
METHODS AND APPLICATIONS OF ANALYSIS. c© 2013 International Press
Vol. 20, No. 4, pp. 365–382, December 2013 004

FINDING THE MINIMUM OF A FUNCTION∗

ALBERT COHEN† , RONALD DEVORE‡ , GUERGANA PETROVA§ , AND

PRZEMYS lAW WOJTASZCZYK¶

Dedicated to Stanley Osher on the occasion of his 70-th birthday with much admiration

Abstract. Adaptive query algorithms for finding the minimum of a function f are studied.
The algorithms build on the earlier adaptive algorithms given in [5, 8]. The rate of convergence of
these algorithms is estimated under various model assumptions on the function f . The first class
of algorithms is analyzed when f satisfies a smoothness condition, e.g. f ∈ Cr, and an assumption
on its level sets as given in [8]. There is a distinction drawn as to whether or not the algorithm
has knowledge of the semi-norm |f |Cr . If this information is known, it is rather straightforward to
design algorithms with optimal performance and to show that this performance is better than non-
adaptive algorithms. A bit more subtle is to build algorithms which are universal in that they do
not need to know the semi-norm of f . Universal algorithms are built that have the same asymptotic
performance as when the semi-norm is known, save for a logarithm. The second part of this paper
studies adaptive algorithms for finding the minimum of a function in high dimension. In this case,
additional assumptions are placed on f , of the form given in [3], that have the effect of variable
reduction and thereby avoiding the curse of dimensionality. These algorithms are again shown to be
asymptotically optimal up to a logarithm factor.

Key words. Computing minima, adaptive methods, tree based algorithms, high dimension.

AMS subject classifications. Primary: 65K99, 68Q25; Secondary 41A25, 90C60.

1. Introduction. We discuss strategies for finding the minimum value m(f) =
m(f,Ω) taken by a continuous function f defined on Ω := [0, 1]d. Such problems arise
in many areas of applied mathematics, in particular in optimal design.. For example,
in aircraft design, the aerodynamic drag force is a function of input parameters such
as the control points used in the computer aided design of the vehicle. One looks for
a design, i.e. selection of the parameters, that will minimize this drag force. Other
examples occur in heat conduction where one is interested only in the minimum or
maximum temperature of the body. The main question to be addressed in such
problems is whether one can compute the minimum more economically than finding
a global approximation to the function f and then computing the minimum of the
approximant.

In this paper, we assume that we are able to query f by asking for its value at any
point. The algorithms we study give an adaptive procedure to determine the points

∗Received February 11, 2013; accepted for publication September 4, 2013. This research was sup-
ported by the Office of Naval Research Contracts ONR N00014-09-1-0107, ONR N00014-11-1-0712,
ONR N00014-12-1-0561; by the AFOSR Contract FA95500910500; by the NSF Grants DMS 0915231,
DMS 1222715; by the “HPC Infrastructure for Grand Challenges of Science and Engineering” Project,
co-financed by the European Regional Development Fund under the Innovative Economy Opera-
tional Program; by the Polish NCN grant DEC2011/03/B/ST1/04902, and the ANR project Défi08
ECHANGE. This publication is based on work supported by Award No. KUS-C1-016-04, made by
King Abdullah University of Science and Technology (KAUST).

†UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
(cohen@ann.jussieu.fr).

‡Department of Mathematics, Texas A&M University, College Station, TX 77840, USA (rdevore
@math.tamu.edu).

§Department of Mathematics, Texas A&M University, College Station, TX 77840, USA (gpetrova
@math.tamu.edu).

¶Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw,
00-838 Warsaw, ul. Prosta 69, Poland (wojtaszczyk@mimuw.edu.pl).

365

366 A. COHEN ET AL.

to query f . After a typical step of the algorithm, it will have asked for the values
f(ξ1), . . . , f(ξn) and then uses these values to estimate m(f). In the simplest case,
one could take

(1.1) m̂n(f) = min
1≤j≤n

f(ξj),

as the approximation to m(f). This choice works when f is in Lip 1. However, when
f has higher smoothness, better choices for the estimate m̂n(f) are given in (2.21)
below. We denote by

(1.2) En(f) := |m̂n(f)−m(f)|

the error produced by such an algorithm. Of course En(f) depends on the particular
algorithm used and properties of f . In particular, we are interested in when such
adaptive methods can perform better than simply querying f at n equally spaced
points.

In order to give a bound for the decay of En(f) as n → ∞, one needs to assume
something about f . A common model for the function f is to assume that it is in
LipM∗1. Then, n = Nd suitably spaced point queries (independent of f) would give
an error

(1.3) En(f) ≤
√
d2−1M∗n−1/d.

Starting with the algorithm in [8] based on graphs, adaptive algorithms have been
constructed which perform better than non-adaptive queries provided the function
satisfies another condition described by level sets. Namely, the following level set
condition was introduced in [8]:

Level set condition of order s. For any s > 0, we say f ∈ L(s, L) if

(1.4) |{x : f(x) ≤ δ +m(f)}| ≤ Lδs, δ > 0,

where here and later, we denote by |A| the Lebesgue measure of a set A ⊂ R
d. Notice,

that since |Ω| = 1, the condition (1.4) automatically holds for δ large by adjusting
L. The previous work in [8, 5] assumes that (1.4) only holds for δ ≤ δ0 which may
enable the introduction of a smaller L, but then all results also involve the constant
δ0. Our results could also be presented in that way, but at the expense of much more
complicated statements which we choose not to make.

Let us also say a few important words about the compatibility between smooth-
ness assumptions like f ∈ LipM∗1 and level set assumptions like f ∈ L(s, L).

Remark 1.1. If f ∈ LipM∗1 then f cannot be in L(s, L) for any s > d. Indeed,
if f assumes its minimum at a point ξ ∈ Ω, then for any x ∈ Ω in the ball Bδ of
radius δ centered at ξ, we have

|f(x)− f(ξ)| ≤ M∗δ.

It follows that

cdδ
d ≤ |Bδ ∩Ω| ≤ |{x : f(x) ≤ m(f) +M∗δ}|, δ > 0.

If, in addition, f has higher smoothness, say C2, near a minimum ξ which is in the
interior of Ω, then ∇(f)(ξ) = 0 and f(x) − f(ξ) ≤ Cδ2 on Bδ. The same argument
now gives that s cannot exceed d/2.

FINDING THE MINIMUM OF A FUNCTION 367

Remark 1.2. To illuminate when the level set assumption is valid, we consider

any of the functions fα(x1, . . . , xd) :=
(

∑d
j=1 x

2
j

)α

defined on Ω. If α ≥ 1
2 , then this

function is in Lip2α1 and is in L(d
2α , 2

−dBd) where Bd is the volume of d-dimensional
euclidean unit ball.

In [8], an algorithm based on graphs was given that shows that whenever f ∈
LipM∗1 and f satisfies the level set condition of order s, then

(1.5) En(f) = O(n− 1
d−s), n → ∞.

The above performance results require the knowledge ofM∗. The main point of [5]
was to study whether estimates of this type can be obtained without this knowledge.
We call such algorithms universal. A universal algorithm was given in [5] for functions
f in LipM∗1, which does not require knowledge of M∗, but still yields an estimate 1

(1.6) En(f) ≤ C0L
2/d[M∗]8n−2/d, n ≥ 1,

whenever f is in L(d/2, L). Note that this estimate is not explicity stated in [5] but
can be derived from his error and complexity estimates.

In the present paper, we further study adaptive algorithms for obtaining bounds
for m(f) with the goal of treating more general smoothness conditions, more gen-
eral level set parameters s, and also obtaining provably optimal results. Our main
technique, which is based on adaptive dyadic partitioning and tree algorithms is con-
ceptually similar to [5], but its implementation and analysis is much simpler.

Our main result, given in §3, constructs a universal algorithm for Cr functions
and general level set parameter s. As a special case, we obtain that the factor [M∗]8

appearing in (1.6) can be replaced by [M∗ logM∗]2. Namely, we give a universal
algorithm such that whenever the function f is in LipM∗1 and also in L(s, L), then
we have

(1.7) En(f) ≤ C0(d, s)[M
∗ logM∗]

d

d−s

(L

n

)
1

d−s

, n ≥ 1.

We also show in §5 that save for the appearance of the logarithm, this algorithm gives
optimal performance not only in the dependence on n but also on M∗. Namely, we
prove that for any algorithm (adaptive or not) using n point queriess, we have the
lower bound for performance

(1.8) sup
f∈L(s,L)∩LipM∗1

En(f) ≥ c0[M
∗]

d

d−s

(L

n

)
1

d−s

,

for an absolute constant c0 and n sufficiently large. In the case s = d/2, the same
lower bound was proved in [5] but for a restricted class of algorithms. We do not
know whether in (1.7) it is possible to remove this logarithm by another method.

We begin in §2 by deriving algorithms and results which apply to more general
smoothness conditions f ∈ Cr and general level set parameters s that appear in
(1.4). We first establish algorithms that require knowledge of r and a bound for the

1We denote by c0, C0 absolute constants. Otherwise, we indicate the dependence of the constants
on the parameters involved, e.g., C(d) means a constant depending only on d. We do not calculate
such constants explicitly, however usually some value can be easily derived from our arguments.
These constants may vary from line to line.

368 A. COHEN ET AL.

semi-norm |f |Cr but apply to any level set parameter s without knowing the value of
s. We call these core algorithms since they are at the core of constructing universal
algorithms.

We then turn our attention to universal algorithms. We give in §3 a universal
algorithm for Cr functions which does not require knowledge of |f |Cr and then prove
in §5 that its performance is optimal, again save for a logarithm of |f |Cr .

The above algorithms become computationally infeasible when the dimension d
is large. One can see this already in the factor n−2/d that appears in (1.6). This is
the so-called curse of dimensionality. In order to break this curse, in the context of
approximating f , it is known that one needs additional structure on f . There are
several model classes that have been introduced in high dimensions which both match
some application domains and also avoid the curse of dimensionality (see [3, 1, 4, 7]).
We build on the model classes introduced in [3] which assume that f either depends
only on ℓ << d variables or can be approximated by functions of this type. As an
example of the results we derive, we mention that we give adaptive algorithms for
finding m(f) for LipM∗ 1 that do not require knowledge of either M∗ or the ℓ active
variables but still give the estimate

(1.9) En(f) ≤ C0[M
∗ logM∗]2Ln−2/ℓ, n ≥ 1,

whenever f ∈ L(ℓ/2, L). Various generalizations of this result are given to incorporate
more general smoothness and more general level set parameters s.

2. Core algorithms. We first consider algorithms that apply to any function
f but are designed to perform well under certain smoothness conditions imposed
on f . These algorithms utilize the given smoothness condition in the design of the
algorithm. We call these core algorithms since they will also be used in the design
of universal algorithms. We begin by discussing a core algorithm that performs well
for Lipschitz functions. This simplest case is easiest to understand. This algorithm
has the same spirit as those given in [8, 5] but with a different execution based on
standard dyadic partitioning and tree algorithms, both of which are commonly used
in the design of adaptive algorithms [2] . In the next section, we treat core algorithms
which perform well for more general smoothness. Later sections of the paper describe
universal algorithms.

2.1. Core algorithm for Lipschitz smoothness. We recall that the space
LipM1 is defined as the set of all functions such that |f(x) − f(y)| ≤ M |x− y| holds
for all x, y ∈ Ω. We let D denote the set of all dyadic subcubes of Ω and Dj those
dyadic cubes with sidelength 2−j. Each dyadic cube Q has 2d children and each
Q 6= Ω has one parent. A collection Λ of dyadic cubes is said to be a tree if whenever
Q 6= Ω is in Λ, then its parent is also in Λ.

Given Q ∈ D, we let cQ be the center of Q. Our algorithm defines for k = 0, 1, . . .
a tree Λk and finds the values of f at the centers cQ of the Q ∈ Λk. These query
values are then used to find an estimate m̂k := m̂k(f) to m(f). The value of m̂k is
then used to find the next tree Λk+1. The tree Λk+1 contains Λk.

CORE(1,M) Let M > 0. The algorithm takes as input any continuous function
f and does the following steps for k = 0, 1,

STEP 0. We define Λ0 := Γ0(M) := {Ω} and compute f(cΩ).

FINDING THE MINIMUM OF A FUNCTION 369

STEP k + 1. If Γk(M) ⊂ Dk and Λk have been defined and the values f(cQ)
have been computed at each center point cQ, Q ∈ Λk, we then compute the value

(2.1) m̂k(f) := min{f(cQ) : Q ∈ Γk},

which is our current estimate for the minimum of f . We define Γ̃k as the set of all
cubes Q ∈ Γk for which

(2.2) f(cQ)−M
√
d2−k−1 ≤ m̂k.

Then, we define Λk+1 := Λk ∪ Γk+1. The set Γk+1 = Γk+1(M) is then defined as the
collection of all dyadic cubes Q ∈ Dk+1 which are the children of a cube Q ∈ Γ̃k.

Remark 2.1. Let us observe that if f ∈ LipM1, and k ≥ 0, then any true
minimum of f is taken on one of the cubes in Γk. This is clear for k = 0 and so
assume this is true for a given k. Now if Q is in Γk but not in Γ̃k, then the true
minimum of f over Q is greater than our current estimate m̂k for the minimum of f
and hence greater than m(f). It follows that the minimum of f on Ω must be taken
on one of the cubes Q ∈ Γ̃k and hence on one of the cubes in Γk+1.

To analyze the performance of this algorithm, we impose additional structure on
f through its level sets and prove the following theorem about the performance of the
above algorithm.

Theorem 2.2. Suppose that CORE(1,M) is run on a function f ∈ LipM∗1
with M∗ ≤ M . Then at step k, the following holds.
(i) The estimator m̂k satisfies

(2.3) m(f) ≤ m̂k ≤ m(f) +M∗
√
d2−k−1.

(ii) If in addition f ∈ L(s, L) for some s > 0, then the number nk of point evaluations
at the end of Step k, is at most

(2.4) nk ≤ 1 + C(d, s)LM s

{

2k(d−s), 0 < s < d,
k, s = d

Here C(d, s) can be replaced by C(d, s0) if 0 < s ≤ s0 < d.

Proof. Let us first prove (i). The lower estimate in (2.3) is obvious. Since
M∗ ≤ M , we have from Remark 2.1 that the minimum of f on Ω is always taken at
a point ξ∗ ∈ Q∗ with cube Q∗ ∈ Γk. Since the sidelength of Q∗ is 2−k, we have

m̂k ≤ f(cQ∗) = f(ξ∗) + f(cQ∗)− f(ξ∗) ≤ m(f) +M∗
√
d2−k−1,

as desired.
Now, we prove (ii). Clearly nk is the same as the cardinality of Λk. Since

#(Γj) = 2d#(Γ̃j−1), for j ≥ 1, we have

(2.5) nk = 1 + 2d
k−1
∑

j=0

#(Γ̃j).

If Q ∈ Γ̃j , then for any x ∈ Q,

f(x) ≤ f(cQ) +M∗
√
d2−j−1 ≤ m̂j(f) +M

√
d2−j−1 +M∗

√
d2−j−1(2.6)

≤ m(f) +M
√
d2−j−1 + 2M∗

√
d2−j−1 ≤ m(f) +

3M

2

√
d2−j,(2.7)

370 A. COHEN ET AL.

where the first inequality uses that f ∈ LipM∗1, the second inequality uses (2.2), and
the third inequality uses (i). Hence, from the level set assumption

(2.8) #(Γ̃j)2
−jd ≤ |{x : f(x) ≤ m(f) +

3M

2

√
d2−j}| ≤ L[

3M

2

√
d2−j]s.

This gives that

(2.9) nk ≤ 1 + L2d[
3M

2

√
d]s

k−1
∑

j=0

2−j(s−d).

The two bounds given in (2.4) follow by estimating the last sum.

It is useful to restate the last theorem in terms of accuracy versus the number
of computations. We recall that En(f) is the error in computing m(f) from n point
evaluations.

Corollary 2.3. Suppose that CORE(1,M) is run on a function f ∈ LipM∗1
with M∗ ≤ M and f ∈ L(s, L) for some 0 < s < d. If after Step k, nk ≥ 2 point
evaluations have been used, then

(2.10) Enk
(f) ≤ C(d, s)M∗M

s

d−s

(L

nk

)
1

d−s

,

where C(d, s) can be replaced by C(d, s0) as long as s ≤ s0 < d.

Proof. From (2.4) have that nk ≤ 1 + C(d, s)LM s2k(d−s) and therefore

(2.11) 2k(d−s) ≥ C(d, s)−1(nk − 1)L−1M−s ≥ C(d, s)−1(nk/2)L
−1M−s.

We use this in (i) of the theorem to obtain

(2.12) Enk
(f) ≤ M∗

√
d2−k−1 ≤ C(d, s)M∗M

s

d−s

(L

nk

)
1

d−s

,

as desired.

As long as 0 < s < d, we obtain a better error decay, in terms of n, than that
given in (1.3) for non-adaptive algorithms. We obtain the best bound if M = M∗, in
which case the estimate (2.12) reads for n = nk,

(2.13) En(f) ≤ C(d, s)[M∗]
d

d−s

(L

n

)
1

d−s

.

This bound then holds for all n because of the monotonicity of En(f) and the fact
that nk ≤ 2dnk−1. As noted in (1.8), this bound was shown to be optimal in [5] for
the case s = d/2. We show in §5 by example that it is optimal for all s.

Remark 2.4. We want to make remarks about the CORE algorithm that will be
useful when we construct universal algorithms. If at each step j of the CORE(1,M)
algorithm, we use in place of m̂j an estimate m̃j which is a better estimate for the

true minimum, i.e. m(f) ≤ m̃j(f) ≤ m̂j(f) then we still have that the set Λ̃j ⊂ Λj

and all true minima of f are attained on one of the cubes Q ∈ Λ̃j ∩ Dj. Hence, this
modified algorithm admits the same conclusions as Theorem 2.2.

FINDING THE MINIMUM OF A FUNCTION 371

2.2. Core algorithms for higher smoothness. We next construct core algo-
rithms with other smoothness conditions. For any r = 1, 2, . . . , we define Cr(Ω) as
the space of all functions in C(Ω) with continuous r-th derivatives and the norm

(2.14) |f |Cr(Ω) := max
0<|α|≤r

‖Dαf‖L∞(Ω).

We denote by C(r,M, d) the set of all functions f ∈ Cr(Ω) for which

(2.15) |f |Cr ≤ M.

We recall the following known results concerning functions f ∈ Cr. Let D(d, r)
denote the dimension of the span of xα, with |α| < r in R

d. We fix once and for all a
set SΩ ⊂ Ω of D(d, r) points in general position and do not indicate the dependence
on this choice in going further. Any dyadic cube Q is the image of Ω under a dilation
and translation. We apply this transformation to SΩ and obtain the set SQ. There
is a unique polynomial PQ := PQ(f) of degree < r which interpolates f at the points
in SQ. Then PQ approximates f to the following accuracy on Q

(2.16) ‖f − PQ‖L∞(Q) ≤ C(d, r)|f |Cr(Q)|Q|r/d,

where C(d, r) is a constant depending only on d, r. We define

(2.17) m̂Q := m̂Q(f) := inf
z∈Q

PQ(z).

Let ξ be the point in Q where PQ takes its minimum value on Q, then denoting
here and later by m(f,Q) the minimum of f on Q, we have

(2.18) m(f,Q) = f(ξ) = PQ(ξ) + f(ξ)− PQ(ξ) ≤ m̂Q + C(d, r)|f |Cr(Q)|Q|r/d.

Similarly, if ξ′ is the point where f takes its minimum on Q, then

(2.19) m̂Q ≤ PQ(ξ
′) = f(ξ′) + PQ(ξ

′)− f(ξ′) ≤ m(f,Q) + C(d, r)|f |Cr(Q)|Q|r/d.

Therefore,

(2.20) |m(f,Q)− m̂Q| ≤ C(d, r)|f |Cr(Q)|Q|r/d =: |f |Cr(Q)φr(|Q|)/2

where we use the abbreviated notation φr(t) := 2C(d, r)tr/d, t ≥ 0, with C(d, r) the
constant in (2.16). Notice that m̂Q may be smaller than the true minimum m(f,Q).

With these preliminaries in hand, we can now describe the core algorithm for Cr

functions.

CORE(r,M) Given a positive integer r and a positive real number M , the al-
gorithm takes as input any continuous function f and does the following steps for
k = 0, 1,

STEP 0. We define Λ0 := Γ0 := {Ω} and query f(z), for each z ∈ SΩ. We then
compute m̂Ω as describe above, see (2.17).

STEP k + 1. Assume Γk = Γk(M) ⊂ Dk and Λk have been defined and the
values f(z), z ∈ SQ, have been queried and the value m̂Q has been computed for each
Q ∈ Λk. We then compute the value

(2.21) m̂k := m̂k(r,M) := min{m̂Q : Q ∈ Γk},

372 A. COHEN ET AL.

which is our current estimate for the minimum of f . We define Γ̃k as the set of all
cubes Q ∈ Γk for which

(2.22) m̂Q −Mφr(|Q|) ≤ m̂k.

Notice that Γ̃k is always nonempty. The set Γk+1 = Γk+1(M) is then defined as the
collection of all dyadic cubes Q ∈ Dk+1 which are the children of a cube Q ∈ Γ̃k.
Finally, Λk+1 := Λk ∪ Γk+1.

Remark 2.5. Notice that if f ∈ C(r,M, d) with M > |f |Cr , and Q is in Γk but
not in Γ̃k, then the minimum of f over Q satisfies

(2.23) m(f,Q) ≥ m̂Q −Mφr(|Q|)/2 > m̂k +Mφr(|Q|)/2 ≥ m(f),

where the first and last inequalities use (2.20) and the second uses that (2.22) does not
hold. It follows that the minimum of f on Ω cannot occur on Q. Hence, the minimum
of f on Ω must be taken on one of the cubes Q ∈ Γk+1.

Theorem 2.6. Suppose that CORE(r,M) is run with a constant M > 0 and
that f ∈ C(r,M∗, d) with M∗ ≤ M , then the following hold.
(ii) The estimator m̂k satisfies

(2.24) |m(f)− m̂k| ≤ C(d, r)M∗2−kr,

where C(d, r) is the constant in (2.16).

(ii) If in addition f ∈ L(s, L) for some s, L > 0, then at step k, the algorithm has the
following properties: The number nk of point evaluations at the end of Step k, is at
most

(2.25) nk ≤ D(d, r) + C(d, s, r)LM s

{

2k(d−s), 0 < s < d,
k, s = d

Here C(d, s, r) can be replaced by C(d, s0, r) if 0 < s ≤ s0 < d.

Proof. Let us first prove (i), that is, we prove (2.24). As we have already observed
the minimum of f on Ω is always taken at a point ξ∗ ∈ Q∗ with cube Q∗ ∈ Γk. Since
the measure of Q∗ is 2−kd, we have from (2.20),

(2.26) m̂k ≤ m̂Q∗ ≤ mQ∗ + C(d, r)M∗2−kr = m(f) + C(d, r)M∗2−kr.

On the other hand, if m̂k = m̂Q with Q ∈ Γk, then

(2.27) m(f) ≤ mQ ≤ m̂Q + C(d, r)M∗2−kr = m̂k + C(d, r)M∗2−kr.

Hence, we have proved (i).
Now, we prove (ii). The total number of point evaluations used in the algorithm

is the same as D(d, r)#(Λk). Since #(Γj) = 2d#(Γ̃j−1), for j ≥ 1, we have that the
number of point evaluation after step k does not exceed

(2.28) D(d, r){1 + 2d
k−1
∑

j=1

#(Γ̃j)}.

FINDING THE MINIMUM OF A FUNCTION 373

If Q ∈ Γ̃j and ξ is the point in Q where f assumes its minimum on Q, we have

f(ξ) = m(f,Q)

≤ m̂Q + C(d, r)M∗|Q|r/d

≤ m̂j + 3C(d, r)M |Q|r/d

≤ m(f) +M∗C(d, r)|Q|r/d + 3C(d, r)M |Q|r/d

≤ m(f) + 4MC(d, r)2−jr ,(2.29)

where the first inequality uses (2.20), the second inequality uses (2.22), and the third
inequality uses (2.24). Since r ≥ 1, f ∈ LipM∗ 1 and so for any x ∈ Q, from (2.22),
we find

f(x) ≤ f(ξ) +
√
dM∗2−j

≤ m(f) + 4MC(d, r)2−jr +
√
dM∗2−j

≤ m(f) + {4C(d, r) +
√
d}M2−j.(2.30)

Hence,

#(Γ̃j)2
−jd ≤ |{x : f(x) ≤ m(f) + {4C(d, r) +

√
d}M2−j}|

≤ L[{4C(d, r) +
√
d}M2−j]s.(2.31)

This gives that

nk ≤ D(d, r){1 + 2d
k−1
∑

j=0

#(Γ̃j)} ≤ D(d, r){1 + 2dLM s[4C(d, r) +
√
d]s

k−1
∑

j=0

2j(d−s)}.

This gives the bounds stated in (ii) and completes the proof of the theorem.

As in the previous case of Lip functions, we get that when the CORE(r,M)
algorithm is run on a function f ∈ Cr with |f |Cr = M∗ ≤ M and f ∈ L(s, L),
0 < s < d, then

(2.32) En(f) ≤ C(d, r, s)M∗M
rs

d−s

(L

n

)
r

d−s

, n ≥ D(d, r),

where n is the number of point evaluations of f that are used.

3. Universal algorithms. In the case of Lip 1 functions, the analysis of the
preceding section gives the optimal rate (2.13) if M = M∗. Since, in general, M∗ is
unknown, the choice of M is problematic. One of the main points of [5] is that it
is possible to design an algorithm even when a bound for M∗ is not available. For
example, in the case d = 1 and s = 1/2, a universal algorithm is given in [5] for which
one has

(3.1) En(f) ≤ C0[M
∗]8

(L

n

)2

.

While this estimate is optimal in the rate n−2, the factor [M∗]8 does not match the
factor [M∗]2 which one obtains when M∗ is known and d = 1 and s = 1/2.

In this section, we shall give algorithms which do not require the knowledge of
the value of M∗ and yet give the following bound for Lipschitz functions in L(s, L)
and any d,

374 A. COHEN ET AL.

(3.2) En(f) ≤ C0M
∗[M∗]

s

d−s [logM∗]
2

d−s [L/n]
1

(d−s) , n ≥ 1,

with C0 an absolute constant. Thus, except for the appearance of the logarithm
factor, this estimate is the same as that for the CORE algorithm when M∗ is known
and as we have mentioned earlier is provably optimal both in the dependence on M∗

and n. Let us also mention that it is possible to give a universal algorithm which
satisfies

(3.3) En logn(f) ≤ C0M
∗[M∗]

s

d−s [L/n]
1

(d−s) , n ≥ 1.

Rather than treating the case of Lip 1 smoothness separately, we shall treat the
general case of Cr, r ≥ 1, smoothness when developing our universal algorithm. We
recall the core algorithm CORE(r,M). We will run the CORE(r,M) algorithm
for values of M = 2j, j = 0, 1, . . . , but we want to run them in parallel and so we
will organize the computation in a new way. Given a cube Q ∈ Dk which is being
considered for subdivision in CORE(r, 2j), we check whether

(3.4) m̂Q − 2j+1C(d, r)|Q|r/d ≤ m̄k,

where m̄k is our current estimate of m(f) and C(d, r) is the constant in (2.16). We
will use one and the same m̄k when running CORE(r,2j), j = 0, 1, . . . Thus, Q will
be marked for subdivision if 2j is large enough and will not be subdivided when j
is small. We can easily find the first value j = j(Q) when Q is subdivided; it is
the smallest integer j for which 2j+1C(r, d)|Q|r/d ≥ m̂Q − m̄k. Once this j(Q) is
found we know that Q will be subdivided by the CORE(r,2j) algorithm if and only
if j ≥ j(Q). In the universal algorithm given below, we will put this cube Q in the
bucket with label j if and only if it is marked to be subdivided, i.e., if and only if it
satisfies (3.4) and in addition the number of cubes already in the bucket is not too
large as will be precisely defined in the algorithm.

The following is our universal algorithm for Cr functions.

UNIV(r,R) Given positive integers r, R, the algorithm takes as input any con-
tinuous function f and does the following steps for k = 0, 1,

STEP 0. We put Ω in bucket j, for each j = 0, 1, . . . until (j + 1)2 > 2Rd. We
compute f(ξ), for each ξ ∈ SΩ and then define m̄0 := m̂Ω. We denote by Bj(0) the set
of all cubes currently in the j-th bucket, hence, in the current stage of the algorithm
Bj(0) = {Ω} for all j. We also define Γ̄1 as the collection of all children of Ω. Hence
Γ̄1 = D1 at this stage.

STEP k. Given that the collection Γ̄k ⊂ Dk has been defined, we do the following.
For each dyadic cube Q ∈ Γ̄k we compute m̂Q, and m̄k := min{m̂Q : Q ∈ Γ̄k}. We
then find j(Q) using this m̄k, and place Q in all buckets with label, j ≥ j(Q) provided
that adding all such Q from this dyadic level to this bucket will still keep the number
of cubes in this bucket smaller than 2Rd/(j + 1)2. Otherwise, we do not add any of
the cubes from this dyadic level to the bucket with label j. This gives the collection
of cubes Bj(k). We then define Γ̄k+1 as the collection of all cubes in Dk+1 that are
children of some Q ∈ Bj(k) ∩ Dk for some j ≥ 0. Notice then that for each j, there
is a final level ℓ(j) and the j-th bucket contains all the cubes from level ℓ(j) which
qualify and this bucket contains no cubes from any higher dyadic level. The algorithm
stops at step K = K(r, R) when no cubes are added at this step. To define m̃R, our

FINDING THE MINIMUM OF A FUNCTION 375

estimate for m(f), we let Λ̃R be the collection of all cubes which appear in one of the
buckets and none of its children appear in any of the buckets. Each Q ∈ Λ̃R has a
smallest value j̄(Q) for which it appears in the bucket labelled j̄(Q). We then define

(3.5) m̃R := min
Q∈Λ̃R

[m̂Q + 2j̄(Q)C(d, r)|Q|r/d],

as our estimate for m(f).

Remark 3.1. Note that for all j ≥ 0, we have ℓ(j) ≥ ℓ(j + 1). Indeed, any cube
that qualifies for the j-th bucket qualifies for the (j + 1)-st bucket and therefore, the
(j + 1)-st bucket will fill to its quota at least as fast as the j-th bucket.

The following theorem gives the performance of UNIV(r,R)

Theorem 3.2. Suppose UNIV(r,R) is applied to a function f ∈ C(r,M∗, d),
with M∗ ≥ 1. If f ∈ L(s, L) with L ≥ 1 and 0 < s < d, then,
(i) The number of point evaluations used in the algorithm is at most C0D(r, d)2Rd,
with C0 an absolute constant.
(ii) The estimator m̃R satisfies

(3.6) |m(f)− m̃R| ≤ C(d, r)M∗[[M∗]s(logM∗)2]
r

d−s

(

L2−Rd
)

r

d−s

,

where C(d, r) is a constant depending only on d and r.

Proof. (i) The number of point evaluations used in the algorithm is D(r, d)N
where N is the total number of cubes in all of the buckets. Since each bucket has at
most 2Rd/(j + 1)2 such cubes, (i) follows.

(ii) We select j∗ ≥ 1 such that 2j
∗−1 < M∗ ≤ 2j

∗

and look at the cubes that are
in the bucket with label j∗. The cubes in this bucket are exactly the same as what
we would get when running the CORE(r, 2j

∗

) algorithm with the estimators m̄k up
to dyadic level ℓ(j∗). We first want to prove that

(3.7) |m̃R −m(f)| ≤ C0(d, r)M
∗2−ℓ(j∗)r.

Let us first prove that there is a cube Q in the j∗ bucket at level ℓ(j∗) where
m(f,Q) = m(f). This is proved by showing by induction that at each level k ≤ ℓ(j∗),
there is a cube Q0 in the bucket j∗ at this level which satisfies m(f,Q0) = m(f). It is
clear that Ω has this property. Now assume we have proven this property for level k
and Q0 is the cube at level k with this property. We need only show that Q0 qualifies
for subdivision. To see this let Q∗ be the cube at dyadic level k which attains m̄k.
Then, using (2.20), we find that

m̂Q0 ≤ m(f,Q0) + C(d, r)M∗2−kr ≤ m(f,Q∗) + C(d, r)M∗2−kr

≤ m̂Q∗ + 2C(d, r)M∗2−kr = m̄k + 2C(d, r)M∗2−kr

≤ m̄k + 2C(d, r)2j
∗

2−kr.(3.8)

This shows that Q is indeed subdivided and so one of its children contains a point of
global minima for f and the induction hypothesis is advanced.

Now, let Q denote the cube in bucket j∗ at level ℓ(j∗) where f takes a true
minimum. Then,

m̃R ≤ m̂Q + C(d, r)2j
∗

2−ℓ(j∗)r ≤ m(f,Q) + C(d, r)(2j
∗

+M∗)2−ℓ(j∗)r

≤ m(f,Q) + 3C(d, r)M∗2−ℓ(j∗)r = m(f) + 3C(d, r)M∗2−ℓ(j∗)r,(3.9)

376 A. COHEN ET AL.

which is half of what we want to prove in (3.7).
To prove the other half, let Q be any cube in Λ̃R. We consider two cases. The

first is where Q ∈ Λ̃R is in a bucket j with j < j∗. By Remark 3.1, ℓ(j) ≥ ℓ(j∗), and
so using (2.18)

m̂Q + 2jC(d, r)|Q|r/d ≥ m(f,Q)−M∗C(d, r)|Q|r/d ≥ m(f)−M∗C(d, r)|Q|r/d

≥ m(f)−M∗C(d, r)2−ℓ(j∗)r.(3.10)

The second case is when Q is in a bucket j ≥ j∗. In this case,

(3.11) m̂Q+2jC(d, r)|Q|r/d ≥ m(f,Q)+2jC(d, r)|Q|r/d−M∗C(d, r)|Q|r/d ≥ m(f).

Now, if we take an infimum over all Q ∈ Λ̃R, we obtain

(3.12) m̃R ≥ m(f)− C0(d, r)M
∗2−ℓ(j∗)r,

which completes the proof of (3.7).
Now, let N be the number of cubes in the bucket with label j∗. We know that

the cubes that accumulate in bucket j∗ when running UNIV(r,R) are the same as
those that occur when running CORE(r,2j

∗

) with the caveat that the m̄k are used
in place of the usual m̂k. Since m̄k ≤ m̂k for each level k, we have that the number
N0 of cubes that accumulate in running CORE(r,2j

∗

) up to level ℓ(j∗) is larger than
N .

From (2.25), we get, for M = 2j
∗

(3.13) N0 ≤ C(d, r, s)LM s2ℓ(j
∗)(d−s).

As in the proof of Corollary 2.3 we rewrite (3.13) as

(3.14) 2ℓ(j
∗) ≥

(

N0

C(d, s, r)L2j∗s

)
1

d−s

and substitute it into (3.7) to get

(3.15) EN0(f) = |m̃R −m(f)| ≤ C(d, r, s)M∗M
rs

d−s (L/N0)
r

d−s

From the definition of ℓ(j∗) we know

(3.16) 2−d2Rd/[j∗ + 1]2 ≤ N ≤ 2Rd/[j∗ + 1]2.

Hence,

(3.17) N0 ≥ 2−d2Rd/[j∗ + 1]2.

If we place this into (3.15), we derive (3.6) because M ≤ 2M∗.

4. Finding the minimum in high dimensions. The above results suffer from
the curse of dimensionality in that the approximation rate deteriorates badly as d gets
large. The usual way of avoiding this curse is to assume additional properties of f .
In this section, we show that it is possible to construct an algorithm for finding the
minimum of f that avoids the curse of dimensionality whenever f is in the model
class F(r, ℓ,M) introduced and analyzed in [3]. This class consists of all functions
f ∈ C(Ω) such that

(4.1) f(x1, . . . , xd) = g(xi1 , . . . , xiℓ)

FINDING THE MINIMUM OF A FUNCTION 377

where g ∈ Cr and ‖g‖Cr ≤ M . In other words, this class of functions is r times
smooth and depends only on ℓ variables which are unknown to us. If the indices
I = {i1, . . . , iℓ} were known to us then we could simply apply the CORE algorithm
of §2.2 or the universal algorithm of §3 to the function g.

To get around the fact that we do not know I, we proceed as in [3] and use a
family A = A(ℓ, d) of partitions A of {1, 2, . . . , d}. Each A consists of ℓ disjoint sets
A = {A1, . . . , Aℓ} which satisfy

Partition Assumption. The collection A is rich enough so that given any ℓ
distinct integers i1, . . . , iℓ ∈ {1, . . . , d}, there is a partition A in A such that each set
in A contains precisely one of the integers i1, . . . , iℓ.

This Partition Assumption is known as perfect hashing in theoretical computer
science. We are interested in such families with small cardinality. For general d and
ℓ, such collections are constructed using probability. It is known that such collections
exist with

(4.2) #(A(ℓ, d)) ≤ 2ℓeℓ ln d.

Remark 4.1. Let us note that although probability theory is used to prove the
existence of a class of partitions A with the favorable bound (4.2), once such A is in
hand, the results that follow in this section hold without any probability restriction.

Given a set B ⊂ {1, . . . , d}, we denote by χB the point in Ω which takes the value
one at each coordinate i ∈ B and otherwise takes the value zero. Corresponding to
any A ∈ A and any d variable function f , we define the function

(4.3) fA(t1, . . . , tℓ) = f(

ℓ
∑

i=1

tiχAi
), 0 ≤ ti ≤ 1, i = 1, . . . , ℓ.

Notice that asking for the value of fA at any point t = (t1, . . . , tℓ) is the same as asking

for the value of f at the point
∑ℓ

i=1 tiχAi
which in turn is the same as g(tj1 , . . . , tjℓ)

where jk is the index i of the set Ai which contains k. Whenever f ∈ C(r,M∗, d), each
of the fA is in C(r, CM∗, ℓ) with a suitable constant C. Indeed, taking derivative of
fA, we find,

(4.4) |fA|Cr ≤ C(d, r)|f |Cr , A ∈ A,

where the constant C(d, r) depends only on d and r.
In going further, we assume that f ∈ F(r, ℓ,M). From the partition assumption,

we know that for one of the A∗ ∈ A, we have that each of the partition sets A∗
1, · · · , A∗

ℓ

contains exactly one change coordinate of f . Thus, up to a relabelling of indices,
g = fA∗ . Thus the minimum of f is the same as the minimum of g over [0, 1]ℓ and
this is the same as the minimum of fA∗ on [0, 1]ℓ. Of course, we do not know A∗. So
our strategy is to apply the minimization algorithms of the previous section to each
of the functions fA and then take the smallest of the minima produced. While we
can apply this strategy to the CORE algorithm, we formulate and analyze only the
universal algorithm of the previous section.

Let UNIV(r,R) be the universal algorithms for Cr functions described in the
previous section.

378 A. COHEN ET AL.

HDUNIV(r,R). This algorithm takes as input a function f of d variables and
does the following:

STEP 1. For each A ∈ A, we apply UNIV(r,R) to fA thereby obtaining the
empirical estimate m̃R(fA) to m(fA)

STEP 2. We define m̃R(f) := min
A∈A

m̃R(fA).

The following describes the performance of the algorithm HDUNIV(r,R).

Theorem 4.2. Suppose f(x1, . . . , xd) = g(xi1 , . . . , xiℓ) with g ∈ C(r,M∗, ℓ) with
M∗ ≥ 1. If g ∈ L(s, L) with 0 < s < ℓ and L ≥ 1, then applying HDUNIV(r,R) to
f gives

(i) The total number of point evaluation does not exceed C(ℓ, r)[ln d]2Rℓ.

(ii) We have the accuracy estimate

(4.5) |m(f)− m̃R| ≤ C(ℓ, r)M∗[[M∗]s(logM∗)2]
r

ℓ−s

(

L2−Rℓ
)

r

ℓ−s

.

Proof. (i) From Theorem 3.2, the number of evaluations used in computing
m̃R(fA) does not exceed C(ℓ, r)2Rℓ. Since there are at most ℓ2ℓ ln d functions fA,
we have proved (i).

(ii) In view of part (ii) of Theorem 3.2 and the estimate for derivatives given in
(4.4), we know that for each A ∈ A, we have

(4.6) |m(fA)− m̃R(fA)| ≤ C(ℓ, r)M∗[[M∗]s(logM∗)2]
r

ℓ−s

(

L2−Rℓ
)

r

ℓ−s

.

Since m(f) = min
A∈A

m(fA) and m̃R(fA) = min
A∈A

m̃R(fA), the bound (4.5) follows from

(4.6).

5. Optimality. We give examples that show that our estimates are in a certain
sense optimal. We restrict our attention to the case of LipM∗1 spaces. Our examples
are a modification of examples given in [5]. Suppose we have an arbitrary algorithm
which (adaptively or not) queries the function f in points x1, x2, . . . , xn and based
on values f(x1), f(x2), . . . , f(xn) gives an approximation m̂n(f) to a true minimum
m(f). We are interested in giving a lower bound for

(5.1) En = sup
f∈LipM∗1∩L(s,L)

|m(f)− m̂n(f)|.

In going further, we fix the numbers M∗ > 1, L > 2, and 0 < s < d and for an
integer N , we define

(5.2) α :=

(

M∗

2N

)
s

d−s

L
1

d−s ; β :=

(

M∗

2N

)
d

d−s

L
1

d−s =
M∗

2N
α,

where in going further we always require that N is large enought that α, β ≤ 1. We
then define the function

(5.3) F (x) :=

{

β, if x ∈ [0, α]d

β + dist(x, [0, α]d), if x /∈ [0, α]d.

FINDING THE MINIMUM OF A FUNCTION 379

Lemma 5.1. Let Q ⊂ [0, α]d be any cube of sidelength l ≥ α/N and let

(5.4) g(x) := gQ(x) :=

{

F (x), if x /∈ Q

F (x) −M∗dist(x, ∂Q), if x ∈ Q.

Then, for N sufficiently large (depending on s, d,M∗, L), g ∈ LipM∗1 ∩ L(s, L).
Proof. That g ∈ LipM∗1 is immediate from its definition. We now check that

g ∈ L(s, L). Notice that m(g) = 0 when l = α/N and is negative when l ≥ α/N . To
check that g ∈ L(s, L) we consider three cases.

CASE δ < M∗l/2. In this case, {g(x) ≤ m(g) + δ} is a cube with cen-
ter cQ and sidelength 2δ/M∗. So we must show that (2δ/M∗)d ≤ Lδs, i.e.,

δ ≤ [M∗]
d

d−sL
1

d−s 2−d/(d−s). Since l ≤ α, we only need to show that M∗α/2 <

M
d

d−sL
1

d−s 2−d/(d−s). From the definition of α, we see that this holds for any N ≥ 1.

CASE δ = M∗l/2. In this case, we see that {g(x) ≤ m(g) + δ} = [0, α]d. So, it
suffices to notice that L(M∗l/2)s ≥ L(M∗α/(2N))s = αd.

CASE δ > M∗l/2. we see that {x ∈ Ω : g(x) ≤ m(g) + δ} = {x ∈ Ω : F (x) ≤
m(g) + δ}. Since m(g) ≤ 0 we can write m(g) + δ = β + η with 0 ≤ η ≤ δ. This gives

(5.5) {x : F (x) ≤ m(g) + δ} ⊂ [0, α+ η]d ∩ [0, 1]d,

and so it is enough to prove that (α+ η)d ≤ L(β + η)s or equivalently

(5.6) α+ η ≤ L1/d(β + η)s/d, 0 ≤ η ≤ 1− α.

As functions of η, the function on the right of (3.15) is concave and the one on the left
is linear. It suffices to check that the inequality holds at the two endpoints η = 0, 1−α.
When η = 0, the two functions appearing in(5.6) are equal because of the definition
of α and β = M∗

2N α. When η = 1 − α, (5.6) holds because L ≥ 2 and both α and β
tend to zero as N gets large.

Theorem 5.2. Let M∗ > 1 and L > 2 and any 0 < s < d. Consider any
algorithm for finding the minimum of a function f and its performance En on the
class LipM∗1 ∩ L(s, L) given by (5.1). Then, for any n sufficiently large we have

(5.7) En ≥ C(d, s)[M∗]
d

d−s (L/n)
1

d−s .

Proof. We fix a value of N that is an even integer and such that Lemma 5.1 is
valid. We consider any integer n with n < (N/2)d. We run the proposed algorithm
on F and obtain the points x1, . . . , xn and the values F (xj). We divide [0, α]d into
[N/2]d disjoint cubes with equal sidelength 2α/N . Clearly there exists at least one
such cube Q which does not contain any of the points x1, . . . , xn. In addition we
choose a subcube Q1 ⊂ Q with sidelength α/N . For each of these cubes we construct
the functions gQ and gQ1 of Lemma 5.1 which are both in our class LipM∗1∩L(s, L).

Applying the algorithm to these two functions is the same as applying it to F
and hence the algorithm gives the same estimate m̂n(gQ) = m̂n(gQ1). We now check
that the true minima of these two functions are quite different. Indeed, we have

m(gQ1) = F (cQ1)−M∗ α

2N
= β −M∗ α

2N
= 0

380 A. COHEN ET AL.

and

m(gQ) = F (cQ)−M∗α/N = β −M∗ α

N
= −M∗ α

2N
.

It follows that

(5.8) En ≥ M∗ α

4N
, n < (N/2)d.

Given any n sufficiently large (depending on s, L,M∗, d), we can take N as the first
even integer larger than 2n1/d and use this value of N in (5.8) to obtain (5.7).

6. A numerical example. The numerical implementation of the algorithms
put forward in this paper will be the subject of a follow up paper. However, we
give one example of the performance of the algorithm from Section 2.1 which will
indicate the typical adaptive partitions that arise and the ensuing convergence rates.
We let R(x, y) := x2+y2−cos 18x−cos 18y and consider finding the minimum of this
function on the square [−1, 1/

√
2]2. The function R is considered in the dissertation

[6] of M. Horn. Firgure 6.1 shows the partition at level 7. The lighter regions indicate
the squares at level 7 which are still active, i.e. for all that the algorithm knows the
minimum of R may be taken on any one of these squares. Figure 6.2 gives a plot of the
error versus the number of point evaluation, which is the same as the number of nodes
in the tree. The number of point evaluations used up to and including level 7 is 1393
giving an error in calculating the minimum of less than 2× 10−5. Using nonadaptive
partitions would require more than 106 sample points to achieve the same accuracy.

Fig. 6.1. The adaptive partition at level 7 for R

FINDING THE MINIMUM OF A FUNCTION 381

Fig. 6.2. Error versus number of subdivisions for R

REFERENCES

[1] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard, Capturing Ridge

Functions in High Dimensions from Point Queries, Constructive Approximation, 35 (2012),
pp. 225–243.

[2] R. DeVore, Nonlinear approximation, Acta Numerica, 7 (1998), pp. 51–150.
[3] R. DeVore, G. Petrova, and P. Wojtaszczyk, Approximation of functions of few variables

in high dimension, Const. Approx., 33 (2011), pp. 125–143.
[4] M. Fornasier, K. Schnass, and J. Vybiral, Learning functions of few arbitrary linear param-

eters in high dimensions, J. Found. Comput. Math., to appear
[5] M. Horn, Optimal algorithms for global optimization in case of unknown Lipschitz constant, J.

of Complexity, 22 (2006), pp. 50–70.
[6] M. Horn, Global optimization with unknown Lipschitz constant, Ph. D. Dissertation, Univ. Jena,

2005.
[7] E. Novak and H. Wozniakowski, Tractability of Multivariate Problems, Volume I: Linear

Information, EMS Tracts in Mathematics, Vol. 6 Eur. Math. Soc. Publ. House, Zürich 2008.
[8] A. Perevozchikov, The complexity of the computation of the global extremum in a class of

multi-extremum problems, USSR Comp. Math. and Math. Physics, 30 (1990), pp. 28–33.

382 A. COHEN ET AL.

