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POINTWISE APPROXIMATION BY POLYNOMIALS
AND SPLINES

R. A. DEVORE
(Rochesler, USA)

i. INTRODUCTION

We want to make some observations about pointwise approximation by poly-
nomials and splines. The importance of, pointwise estimates by polynomials is
well known, since such estimates are néeded to characterize the smoothness of
a function in térms of its-approximation by algebraic polynomials.
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J. Brudnyi {2] has shown that for cach r > 1, there is a constant €, > O
! so that for any function f€C [—1, 1] we can find algebraic polynomiafs P,
} r=1, 2,. .., with P, of degrec  n and

@) —P,@ < Co. (f, 3,0 -1z, (1.0)

where A (z)=n"1 (1—2%)":--n"% This shows of course that it is possible to
improve the degree of approximation near the endpoints in comparison to the
usual Jackson theorems, These estimates are then of the right form for converse
theorems. :

Actually Brudnyi showed more than (1.1) since he constructad linear opera-
: tors L, so that L, (fy=P, do the job in (1.1). We will show in Secctiou
i 3 that 'basically any of the standavd linear methods used in proving Jackson's
! theorem already give (1.1).

There is the interesting question that was posed both by G. G. Lorentz and
S. B. Stetkin as to whether it is possible to drop the n~2 term that appears in
the difinition of A, {z). This was shown to be possible in the cases r==1 and 2 by
S. Teljakovskii [7] and I. Gopengauz [5]. We show in Section 4 the validity of
{(1.1), with the n~* terin deleted in the case r=2. Here again we are able to use
linear methods of approximation. The question whether the n~2 term can be
dropped in the general case r >> 2 is not yet settled but there is same hope that
the techniques presented here can be refined to give the general case.

One of the main ideas used in our estimates of the approximation is to re-
place the arbitrary function f by a smooth function k. This of course is no new
idea since it has been used succesfully many times before. The actual smoothing
can be done in a variety of ways. The most common methods are to use some
sort of variation of Stecklov averages, While the actual method of smoothing
is not important what is important is the estimates involved, especially for the
derivatives of the smoothed functions. In this sense the idea of smoothing inter-
faces with some concepts in the theory of interpolation of linear operators,

. especially the Peetre K functional method for generating interpolation spaces.

It rz1, let LY =LY, 1}={f:f"Y is absolutely continuous and
FP€Lg[—1, 1]}). The K functional for interpolation belween C[—1, 1] and
LY is defined by

K.(f,y=K(@ f, €, L= il {f—kj+t1r""|x) (1.2
i ,

cLl?

where || - li~is as it will be throughout this paper the supremumn norm on
[—1, 1]. Thus K_ measures how well the function f can be approximated by
functions k from L{’ with a control on the size of [| A .

G. Freud and V. Popov [4] have shown how to use modifications of the
Stecklov averages to obtain the estimates

Ap (f YK G KA (), 1250, (1.3)

with A4, and A, constanis depending ouly on r. This last estimate shows then,
that for all practical purposes the K_ functional and the modulus of continuity
are equally acceptable in obtaining cstimates for the degree of approximation.
The idea then is tc obtain our estimates for smooth functions and than use (1.3)
and the definition of K_ to obtain our estimates for the arbitrary functiocun f.

In Section 2, we will show that it is possible to use spline functions in smoo-
thing. Among other things, wé will show how spline functions can be used to
prove (1.3). Spline functions have the additional advantage of giving local esti-
mates in their approximation of f. Then, when the knots are allowed to coalesce
we can get better estimates at the point of coalescence.

Our approach to obtaining spline estimates is that of C. deBoor and
G. Fix [1]. This approach besides being very simple and elegant shows that
the spline constructions can be made via linear bounded projections onte the
appropriate spline space.
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2. APPROXIMATION BY SPLINES

-In this section, we will follow the ideas. of C. deBoor and G. Fix [1] to
derive linear methods of spline approximation. We assume for simplicity that
the knots are symmetric. That is, if the knots are the set Y= {z,} then we sup-
pose that whenever x; is a knot —z, is a knot denoted by z_,=—zx,. We suppose

. also that 0 is always a knot and is denoted by z,=0. The knot set may
be finite or infinite. When it is infinite we assume that lim z,=1. With other

i@
kinds, of labeling we could assume that the knots had an interior limit point
but for our purposes this is not interesting. We supposs also that the knots are
ordered — 1 < z; < 7,,, < 1. When the knot set is finite, say =={z,)* then we
define z,=—1, i < —n, and z,=1, i > n.

“Given the knot set =, we denote by S, (x) the spline space consisting of all
functions §, with SEC**® [—1, 1], and S a polynomial of degree < k-—1
on each interval [z, z,,,). Se §, (=) is the space of splines of order & Ragr%
k~1) with knots II. ' .

A canonical basis for the space S, (n) is given by the B-splines

Nep@=(t—2) & (T - - 210 T), : (2.4)

where g, (s; =)=(s—z)%"1, and in (2.1) we have used standard divided difference
notation. (see [3] for properties of B-splines). Each spline S€S, (x) can be
written uniquely as ‘ e

S@=INO) Nen@). 261, 1), | 22)

where the A, are continuous linear functionals on §, (). Note that for each =z
at most &k of the functions N, , are non-zerc at z.

The deBoor—Fix formula [1] shows that the functionals A, can be represen-
ted as - : ’

L )= 00,57 ), ey

with

(—1) 1o, = ()1rple-1-r (=) r<k,

Oy (x)=(xj+l——-.::) - (-'r_,ﬂ_l—l).
with =, any point in (z, z,,). For our purpose, we choose z, as [ollows,
Let {2;, &;) be the largest interval of the form (z,, z,,;) with j<{i<lj4-k.
- Then, b, —a,|2> 4,2, —z,] We take 1, as the mid point of (a, b)),
":J.:::‘/._, (aj-}-bj). From the formula for w, ., it folows that

o, )< @y —2z,), for all j and r. ’ ' (2.4)

Thus using Markov's inequality with (2.3) and (2.4), we find

k1
Dy ()< @in—z) 157 G)1<
k—1

x —_ s \T
g; (—;E-ETJ) I15kzs 2] <A SHzp 250) . (2.9)

with 4, a conslant depending only on k. The notalion §-}{a, b} indicales
that the norm is taken only over |a, b].

The inequality (2.5) shows that the linear functional » , is supported on the
interval [z, z,,,1 and lence is a linear funclional on’the space S, (r)restricted
to Iz, z,,. 1. By the Ilahn—Banach theorem, %, can be extended to a functio-
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nal EJ defined on C lx;, z .1 with preservation of the nerm of Uhe functional.
From the Riesz representation theoren, F.j can be represenled as
xfak
= | rode;
xJ
with du, a Borel measure, This last equalion serves to define %, for functions in
C 1—1, 11 as well. The inequality (2.5} now takes the form

Ii‘j(f)l‘g‘qllfliz H xj-}k]l fEc[‘“iu 1]' (?"G)
Consider now the operators

L7, I)=£‘YEIU)NJJ:(3)' )

which are projections from € {—1, 1] onto the space §, (x). The spline L_(f)
is a good local approximaltion to the function f as will be shown with the help
of the following lemma.

Lem ma 1. There is a constant A s depending only on k suck that whenever
T€C la, bl, then there is a polgnomial I’ of degree < k—1, such that

U —Plla, < A, (, K [b—a)). 2.7)

! Proof. It will be enongh to show this result for the interval [0, k).
| The general result then holds by transforming the interval fa, b] into the in-
terval [0, A7 in the usual lincar way.

We suppose that (2.7) does not hold and work for g contradiction. If (2.7)
does not hold, then for each n 2> 1, we can find a function f_ with o (fo 1)=n"1
and dist {f,, P, ))=1, with P, , the space of algebraic po"lynomia‘is of degree.
< k—1 and of course distance is measured with respect to the supremum norm
on {0, k1. We can also suppose that the zero polynomial is the best approxima-
tion to f, from the space P, ,, since we are at liberty to subtract polynomials
of degree < k—1 without ¢ anging the k-th order moduli of smoothness of fu-
Thus |if, I=1. 1t is easy to check that {f,)@ is an equicontinuous set of func-
tions. Since the funclions are also uniformly bounded, we can extract a subse-
quence (f, ;) which couverges to some function fin C {0, k). Then, f will have

@, (f, 1)=0, which eans that f is a polynomial of degree < k—1. But also, we
have dist (f, P,_,}=1, which means f is wot a polynomial of degree < hk—10
This~is_the desired contradiction,

The proof we have given for. Lemma { is indirect and so we hive no estimate
for the constaiit 4,. However, 11. Whitney 18] has given a direct but more com-
plicated proof of this lemma that includes an estimate of the constant 4,.
It would be interesting to find a simple direct proof of this lemma. Such a proof
is easy to construcl when k=1 or 2.

The following theorem gives local estimates for the degree of approximation

of f by L_(}).
Theorem 1. Let = be a‘set of knots. Iffisin C |—1, 1], then
lf(z)"'"L: (fp x““{h..Asu’k (£, zju--—xj—l:ul)u T4 -'..<,_-T -.'{._J:jﬂ, (28}

with Ay a constant that depends only on k and Al
Prool. Let P he a polynomial which satisfies (2.7) for the interval
[=; s 7,02 Since Ty ST Ty, we have N, , (2) =0, when L[] — k1, j),
and XN, , (2)=1. Heunce, -
£

J
ILU—P.a)I< 2 14 F—P) V@<

< j—kiligdgj |%(f— P)| 2 Noy(x) A — Pilz, y Tyl (2.9
because of (2.6). . - _ ‘
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The operator L_ preserves polynomials of degree < k—1, and so
N ) —F @<L (G — P, D+ 2) — PRI

LA DI — Pﬂ[z,’-hp zj+.k]‘"<~. ' .

LA A+ Do (f, lzn—zn) Sde () I_-'c,fu —Z sl

where in the second inequality we used our estimate (2.9}, and in the third
inequahty wo used Lémma 1. This completes the proof of the theorem.

It is also possible to estimate the derivatives of L, (f). Such estimates are
important when splines are to be used as a tool in other approximation prohlems.
Let S=L_{(f) and r=k—1. Then S hasr—1.continuous derivatives and its r-th
derivative exists almost everywhere and.is a-step function. We suppose r > 1
(o> 2), here. We also assume now ‘that. the knot set T has the property that
there is a constant 4, such that for- all j, S

Nz < A 20— ) ‘ ' (2.10)
Let M=|S"(/,(z; 4=z} which isthen the absolute value of S on the

interval (z,, z,,). Take t=1r"", with §=|z,,—z,| Then,

From (2.8) and the fact o, (f, £) < 20 (f, ), we find that

448 et wytd ) o
13, 2= | | ... | sV(duds, ... da_{>ur. (2.11)
- Xj 8 LN : . ;

1375, 2) 118 ¢, D)+ 2450, (F, |20 — 7)) < Co, (F ),

where in the lalst inequality we used (2.8). This Logeth'ér with (2.11) shows that
187z, 2,0 <C o, (f, ) <A 25 —24 7o, (F, |20 —3,))- (2.12)
Let us now consider the case of equally spaced knots, so that = ={—1-}

~ +kn~1)3». The estimates (2.8) and (2.12) show the connection between the K
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functional and the moduli of smoothness  mentioned in the ' introduction.

To see this, let r be any positive integer and k=r-+4. When ¢ > 0, choose

n_>1, so that (4 Lt < n~*. Then for S=L., (f), we have

KL <K (f, n7) éﬂf—sﬂ-i- RS <
L Ago, (f, )+ doo (f, i) Ao, (f, (DM LAp, (1),
with 4, a constant depending only on r. We have used (2.8) to estimate | f—S5 ||
and (2.12) to estimate | § || ... This is the right hand side of {1.3).

The proof of the left hand side of (1.3) is quite simple. If & is any function
with 27 in L, then for any 8 >0,

1850, )| <29 F — A+ 31

Takmg now on the left side a supremum over all 3<{ ¢ and the permissible

z's and on the right hand side a supremum over 3 <t and an infimum over all
he LY gives

o {f, ) 2K (f, 1.
This is the left hand side of (1.3).

3. POINTWISE ESTIMATES FOR APPROXIMATION
BY POLYNOMIALS

We want now Lo show how standard linear methods of approximation will
vield the Brudnyi estimates (1.1). To start with let (X)) be any sequence of non-
negative even trigonometric polynomials of degree Cn wi:uch satisfy
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S Ka(t) dt:i: | (31)

=

[ PR @ <ag, j=1,2, . 2% and n=1,2,..., (3.2)

“with 4, a constant depending only on r. The linear operators L, defined by

L = | (a7 (g 0+ g O) K. () ds N CE

are standard examples of linear methods of approximating 2= periodic functions
g by trigonometric polynomials. of dégree < n. The best known examples are
the Jackson kernels, where for.example we can take X, (t}=c, (sin (mz/2))}*.
«(sin (¢/2))%, with m={n/4r] (see €. g. G. G. Lorentz [, p. 571). :

To get algebraic approximations we can make the usual substitution
z=cos 0, but first we want to preserve polynomials of degree r—1. So for
f€C [—1, 11, let Q, (/) be the algebraic polynomial of degree <l r—1 which
interpolates f at the equally spaced points —1+42i/(r—1), i=0, ..., r—1.
Then, @, is a bouanded. linear projection from € [—1, 1] onto P_,. Let us define

L {(f, £y=L_{(f(cos ) — @, {f, cos¥), arc cos 2) + @, (f, ). (3.4

Then, (L,) is a uniformly bounded sequence of polynomial operators, which
as we shall see give the Brudnyi estimate. We begin with

LemmaZ2. Ifg isa 2x-periodic and continuous function with | g (6) |<
K M [sin € [*, a. e., with p and v non-negative integers, p~+v < 2r, then

| L, (g, 8) —2 ®) | < AMn™(|'sio 8| n7), |

with A, a constant dej‘;'endir:zg jorily on r.
Proof. Intheproof, C always denotes a constant depending at most on r.
Since v < 2r, we have

137 & N <SC14i BISCM | sup | [sin (@) [* |2
When 2 ¢ | <, we have that for any {u | < ¢, :
| sin @ - u}| ) sin 0] | sin u| < sin 8] | sin vt | L C (] sin 8] 4| 2)).
But this inequalitfr automatically holds for 2v|t | > =. Honce,
187 (g, 8)| <CCM (Isin O] [t TCM (Isin 6 - |2 M) | 2] (3.9)

Going now to the definition of L, we find that from (3.3) and (3.5)

L, (e ) —g )< CH | |sin0F | K, (o de+

+CcM S [t K, () dt <CMn™" (| sin 8F - n®),

where in the last inequality, we used the moment estimate (3.2). This is the
desired result and the lemma is proved.
Qur neéxt lemma establishes Brudnyi's theorem for functions f ¢ LE'.
Lemma 3. Let r>1. If fCLY, with }f 7 }=1, then

[ L, 2) — (@) [<<Ap (8, (@), —1<2<d, (3.6)

with A, a constant depending only on r.
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Proof. Since L, preservos polynomials of degree r— 1, and v _(f) does
not change with the addition of a polynomial of degree r—1, we can sup-
pose that f(O)=F (0)=...=F""(0) and hence j7{<1. Lot h=F—0Q,(f)-
It follows from Rolle's theorem that 2™’ has a zero in (—1, 1), k=0, ...
- .., r— 1. This gives Lhe estimate [A™*']<C 2)4'**¥']. Hence,

P2 =2 " 1=2", k=0, 1, ..., r—1. (3.7

Now, let g(0)=~h (cos0). Wo want lo show -that g can be decomposed into
a finite sum of functions which satislv Lomma 2.

Differentiate g r times. Then, g (9) = (—-sin 6)" /' (cos 0) - g{), (8). Let g, ,

be the 2r-periodic function with mean value zoro whose r-th derivative is

(—sin §)"f' (cos 8). Then g=g,, s} £, , which serves to define g, , as well.

" The function g{7), has only terms involving h'*’, with %k<{r—" and hence

bas another derivative. Write girii) =gl |- glril), with g{™» being the col-

lection of terms involving f7 and gi™)) the romaining terms. Continuing,

at the kth slage, wo have gir¥), =gir8) 4 gih), wilth gi~® being the col-

lection of terins involving f” and g~} the remaining terms. In this way,

wo end up with the decomposition g=g, +2, 1+ ...+ g1, <1+ 82, 1-
Ono verifics simply that g, ,, satisfies for 0Ch{r —1,

[efr® @)1 M | sin 0" (cos 0) | <M | sin 8]™*, a. 0., - (3.8)
with Af depending only on r. For example A =(4r)* surely works. Moreo;rgr,
~ we have :

[8&L, O|<H, a. e (3.9)

Now, we use Lemma 2 on each term g, , and the term g, , to find

L@ O —g @) <AM 3, (Jsin 0 w2 4 ) < Ay (8, (05O, (310
with 4,, depending only on r. Returniﬁg to f, with z=cos 0, we have

|4 (0 — @ (7) (o038, arc cos 2) — (F — 0, () (=)} <+ Ay (3, "

The trigonometric polynomial T, (0)=@Q, (f, cos 0) satisfies [ 7" || <
Leheg. Ht g C'llflt=C", with 'C’ deponding only onr. Hence from
- Lemma 2 again

[Ly(Ts ) =T, (I AL Yo 4y (3, (7))

Using these last two inequalities with the definition (3.4) gives (3.6).

OQur next theorem shows that L, gives Brudnyi's estimate.

Theorem 2, Let (K) be a sequence of trigonometric polynomials satisfying
(3.4)—(3.3) and define L by (3.4). Then there is a constant C, depending only on r
so that for each {CC |—1, 1], we have

L 2~ @ I<Co, ( 3,@). z€[—1, 1}, n=1,2 ... (349

Prool. We know that tho operators L are uniformly bounded. Let
PL <M, n=1, 2,..., with M dopending only on r. Take —! C =z <1
and fix z, If & is any function in L7, then

[L(h oy =@ <U— 2l UL 4+ D)+ L, 2)— 2 ()| <

S A Df — A4 4§07 e (3, () <
SAn {7~ -+ 1 (3, (2)) (3.12)
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with 4;; depending only on r. Here, we have used Lemma 3 to estimate the
second term on the vight hand side of the inequality. Taking an infimum over
all such % and recalling the definition of the K functional, we have

|L,(f, )~ @) < AK, (3, @) < Audso, (, 8, (), (3.13)
where we have used (1.3). This is the desired ineq'uality and the theovem is
proved.

4. FINER ESTIMATES

~ Inthe case r=2, we can give betier estimates than those given in Theorem 2.
First we need an estimate for the approximation of f'.
Lemma 4 Under the assumptions of Theorem 2 and r=2, we have that
whenever {' is absolutely continuoirs and | f" | M, a. e., then

HL (=) —F (@< CMA (@) 2€(—1, 1], n=1, 2, ..., (4.1)

with C, an absolute constant.
Proof. The proof is similar to Lemma 3. We can assume M=1. Let
| g (8)={ (cos 8}, where just as in-Lemma 3, we can suppose that f (0)=f" (0)=0.
The decompoesition of Lemma 3 now takes the form g=g,+g.+g,, with g (8=
=(sin 6)? f'* (cos 6), g3 (8)==sin 6 cos 01 (cos 6) and g =sin 8 f' (cos 0).
So from Lemma 2, we find =

[L.(g's ) —g' ()] C (7 5in® 8423 sin 0] -9

L C(nsin 0]+ n?n, (4.2)
with € now an absolute constant. In the same way, we have
(L (g", 0)—g" (O] <<C (n]sin 0]+ n?)2n2 (4.3)

I we let T, (0)=1L, (g, 6), then bécause of the convolution strncture of the
operators L,, we have T,=L,(¢') and T,=L,_(g"). Thus {4.2) is

|7, (0) —g' )] < C (= sin b+ n%n. (4.4)

This last estimate can be improved some near 0. The function T —g is
even and hence T, (0)—g’ (0)=0. Using this with (4.3), we have that wlen
| sin 8- n7t, then | Ty (0)—g" (0)) {Cn? and so for 0 €[—n/2, =/2),

720~ OI<ITIO—g"®I0 < Cr?lsind], |sin0]<nty G
where of course we used the mean value theorem with EC [—0. 8. Similarly
this inequality holds when 8¢ [—=/2, =/2] provided [sin 0] < =71, now be-
canse T, (x)—g' (=)=0.

If we superimpose the inequalities (4.4) and (4.5), we have

[7.06)—g (O] <Csinl](n2] sin 0|-n7Y. : (4.6)
This last ineqhality when rewritten in terms of /' and (L, (f))’ gives the esti-
mate (4.1). -

Now we need only make a linear adjustment to get operators that give the
Teljakovskii type estimate for o, When f is in € [—1, 1] let I, (f, 2)=
=1y (z—1)f (—1)—L, (f, —1)) +Ya(z+1)(f (1)L, (f, 1)), s0 that [ (f) is
the linear function which interpolate f—L, (f) at the endpoints. The operator
I, clearly has norm <{2( L, l[41) on C [—1, 1). Now define the operator
M, by

Mu(f)zLa (f)—i—l' (f)' i (4'7)

, "So M I Cl‘\' with C independent of n. We can now show that the M (f) give
% the Teljakovskii type estimate for w,,

139

539




Theorem 3. Let (L) salisfy the hypothesis of Theorem 2 with r=2 and

define M, as in (4.7). Then, for each f€C {—1, 1), we have
1M, ) — @< oy (f, i —2h), —A<2<t, n=1, 2, ..,
(4.8)

with C, an absolute constant.

P roof. The proof is like that of Theorem 2. We check first functions f
with [F'1<{1a. e.on{—1, 1} Forsuchf, {1 (f,z) | SO -1 2,
because | L, (f,+4)—f (£1)| < Crn* according to Theorem 2. Hence, from
Theorem 2, we have

‘M”(f, 3)—f(x)|<\|5.(fv :r)-—-f(:r)l-i-[l,(f.:c)lg

L OB @F +r)<C@ @ | (4.9)

We can improve this estimate near the end. points using -the fact that
M, (f, +1)=f (+1). For example, if 0 Tz < 4, then

M (f, &) —f @< |z — 1M, O O —F BI<Clz— (L) &) —
=@ <Clz —1]@, G+ <O (1 —29 4, (), - (410

where in the first inequality we used the mean value theorem with = <{ £ < 1,
in the second inequality we used the fact that | (I (f))’} < Cn™*, in the third
inequality we used Lemma 4, and in the last inequality we used the fact that
1—z {1—2, 021 and A (§) < 4, (2), because z < E. The same ine-
quality holds when —1 < z << 0.

When we superimpose inequalities (4.9) and (4.10), we find

M., B —F@)ISCAL—2)n?, 12T (4.11)

with € an absolute constant. Hence, if /' is absolutely continuous and | f'" | M,
a. e., then '

M, D—f@ISCH A —An?, A<z, (412)

Now let 7 be an arbitrary function-from C [—1, 1] and & an arbitrary func-
tion with A" € L [—1, 1]. Take z€ [—1, 1] and fix 2. We have

(M, (f, &) —F @< —RIQMI+H ) +HIM, G 2)—h@) <
<O —rl HU—Any.

Taking an infimum over &ll such k& on-the right hand side and using the defini-
.tion of the K functional, we have

M, ) —f@I<CE, (f (1 —2)n) L Comy (f, n71 (1 —a)h),

where in the last inequality we used (1.3) with r=2. Since = was an arbitrary
point in [—1, 1] and €, does not depend on z or n, we have proved the theorem.
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0 HEKOTOPBIX CBOUCTBAX I_[HMEPEH{(HPYEMHX OYHROIUNA
HECKOJAbBKHX IIEPEMEHHBIX

A. C. HHADAPOB
{Baxy, CCCP)

IOyers ||/ — mopsa ememannoro neferosckoro xnacca Ly (R,), rme R, — n-Mep-

HOe eBRIMI0R0 UPOCTPAHCTEO TOIeK X == (z,, ..., Z,); P== (pl, AR EgA < @,
k=1,..., n. [lanee, nycrs o (x)>0— q::mcuposanaaa HeupepHBHAA @yemmm,
. T ne e ?(x +¥)

Aams  xKoTopol OS o8 ——dt  KoHeYeH, rae  ; )_x.yez?,g?ﬂg: e @
y=(y.., U 1¥]|=vVyt+ ...} y2. Obozmaaun wepes L. (R,) kmacc yax-
muit f(x),] nnn woropux romesma senmumma |fl,— T h- Ona f€Lp (R)

TION0HHAM
k
],g (f'f Oe‘)w = Sup E'Aia:;fu_p?r
bhisst

re Af:f-—womesnas pasmocts k-ro mopauwa dysxuuu f(X) OTHOCHTENbHO mepe-
MeBEOro z;, a 8 oupemenemud E, (e, Yy=01 ..., V), j>0 =1, ...n
HWKRAA TPafb PAaCcUPOCTPAHACTCA HA BCOBOIMOKEHE g, (X) € Lp, (R)), AsnAwmuecs
menuMp  GyErRmwAME  cTemeRH <[V, ..., ¥, DO COBOKYUHOCTH NEepeMeHHHX
Tys oy Tpe .

Ich'r[, qaymw;tm $,(8), /=1, ..., n, yHOBNETBOPACT OXHOBPOMEHHO YCIO-
suan (S) n (Syy) H. H Bapsr n C. B. Creurura 1, xpoue TOro, OB ¥ HEOTpH-
matenpusle Wenwe wuena ry, f==1, ..., 7, T4KOBH, 9YTO CYmMECTOYOT HONONK-
TENBHNSe WHCHA Py, ..., [, 4 TAIOKO DOIOKUTEIRHHE 9Mcla ¢, M C,, TaKRe, 970
opu mwofou -a>i v, 1060 HeoTpHHATEeNSHOM & BHUONHAWTCHA COOTHOMICHHA

o () S a*rsesd [(a s}y L o7y (@)

the ¢, ¢, u T, (a) or j (j=1, ..., n) me 3apucar. [lpn sunonsesun yrazanEux
BHIIG ycnonuﬁ ME  crakoM, IT0 r=(r, ..., r) 1 ¢ (t)——( 8- q;,, (£)
yrosrersopator I' (T, p, A) yeaonmio, tie p= (g, ..., p), 4 e A,
Hazee, nycre 0 <0< oo, x(f) — menpepungas ma [0, 1] qaymtmm ynosne-
Toopawoman yeaosuam: x{0) =0, x{(2t) < c1x (t) £ ex(t), tne ¢ u ¢, — mo-
crosunse, £ E[0, 1], a Tawe @ym{mm ¢ ()t *7#/% yroenersopanT yerosuio (S),
=1, ..., n

OGosraanm wepes Bhoel'™ (R,) Kmacc acex pyroHd U3 Lp,,., (R,) ANA KOTOPHX

cymectoyior cofoiencKue npouaeop;ime , EL?(R”) 1, ..., n, u nns
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