weak `q means that

#{i : ai ≥ ε} ≤Mε−1/q, ε > 0, (1.3)

and the smallest M for which (1.3) holds is the weak `q norm ‖a‖w`Nq of a. Accordingly, we define

R(s, q;M0,M1) to be the collection of all ridge functions f ∈ R(s) for which

‖g‖Cs[0,1] ≤M0, ‖a‖w`Nq ≤M1. (1.4)

Notice that since the vectors a come from a finite dimensional space RN , they are in all weak `Nq .
Therefore, it is the size of M1 that is important in what follows.

We study the following fundamental question: Given the knowledge that f is a ridge function
and given a target approximation accuracy ε > 0, how many point values would we need of f in order
to construct an approximation which achieves this accuracy and where should these point queries
be chosen? This can be viewed as a problem of optimal recovery (see [22] or [24]), although we do
not believe this model class has been treated previously in the literature. We seek query points
and algorithms which have demonstrable performance rates for all of the classes R(s, q;M0,M1).
In other words we seek algorithms which are universal over these classes and the algorithms do not
require any knowledge of s or q.

In §3. we give an algorithm on where to ask for point values of a ridge function f and then
show how to construct a good approximation to f from these point queries. This algorithm does
not need to know the values of s or q and so it satisfies universality. We shall show that by asking
for O(L) queries we can find f̂ such that whenever f ∈ R(s, q;M0,M1), with 1 < s̄ ≤ s ≤ S, then

‖f − f̂‖C(Ω) ≤ CM0

(
L−s +M1ε(N,L)1/q−1

)
, (1.5)

where

ε(N,L) :=

{
1+log(N/L)

L , L < N,
0, L ≥ N,

(1.6)

and where C is a constant depending only on s̄, S. The first term on the right in (1.5) corresponds
to recovering g and the second to recovering a. The following section (§4) analyzes the stability of
our algorithm.

Note that the above results only apply when s > 1. We do not know how to remove this
restriction. However, we do prove in §5 results for the case s ≤ 1 under the additional assumption
that g is monotone.

We finally devote §6 to some concluding remarks and open questions.
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2 Approximation preliminaries

We record in this section some well known results about approximation and compressed sensing
which we shall utilize in the following sections. Let us first consider approximating functions in
C[0, 1]. Given integers S > 1 and L ≥ 2, we let h := 1/L and consider the space Sh of piecewise
polynomials of degree S−1 with equally spaced knots at the points ih, i = 1, . . . , L−1, and having
continuous derivatives of order S − 2. There is a class of linear operators Qh which map C[0, 1]
into Sh called quasi-interpolants that we shall employ. We refer the reader to Chapter 12 of [7] for
a construction of these operators. Given a function g ∈ C[0, 1], the application of Qh uses only the
values of g at the points ih, i = 0, . . . , L. The operator Qh can be chosen to have the following two
properties:

Property Q1: Whenever g ∈ Cs[0, 1], 0 < s ≤ S,

‖g −Qhg‖C[0,1] ≤ C|g|Cs[0,1]h
s, (2.1)

with C a constant depending only on S.1

Property Q2: For any g ∈ C[0, 1], we have

‖Qhg‖C[0,1] ≤ C max
0≤i≤L

|g(ih)|, (2.2)

with C again a constant depending only on S.

Secondly, we consider the approximation of vectors from RN . For each positive integer k, let Σk

be the set of those z ∈ RN such that at most k of its coordinates are non-zero. Given any x ∈ RN ,
its error of best approximation in `Np from Σk is

σk(x)`Np := inf
z∈Σk

‖x− z‖`Np . (2.3)

For `Np norms, the best approximation z to x from Σk is gotten by retaining the k biggest entries
of x in absolute value (with ties handled in an arbitrary way) and making all other entries zero.

There are simple estimates for σk(x). Among these, we shall use

σk(x)`Np ≤ k
1/p−1/q‖x‖`Nq , (2.4)

whenever q ≤ p. Similarly, we have

σk(x)`Np ≤ Ck
1/p−1/q‖x‖w`Nq , (2.5)

whenever q < p, with a constant C depending only on p, q.
We shall also need some well known results on compressed sensing. If L < N , we let Φ be

an L × N Bernoulli matrix which satisfies the Restricted Isometry Property [2, 1] of order j for

1We use the following conventions for constants. Absolute constants are denote by c0 (when they appear in bounds
that hold for sufficiently small constants) or C0 when they appear in bounds that hold for sufficiently large constants.
The constants are updated each time a new condition is imposed on them. Since there will be a finite number of
updates, the final update will determine its value. Constants that are not absolute but depend on parameters will be
denoted by C and the parameters will be given. We use the same convention on updating the constants C.
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all j ≤ c0/ε(N,L) with c0 > 0 a fixed constant. The entries of Φ are realization of i.i.d. random
variables which take values ±1/

√
L with probability 1/2. We denote by b1, . . . , bL the rows of Φ.

We also require that Φ satisfies the following mapping property stated in Theorem 4.1 of [9]:

Mapping Property: There is a fixed constant c0 > 0 such that the following holds. If L < N and
y ∈ RL satisfies ‖y‖`L2 ≤ c0

√
ε(N,L) and ‖y‖`L∞ ≤ c0/

√
L, then there is an x from the unit ball of

`N1 such that Φx = y.

Note that when Φ is a Bernoulli matrix as described above, these properties are satisfied with
extremely high probability on the draw (see [9] and [1]).

In compressed sensing, the matrix Φ is used to extract information. If x ∈ RN , the vector
y = Φx ∈ RL is the information captured by Φ. To decode this information, we shall use the `1
minimization decoder ∆ defined by

∆(y) := argmin
Φu=y

‖u‖`1 . (2.6)

It is shown in [3] that the encoding-decoding pair (Φ,∆) has the following instance-optimaliy
in `N1 : For any x ∈ RN , we have

‖x−∆(Φx)‖`N1 ≤ C0σk(x)`N1
, (2.7)

for all k ≤ C0/ε(N,L). Of course, when L ≥ N , we exactly recover each x ∈ RN .

3 An adaptive query algorithm

In this section, we give an algorithm that adaptively queries a ridge function by its point values.
The algorithm we give requires us to know that f ∈ R(s) with s̄ + 1 ≤ s ≤ S where s̄, S > 0 and
S is an integer. However, we do not need to know the value of s. It will have three main steps for
querying f to extract the information we need. To describe these, we define (as before) h := 1/L.
Let us notice that asking for the value of f at a point t(1, . . . , 1) gives the value of g at t.

QSTEP1: Evaluate f at base points. We ask for the values of f at the points B :=
{ih(1, 1, . . . , 1) : i = 0, 1, . . . , L} that we refer to as base points. This information determines
g at the points ti := ih, i = 0, 1, . . . , L.

QSTEP 2: Find an interval of large deviation. Let A := max0≤i<j≤L
|g(ti)−g(tj)|
|ti−tj | and take a

pair of points ti < tj which assume A. Let I0 := [ti, tj ]. We ask for the value of f at the point
t(1, . . . , 1), t := (ti + tj)/2, which gives us g at the midpoint t of I0. If |g(ti)− g(t)| ≥ |g(tj)− g(t)|,
we define I1 as [ti, t], otherwise we define I1 as [t, tj ]. In either case, the divided difference of g over
the two endpoints of I1 is larger than A. We continue in this way and define I2, . . . , Im, where

m := dκ log2 Le and κ :=
2S

s̄
.

Now, the divided difference of g at the two endpoints of Im = [α0, α1] is at least as large as A. So
there is a point ξ0 ∈ Im where

|g(α1)− g(α0)|
α1 − α0

= |g′(ξ0)| ≥ A. (3.1)
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We denote by η the midpoint of Im and by δ := |Im| ≤ L−κ|I0| ≤ L−κ the length of Im. We finally
ask for the value of f at η(1, . . . , 1) which gives us the value of g at η.

QSTEP3: Query f at padding points. First consider the case L < N . The row vectors bi,
i = 1, . . . , L, which make up the L × N Bernoulli matrix satisfy |bi · a| ≤ 1/

√
L. We now ask for

the value of f at the points η(1, 1, . . . , 1) + µbi, i = 1, . . . , L, where µ :=
√
Lδ
2 . These queries in

turn gives the value g(η + µbi · a), i = 1, . . . , L. All of the points η + µbi · a are in Im because of
the definition of µ. In the case L ≥ N , we ask for the value of f at each point α0(1, . . . , 1) + δei,
i = 1, . . . , N , where

ei := (0, · · · , 0, 1, 0, · · · , 0),

is the standard Kronecker vector with 1 at position i. This gives the value of g at the points
α0 + δai, i = 1, . . . , N . Each of these points is again in Im.

In summary, we have asked for L + 1 values of f in QSTEP1, dκ log2 Le point values in
QSTEP2, and at most L point values in QSTEP3; thus a total of at most 2L+ 1 + dκ log2 Le =
O(L) point values in all. Next, we describe how we construct an approximation f̂ to f from the
information we have drawn from f . This is done in two steps.

RSTEP1: Approximating g from the retrieved information. Since f(ih, · · · , ih) = g(ih) for
i = 0, · · · , L, we can construct from the values drawn in QSTEP 1 the approximation ĝ := Qh(g)
to g with Qh the quasi-interpolant operator. From (2.1) we obtain for each g ∈ R(s, q,M0,M1),

‖g − ĝ‖C[0,1] ≤ CM0h
s = CM0L

−s. (3.2)

with C depending only on S.

RSTEP2: Approximating a from the retrieved information. We first consider the case
L < N and observe that the information we have drawn in QSTEP3 allows us to approximate
the vector y := Φa ∈ RL, where yi := bi · a, i = 1, . . . , L. Indeed, for each i = 1, 2, . . . , L, from the
information we have in hand, we can compute

ŷi :=
2√
L

[g(η + µbi · a)− g(η)

g(α0 + δ)− g(α0)

]
=

2√
L

[g′(ξ1)µbi · a
g′(ξ0)δ

]
= bi · a

[
1 +

g′(ξ1)− g′(ξ0)

g′(ξ0)

]
, (3.3)

because µ/δ =
√
L/2. Since |g′(ξ0)| ≥ A and g′ is in Lip(s̄,M0), we have∣∣∣∣g′(ξ1)− g′(ξ0)

g′(ξ0)

∣∣∣∣ ≤M0A
−1L−κs̄ =: γ. (3.4)

This means that we have the following estimate for how well ŷi approximates the true value yi:

|yi − ŷi| ≤ |yi|γ. (3.5)

We apply the `1-minimization decoder ∆ to the vector ŷ := (ŷi)
L
i=1. This gives ã := ∆(ŷ).

In the case L ≥ N , using the information we have drawn in QSTEP3, we compute

ŷi :=
[g(α0 + δai)− g(α0)

g(α0 + δ)− g(α0)

]
=
[g′(ξ1)aiδ

g′(ξ0)δ

]
= ai[1 + γi], (3.6)
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where |γi| ≤ γ, i = 1, . . . , N . No decoding is needed in this case and we simply set ãi = ŷi =
ai(1 + γi).

The following lemma shows that ã is a good approximation to a. We recall the definition of
ε(N,L) given in (1.6).

Lemma 3.1 There is an absolute constant C0 such that the following holds. If a ∈ `q with 0 <
q < 1, then

‖a− ã‖`N1 ≤ C0

(
‖a‖`Nq ε(N,L)1/q−1 +

√
Lγ
)
. (3.7)

In the case a ∈ w`Nq , we have

‖a− ã‖`N1 ≤ C
(
‖a‖w`Nq ε(N,L)1/q−1 +

√
Lγ
)
, (3.8)

with C now depending on p, q.

Proof: In the case L ≥ N , we have

‖a− ã‖`N1 ≤
N∑
i=1

|ai − ãi| =
N∑
i=1

|ai||γi| ≤ γ, (3.9)

and (3.7) and (3.8) hold with no assumptions on a.
In the case L < N , we follow ideas from [9]. We know that |yi| = |a · bi| ≤ L−1/2, i = 1, . . . , L.

Therefore, ‖y − ŷ‖`L∞ ≤ L−1/2γ and ‖y − ŷ‖`L2 ≤ γ. We can apply the mapping property to find

a z ∈ RN such that Φ(z) = ŷ − y and ‖z‖`N1 ≤ c−1
0

√
Lγ. It follows that Φ(a + z) = ŷ and so

∆(Φ(a+ z)) = ã. Using the instance-optimality, we find for any k ≤ C0/ε(N,L)

‖a+ z − ã‖`N1 ≤ C0σk(a+ z)`N1
≤ C0(σk(a) + ‖z‖`N1 ). (3.10)

Since ‖z‖`N1 ≤ c−1
0

√
Lγ, taking the largest possible value for k and using (2.4)(respectively (2.5)),

we arrive at (3.7) (respectively (3.8)). 2

The vector ã need not have positive coordinates and also need not have `1 norm one. This
defect can be remedied as follows, up to doubling the constants C0 and C in the estimates (3.7)
and (3.8). We first let a′i := max(ãi, 0), i = 1, . . . , N . Then a′ is clearly a better `N1 approximation
to a than ã, so that we have

‖a− a′‖`N1 ≤ R,

with R the right hand side of (3.7) or (3.8). Finally we define â := a′/‖a′‖`N1 . We can write

‖a− â‖`N1 ≤ ‖a− a
′‖`N1 + ‖a′ − a′

‖a′‖`N1
‖`N1 ≤ R+ |1− ‖a′‖`N1 | ≤ 2R.

Note that if a′ = 0 we reach the same conclusion by taking for â any vector of positive coordinates
and `1 norm one.

So we have
‖a− â‖`N1 ≤ C0

(
‖a‖`Nq ε(N,L)1/q−1 +

√
Lγ
)

(3.11)
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and a similar estimate with the weak `Nq norm on the right.
With these estimates in hand, we can now define our approximation to f . Let us define

f̂(x) := ĝ(â · x). (3.12)

Theorem 3.2 The algorithm described above uses 2L+1+dκ log2 Le queries. If f ∈ R(s, q;M0,M1),
then the algorithm gives an approximation f̂ defined in (3.12) which satisfies for all L ≥ 1,

‖f − f̂‖C(Ω) ≤ CM0

(
L−s + C1M1ε(N,L)1/q−1

)
, (3.13)

where C is a constant depending only on s̄ and S and C1 depends on q.

Proof: Recalling the definition of A, we distinguish between two cases.
If A ≤M0L

−s, then there is a constant c such that |g(ih)−c| ≤ A/2 ≤M0L
−s/2, i = 0, 1, . . . , L.

From Properties Q1 and Q2, we find

‖ĝ − c‖C[0,1] = ‖Qhg −Qhc‖C[0,1] ≤ CM0L
−s

Hence,

‖g − c‖C[0,1] ≤ ‖(g − c)−Qh(g − c)‖C[0,1] + ‖Qh(g − c)‖C[0,1] ≤ CM0L
−s + CM0L

−s. (3.14)

It follows that

‖g(a · x)− ĝ(â · x)‖C(Ω) ≤ ‖g − c‖C[0,1] + ‖ĝ − c‖C[0,1] ≤ CM0L
−s. (3.15)

and so we have proven the theorem in this case.
If A > M0L

−s, then for any x ∈ Ω, we have from the previous lemma,

|f(x)− f̂(x)| ≤ |g(a · x)− g(â · x)|+ |g(â · x)− ĝ(â · x)|
≤ M0‖a− â‖`N1 + ‖g − ĝ‖C[0,1]

≤ CM0

(
M1ε(N,L)1/q−1 +

√
Lγ
)

+ CM0L
−s.

It remains to bound
√
Lγ. Since A−1 ≤M−1

0 Ls, we have

√
Lγ =

√
LA−1M0L

−κs̄ ≤ L−κs̄+s ≤ L−s, (3.16)

where we have used the definition of κ. Therefore, we have proven the theorem. 2

4 Stability of the algorithm

The analysis of the performance of our algorithm given in Theorem 3.2 assumes that, when queried,
we receive the exact values of f . This in turn gives that the value of g at the corresponding point
is also exact. In this section, we shall show that the conclusion of Theorem 3.2 remains valid
even when these values are only given to a given accuracy τ , provided τ is suitably small, in the
sense that τ ≤ CL−r for a certain r ≥ s. This assumption on τ is not the best one can hope for,
namely τ ≤ CL−s. We leave open the possibility that other algorithms may work even with weaker
assumption on the perturbation error τ .
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Thus, we assume that in place of the values of g we receive the values of a function g̃ with
‖g − g̃‖C[0,1] ≤ τ . As before, we assume that f ∈ R(s) with s̄ + 1 ≤ s ≤ S where s̄, S > 0 and S
is an integer. The main steps of the algorithm remain unchanged, except that now we define the
value of κ introduced in QSTEP2 to be slightly larger:

κ :=
2S + 1/2

s̄
. (4.1)

Therefore, we still have O(L) point value queries.

Theorem 4.1 Suppose that in the execution of our algorithm, we receive the values of f only to
accuracy τ . That is, when queried for the value of f at any point x, we receive instead the value
f̃(x) satisfying |f(x)− f̃(x)|) ≤ τ . Then, if f ∈ R(s, q;M0,M1) and

τ ≤ M0

6
L−2S−κ−3/2 (4.2)

the output f̂ of the algorithm satisfies

‖f − f̂‖C(Ω) ≤ CM0

(
L−s + C1M1ε(N,L)1/q−1

)
, (4.3)

where C is a constant depending only on s̄, S and the constant of Property Q2, and C1 depends
on q.

Proof: We first examine the effect on the output ĝ. Since now we receive the values of g̃(ti) in
QSTEP1, the approximation will be ĝ = Qh(g̃). By Property Q2, we have

‖Qh(g)−Qh(g̃)‖C[0,1] ≤ C‖g − g̃‖C[0,1] ≤ Cτ,

and therefore (3.2) would be replaced by

‖g − ĝ‖C[0,1] ≤ CM0(L−s + τ). (4.4)

The effect of imprecise evaluations on the estimation of a is more severe as we now dis-
cuss. We continue the proof only in the case L < N . Similar arguments hold for L ≥ N and
are left to the reader. In QSTEP2, the algorithm would compute in place of A, the number

Ã := max
0≤i<j≤L

|g̃(ti)− g̃(tj)|
|ti − tj |

. now based on the received values of g̃(ti), i = 0, . . . , L.

The algorithm would next choose the points t̃i, tj̃ in place of ti, tj and proceed to do the subdi-

vision as called for in QSTEP2. The result is to end up with an interval Ĩm = [α̃0, α̃1], where as
before

m := dκ log2(L)e,

but with the update value of κ from (4.1). By construction, the length δ̃ := |Ĩm| of this interval
satisfies

1

2
L−κ−1 ≤ δ̃ ≤ L−κ. (4.5)

We now have
|g̃(α̃1)− g̃(α̃0)| ≥ Ã|α̃1 − α̃0| = Ãδ̃. (4.6)
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By the mean value theorem, |g(α̃1) − g(α̃0)| = |g′(ξ0)|δ̃ with ξ0 ∈ Ĩm. Therefore, from (4.6), we
obtain

|g′(ξ0)|δ̃ ≥ Ãδ̃ − 2τ. (4.7)

As before, we denote by η̃ the center of Ĩm and µ̃ :=
√
Lδ̃/2.

For our approximation to yi = bi · a, the algorithm would compute

ỹi :=
2√
L

[ g̃(η̃ + µ̃yi)− g̃(η̃)

g̃(α̃0 + δ̃)− g̃(α̃0)

]
=

2√
L

[ g(η̃ + µ̃yi)− g(η̃) + β1

g(α̃0 + δ̃)− g(α̃0) + β2

]
=

2√
L

[g′(ξ1)µ̃yi + β1

g′(ξ0)δ̃ + β2

]
,

where ξ1 ∈ Ĩm and |β1|, |β2| ≤ 2τ . The algorithm then decodes to find ā := ∆(ỹ) and modifies this
vector to make its entries nonnegative and sum to one thereby receiving the vector ã. It then takes
f̂(x) := g̃(ã · x) as the output approximation to f .

As in the proof of Theorem 3.2, we consider two cases. The first case is when Ã ≤ M0L
−s. In

this case, it does not matter if ã approximates a well or not, and we reach (4.3) in a similar way to
the proof of Theorem 3.2.

The second case is when Ã ≥ M0L
−s. In this case, we need to see how well ã approximates a.

Note that from the assumption on τ , we have

τ ≤ Ãδ̃/6, (4.8)

which combined with (4.7) implies
|g′(ξ0)|δ̃ ≥ 2Ãδ̃/3. (4.9)

where the first inequality uses (4.7). We divide the numerator and denominator of the right side
by g′(ξ0)δ̃ and obtain

ỹi =
yi

(
1 + g′(ξ1)−g′(ξ0)

g′(ξ0)

)
+ 2L−1/2β1

g′(ξ0)δ̃

1 + β2

g′(ξ0)δ̃

. (4.10)

Therefore,

yi − ỹi =
yi

(
β2

g′(ξ0)δ̃
− g′(ξ1)−g′(ξ0)

g′(ξ0)

)
− 2L−1/2β1

g′(ξ0)δ̃

1 + β2

g′(ξ0)δ̃

.

By assumption, g ∈ Lip(s̄,M0) and so |g(ξ1)− g(ξ0)| ≤M0δ̃
s̄. Since |yi| ≤ L−1/2, this leads to the

bound

|yi − ỹi| ≤ L−1/2 6τ +M0δ̃
s̄+1∣∣∣|g′(ξ0)δ̃| − 2τ
∣∣∣ ≤ L−1/2 6τ +M0δ̃

s̄+1

Ãδ̃/3
≤ 18τM−1

0 Ls−1/2δ̃−1 + 3Ls−1/2δ̃s̄ (4.11)

where we have used (4.7) to bound the denominator. Since δ̃ ≤ L−κ = L−
2S+1/2

s̄ , the second term
in the right side is bounded by 3L−2S+s−1 ≤ 3L−s−1. We use the assumption (4.2) on τ and the
bound δ̃ ≥ (1/2)L−κ−1 to bound the first term on the right side of (4.11) by

36τM−1
0 Ls+κ+1/2 ≤ 36L−2S+s−1 ≤ 36L−s−1.

Hence,
|yi − ỹi| ≤ 39L−s−1, i = 1, . . . , L (4.12)
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This in turn gives
‖y − ỹ‖`∞ ≤ 39L−s−1 and ‖y − ỹ‖`2 ≤ 39L−s−1/2. (4.13)

We can now apply the same proof as in Lemma 3.1 to conclude that

‖a− ã‖`1 ≤ C0

(
‖a‖`Nq ε(N,L)1/q−1 + L−s

)
. (4.14)

Again the vector ã can be modified to have nonnegative entries which sum to one while retaining
(4.14) (with a change in C0).

With these two bounds on the approximation of g and a, we are in the same position as in
the proof of Theorem 3.2. Therefore, the proof can now be completed exactly as in the proof of
Theorem 3.2. 2

5 The case 0 < s ≤ 1

Up to this point, we have assumed that the function g belongs to Cs[0, 1] with s > 1. Our previous
results do not apply if s ≤ 1. In this section, we shall remedy this, to some extent, by treating the
case g ∈ Cs, 0 < s ≤ 1. However, we shall make the additional assumption that g is monotone. So,
throughout this section, we assume that g is monotone and in Cs[0, 1] for some 0 < s ≤ 1 which is
unknown to us.

Given L ≥ 2, we define n := n(L) := d8L log2 Le. Our first goal is to define a query procedure
which finds a partition I of [0, 1] by n intervals Ij , j = 1, . . . , n, such that g changes more or
less equally on each of these intervals. We do this by adaptive splitting. To begin, we define
I1 := {[0, 1/2], [1/2, 1]}. We recall that asking for the values of f at a point t(1, . . . , 1) gives the
value of g at the point t, so we can think of such queries as asking for the values of g. We ask for the
values of g at 0, 1/2, 1 and examine the change of g on each of the two intervals in I1. We choose
the interval which has the largest change (with ties broken here and later, by taking the left most
interval) and divide it into its two dyadic children. At the general step k of the adaptive algorithm,
we consider the current set of k + 1 intervals and determine the interval on which g has maximal
change. We subdivide this interval and ask for the value of g at the new end point. We apply this
adaptive subdivision n− 2 times until we arrive at our final partition I := I(f, h) := {I1, . . . , In},
where the intervals are written from right to left. To create this collection of intervals, we have
asked for the value of g at at most n+ 1 points.

The following lemma gives a bound for the change of g on each of the intervals in I.

Lemma 5.1 If g is monotone and g ∈ Cs[0, 1] for some 0 < s ≤ 1, then for any L ≥ 2 max(M, 1)/s
and for any interval I ∈ I, we have

|g(x)− g(y)| ≤ 5M

sL
, x, y ∈ I, (5.1)

where M := ‖g‖Cs[0,1].

Proof: First, observe that g(1)− g(0) =: M0 ≤M . If M0 ≤ 5M/sL, we have nothing to prove. So
consider the case M0 ≥ 5M/sL. Let m be the smallest positive integer such that

ε :=
M0

m
≤ M

sL
.
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Then, m ≥ 5 and also
M/ε ≥ sL ≥ 2. (5.2)

Now define the points x0 := 0 < x1 < . . . < xm =: 1 such that

g(xi)− g(xi−1) = ε, i = 1, . . . ,m.

From the assumption that ‖g‖Cs[0,1] = M , we have

ε = |g(xi)− g(xi−1)| ≤M |xi − xi−1|s, i = 1, . . . ,m.

It follows, therefore, that

|xi − xi−1| ≥ (M/ε)−1/s, i = 1, . . . ,m. (5.3)

To prove (5.1), it is enough to show that each interval I ∈ I contains at most four of the
points xi, i = 1, . . . ,m. To do this, we shall now construct another adaptive partition. Given a
pair (xi−1, xi), we consider the smallest sequence of dyadic subdivisions (starting with [0, 1]) that
are needed to separate these two points. If `(xi−1, xi) is the number of such subdivisions, then
from (5.3), we have `(xi−1, xi) ≤ ds−1 log2(M/ε)e. This means, we can find a dyadic partition
I∗ = {I∗1 , . . . , I∗n̄} which simultaneously separates every such pair of these points by using at most

n̄ :=

m∑
i=1

`(xi−1, xi) ≤ mds−1 log2(M/ε)e ≤ 2M0ε
−1s−1 log2(M/ε) (5.4)

subdivisions. Here, we have used (5.2) to remove the d·e. From the definition of m and the fact
that m ≥ 2, we have

M

sL
≤ M0

m− 1
≤ 2M0

m
= 2ε. (5.5)

Hence, M/ε ≤ 2sL ≤ 2L and using that back in (5.4) gives

n̄ ≤ 2M0s
−1ε−1 log2(M/ε) ≤ 4M0s

−1ε−1 log2 L ≤ 8L log2 L ≤ n. (5.6)

Here in the second to last inequality we used the fact that log2 2L ≤ 2 log2 L for L ≥ 2.
Finally, we observe that in the generation of the adaptive partition I, if an interval generated in

the subdivision process has 4 or more points xi then it will always be subdivided before an interval
with only one xi. Since n̄ ≤ n, no interval in I contains more than three point xi. This means that
the variation of g on any I ∈ I is less than 5ε and thus less than 5M/sL. 2

We shall also need the partition J of [0, 1] into L intervals of equal length. We now can describe
the query points of our algorithm.

QMSTEP1: Evaluate g at points of I. We ask for the values of f at the points corresponding
to the endpoints of the intervals Ii of I. The number of such query points is at most n + 1 with
n = d8L log2 Le+ 1.

QMSTEP2: Evaluate g at points of J . We ask for the values of f at all of the endpoints of
the intervals Ji of J . The number of such query points is L+ 1.
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QMSTEP3: Evaluate f at Bernoulli points. If L < N , we shall again using a Bernoulli matrix
Φ of size L×N . The entries in Φ are ±1/

√
L and again we assume that we have a favorable draw

so that the RIP and mapping properties introduced in §2 hold for the matrix Φ. We again denote
by bi, i = 1, . . . , L, the rows of Φ. Let us consider the points zi := 1/2 + µa · bi, i = 1, . . . , L where

µ :=
√
L

2 . All of these points are in [0, 1]. We can obtain the value of g(zi) by asking for the value
of f at (1/2, . . . , 1/2) + µbi. From this value, we can determine the interval J ∈ J which contains
zi. Now, we ask for the value of g at the midpoint of J . From this value, we can determine whether
zi is in the left or right child of J . Whichever child it is in, we ask for the value at its midpoint
and proceed in the same way. Thus after 2dlog2 Le of these steps, we will have an approximation
ẑi to zi

|zi − ẑi| ≤ L−3. (5.7)

From this we obtain an approximation ŷi to yi = a · bi satisfying

|yi − ŷi| ≤ 2L−7/2. (5.8)

We do this for each i = 1, . . . , L. Thus, this step will use 2Ldlog2 Le (adaptive) point queries of f .

If L ≥ N , then as before we use the N × N identity matrix IN in place of Φ and ask for the
values of f at the coordinate points ej which in turn gives g(ai). We determine which interval
J ∈ J contains ai and then do the adaptive subdivision as above to resolve ai by âi to accuracy

|ai − âi| ≤ L−3. (5.9)

Given these point values of f , we describe how we construct an approximation f̂ to f .

RMSTEP1: Approximating g from the retrieved information. Using the values of g at
the points of I, we construct a piecewise linear interpolant ĝ to g at these points. Notice that ĝ is
also monotone. Since g changes by at most 5M/sL between any two of these points, the function
ĝ satisfies

‖g − ĝ‖C[0,1] ≤
5M

sL
. (5.10)

RMSTEP2: Approximating a from the retrieved information. We first consider the case
L < N . We apply the `1-minimization decoder ∆ to the vector ŷ := (ŷi)

L
i=1. This gives ã := ∆(ŷ).

Using the estimate (5.8), the same proof as in Lemma 3.1 shows that there is a constant C depending
only on q such that

‖a− ã‖`N1 ≤ C
(
M1ε(N,L)1/q−1 + L−2

)
. (5.11)

As before, we modify ã to get â with positive entries and ‖â‖`1N = 1. In the case L ≥ N , we sum
the estimates (5.9) to obtain

‖a− â‖`N1 ≤ L
−2, (5.12)

which is the same form as (5.11).

With these results in hand, we obtain the following theorem.
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Theorem 5.2 The above algorithm uses at most 11Ldlog2 Le adaptive point queries. If f(x) =
g(a · x) with g monotone, a ∈ w`Nq , and g ∈ Cs for some 0 < s ≤ 1, then the reconstruction from

these queries gives an approximation f̂ such that for all L ≥ 1,

‖f − f̂‖C(Ω) ≤ CM0

(
L−1 + C1M1ε(N,L)s(1/q−1)

)
, (5.13)

where C is a constant depending only on s when s is small and C1 depends only on q.

Proof: The proof is the same as the proof of Theorem 3.2 and so we do not repeat it here. 2

6 Concluding remarks

While we have put forward results that show certain ridge functions in high dimension can be
captured by a controlled number of queries, there are many directions and possible improvements
that could be further explored.

6.1 The requirements on a

Our ultimate goal is to be able to treat general functions f of the form f(x) = g(Ax) where A is
an m×N matrix. This paper only discusses the simplest case of this where m = 1 in which case A
is a vector a. In addition, we have imposed the requirement that the entries in a are nonnegative.
While this matches some applications in econometrics (single index models), it would be desirable
to have a theory that did not impose this requirement. We have used this assumption to guarantee
that querying f at points of the form t(1, . . . , 1) gives the value of g at t. Obviously, we could also
impose other specific sign patterns for the entries in a but this sign pattern must be known for the
techniques of this paper to apply. It would be very desirable to develop techniques that weaken
this assumption on a.

6.2 The optimality of our results

Our main result shows that with O(L) point value queries, any f ∈ R(s, q;M0,M1) can be retrieved
with accuracy M0(L−s +M1ε(N,L)1−1/q). It is legitimate to question the optimality of this result,
in the sense that this order accuracy cannot be improved by any algorithm based on O(L) queries.
Note that the algorithm proposed in this paper is adaptive in the sense that the points at which
we call the values of f are not fixed in advance (except for the L+ 1 first base points), but rather
depend on the information on f gained in previous queries. Therefore, any proof of optimality
would have to allow all possible adaptive algorithms in the competition.

The following arguments show that our results are indeed optimal, save for the factor log2(N/L)
which appears in the ε(N,L).

In order to see that the term L−s cannot be removed, we remark that for any set of L points,
there exists a function f ∈ R(s, q;M0,M1) of the form

f(x) = g(x1),

that vanishes at all these points and yet such that ‖f‖C(Ω) = ‖g‖C([0,1]) ≥ cM0L
−s, with c > 0 a

constant that does not depend on L. Indeed there is an interval of length larger than 1
2L that does
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not contain any x1 coordinate of the L points and we can take a function g compactly supported
on this interval such that ‖g‖Cs ≤ M0 and ‖g‖C([0,1]) ≥ cM0L

−s. We now challenge any adaptive
algorithm by considering the sequence of points which are queried by this algorithm when all
measured values are zero. For this sequence, the corresponding function f constructed as above
gives the same values as −f , and in turn the reconstruction error over the class R(s, q;M0,M1)
can be as bad as cM0L

−s.
In order to show that the term ε(N,L)1−1/q cannot be removed, a possibility is to consider

functions in R(s, q;M0,M1) of the form

f(x) = M0a · x,

with a ≥ 0 and ‖a‖w`Nq ≤M1, or equivalently

f(x) = b · x,

with b ≥ 0 and ‖b‖w`Nq ≤M0M1. Recent results on Gelfand widths [10] show that for any sequence

of L vectors x(1), · · · , x(L), there exists a vector b orthogonal to all x(i) such that ‖b‖w`Nq ≤ M0M1

and
‖b‖`N1 ≥ cε(N,L)1−1/q,

with c > 0 a constant that does not depend on L and N . By considering the functions f and −f ,
this would be sufficient to derive the optimality of the term ε(N,L)1−1/q by the same argument as
for the term L−s, if we had not imposed that the vector b should have positive coordinates.

For this reason, the optimality of the term ε(N,L)1−1/q over R(s, q;M0,M1) for all adaptive
algorithms remains unclear to us. It may be proved if we only challenge non-adaptive algorithms
(but then our algorithm does not fall in this category), or if we give up on the factor log2(N/L)
which appears in the ε(N,L). We explain this second option.

We consider the function f(x) = b · x with vector

b = M0M12−2/q(L−1/q, · · · , L−1/q, 0, · · · , 0),

where the first 2L coordinates are non-zero. Then, ‖b‖q
w`Nq

≤ ‖b‖q
`Nq
≤ 1/2. For any adaptive

algorithm, we consider the sequence x(1), · · · , x(L) that is picked for this particular function. Then,
classical results on Gelfand width of hypercubes (see [11] Theorem 3.2, p.410) show that there
exists a vector b′, with only its first 2L coordinates nonzero, which is orthogonal to all x(i) and
such that

‖b′‖`∞ ≤ 1 and ‖b′‖`1 ≥ L.

We then define b̃ = b+M0M12−2/qL−1/qb′, so that ‖b̃‖w`Nq ≤ 1 and

‖b− b̃‖`1 ≥M0M12−2/qL1−1/q.

We set f̃(x) = b̃ · x. Both functions f and f̃ now belong to R(s, q;M0,M1) and give the same
values. It is now easy to check that

‖f − f̃‖C([0,1]) ≥M0M12−2/q−1L1−1/q.
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6.3 Comparison with [8]

It is interesting to compare the above approximation result with those that could be derived if we
were following the approach proposed in [8]. The latter allows us to recover any function f that
differs by at most τ from a Cs function of k unknown variables, to an accuracy

‖f − f̂‖C(Ω) ≤ C(L−s/k + τ),

using O(L logN) queries of f , where the constant C depends on k. Since a can be approximated in
`1 by a vector with k non-zero coordinates to an accuracy of order k1−1/q, this implies that f differs
from a function of k unknown variables by an error of order τ = k1−1/q. Therefore, application of
the approach proposed in [8] results in the error bound

‖f − f̂‖C(Ω) ≤ C
(
L−s/k + k1−1/q

)
, (6.1)

for any k > 0, where C depends on k, which is less favorable than our results since we need to
make k large and this deteriorates the rate in L.

On the other hand, in contrast to [8], the algorithm given in this paper is less robust with
respect to a deviation of f from the model class of ridge functions, as noticed in §4.
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