HAXTHMAL, FUNCTIORS AND THEIR APPLICATION TO RATIONAL APPROXIMATIOR

RBonald A. DeVorel

- ABRSTRACT. The Hardy Littlewood maximal functicns as well
as other maximal functions are used to give simple
congtructive proofs of the reaults of Popov and Brudnyi on

rational approximation.

1. INTRODUCTION. Maximal functions are important tools In various areas

of analysis, most notably in differentiation theory and the study of wmapping
properties of operators. As we shall see, such maximal functions can also be
used in a fundamental way to derfive results on the approximation by rational
functions. Specifically, we shall show how to give simple, constructive
proofs of results of V. Popov [8,9] and Yu. Brudnyi {1]. These results

center on various suoothness conditions on a function f which guarantee

that

(1.1) rn(f)q = 0(n %)

where

(1.2) £ (£) : = dnof F-RE_ .

deg R=n

Here R = P/ 18 a rational function and deg R = max{deg P,deg Q): All
norms in this paper are on [0,1] unless otherwise indicated.
Popov gave the famous :Lnequa'lity

. -2
: {1.3) rn(f)m.S.C'f‘lav n .
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144 R.A. DEVORE

This estimate should be contrasted with the approximation by polynomials
where one can only prove the error ig 0(u_1) with n the degree of the
approximating polynomials (conasfder for example f(x) = !x| on [-1,+1)

[6 p. 94]). 1t follows fn & simple way from (1.3) {as was noted by G. Freud
[5]) that for each f ¢ Lip 1

(1.4) r (), = o (a7,

This 18 a pesitive solution to the famous conjecture of D.J. Newman [7].
Maximal functions are uged here to give local error estimates for the
approximation by polynowmials. For example, 1t follows from the remainder

formula for interpolation by the Taylor polynomial Pxf of degree k-1 that

-1 J y
(1.5 l£¢r)-2_£(n)] < ly=[*7! fxlf“‘)f <ly=l* (ke fxlfml)

< ly=xl* tag uee™®y)
xﬁpﬁy

where M 1a-the Hardy Littlewood maximal function:

Isx

(1.6) Mg(x): = sup iy f_lsl

with the sup taken over all i{antervals I C {0,1]) which contain x.
One exploits (1.5) in rational approximations by choosing n intervals
Il""’In where 1nf1 H f(k) are approximately equal and taking x = Ei

with Ei eI The local polynomials PE are then pieced together using a
i

simple partition of unity with low degree rational functioms to glive a

L

rational approximation to £. This techaique is {llustrated in itas simplest
form fn §2 where we prove Popov's result (1.3) by using (1.5) with k=2,
The more genérallresulté of Brudnyi require extensions of (1.5) to

estimate If—leL D in terus of the a-th order smoothmess of £ 4n 'Lp.
q :

There are two essential difficulties that prevents the use of simple maximal
operatora. FPirst, a 4is not necesearily an integer and second and more
importantly p 18 In geaeral < 1. The usual notion of distributional
derivative does not apply to p <'1. Fortunately there are maximal functions
which will veplace the role of H(f(k)) 1o (1.5} for &ll a,p > O. These
were introduced by A.P. Calderon [2] and studfed extensively 1o [4]. With

these maximal functlons, one can show the existence of & polynomial Pxf (now

1 ’ o - ]
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based on Peano derivatives .of :f) which generalizes (1.5) to gl a,p > 0.
In §4, we show that any function f of smoothness o in Lp (see §3- for
the precise neaning of this) with p > o6: = [at %J-l satisfies

(1.7) T () = o(n 4.

The index o 4s the smallest fndex which guarantees that functions with a
order gmoothness in Lp are 1in Lq. Thia same Index occurg in optimal knot
8pline approximation (our techniques apply to-this problem as well).

The egtimate (1.7) is a slight variant of the results announced by
Brudnyl {1]. He uses Besov spacea in hia_description of ‘smoothness. We
should note that we have not seen the proofs of Brudnyi's resulte, however he

does state 1in [3, p. 320] that his proofa are not constructive.

2. POPOV'S THEOREM. Suppose 11,...,1m are disjoint intervals in [0,1]
withkff I,=10,1] and £, e I 3L,eepme Let

i
(2.1) ¢j(Y)= = (1+l1jl_2(ynaj)2)“2’ 3"1:'--;12.-
Then,
(2.2) $ 227, 5« 1 31,..m.
S -2
Let §: = { ¢j’ 80 that ¢ > 2 on [0,1}. The rational functions
1 .
(2.3 Rj: - ¢j/¢
gatiafy
m
(2.4) 1) TR,=1
1 ]

1) Ry <AL MPe-e0h7 5 e qo,1.

THROREM 2.1. If f' ¢ BV, there 18 a rational function R of degrée
< n such that ' -
(2.5) TE-RE_ < clE'l_ o2
o BV

with ¢ an absolute constant.
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FPROOF. Since any function £ with f£' € BV can be approximated
uniformly by functions g with lg"ll < If'le, it will be enough to prove

(2.5) with lf'le replaced by If"ll. Alao it 18 encugh to construct R
of degree ( l6n.

Now, the Hardy-Littlewood maximal function maps L1 boundedly into Lt

for all r < 1. This follows from the fact that M {s of weak type (1,1)
{10, p.5}. 1If we take r = 3/4 (actually any r strictly between 1/2 and
1 will.do), then

LICIOL MROE | o B

It will be enough to establish our result for f with lf"l1 - cal. For

guch an £, choose intervals 1 such that

TP 5
(2.6) 1) the I, have palrwise disjoint fateriors and [0,1] -LF; I
1) |1, <nhogel,.l,20
. -1
@y [ OmMENIT <, el 20,
1

]

1

These intervals can be gotten by firat finding n 1intervals which satlisfy
1) and i{i{1i) and then further subdividing them so as to guarantee i1).
Choose £, ¢ 1 g0 that M(f")(E

3 3 j) = tanJM(f"). The finf e attatined
since M(f") 1s lower semicontipuocus. Let Rj he the partition of unity
(2.3) for this cholce of I, and £,. If P, (y): = £(§) + £'(E )(y-E Y,

] k| Ej ] ] 3

then (1.5) holds with kw2 and x-tj, j=l,+..,2a. Set

2a
R: = % PEjRj.
Since Rj - ¢j/¢ with ¢j of degree {4 and ¢ of degree £ 8n, we have
deg R { lén.

Now, we estimate ¢-R usiﬁg (1.5) and (2.4). V¥irst ohserve that from
(1.5) and (2.6) 111), we have ’

(2.7) lE(=2, (] < (-E )PMENE D) = (y-£ ) inE. M(E™)
3 1 j Y

1l/r

L a20 1 I 2 -1/
< -k {TI? II MCE™Y )T <y € cn!Ij!) .

i
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Using this together with (2.4) 11), we have

2n -
(2.8) e -rm| < T lem-2, (R ()]
1 & ]

n
82 -1/ =2, e 42,72
<4 E (7-£)) cnlle) (1+IIJ| (£ %)

L4187

et §

vhere S“(y) 1s the sum of those terms for ifatervals Ij which satisfy

27" 1 < !Iji _(_VZ—UH'n-1 (racall 'IIJI S_n-l because of (2.6) 11)).,

Since (y-—EJ)2 5_IIjI2(1+IIj|“2(y—Ej)2), we have

(2.9) s,(r) < 42")/T72v2 {I S R R
[

j

b}

with I“ the sat of those Ij which appear in § v Each Ij € I has
length > Z—unnl and the I‘1 are disjoint. Tharefora for any 1ntagar k>0

there are at moat four g, with % 2%t ¢ Iy-g,] < @t1y2 27!, Ueing

this in (2.9), we have

$,(y) < 160 22 V(2"1/r) { (/)Y ¢ o2V

Thua, (2.8) givesn

Z z—v(2~1/r) < cn—z

[E()-R(y)| < a2 .

3. WAXTHAY, PUNCTIONS. TPix a,p > 0. If I {8 an interval lat PIf denote

a2 beat approximation to £ from pdlynomials of degree (a) (greatest integar
strictly less than a) in LP(I). He define

1 1 p.1/p
(3.1) £ (x): = sup —— Gy [ 1eeel®
x,p Inx [Ilﬂ I 1 I

vhere the sup i3 taken over all intervals I which contain x.

The maxiwmal function fg moasures the gmoothness of £ and ig
»

connaected to wany classical problems in analyais (see [4]1). Por example, for
k > (a) + 1, we have the 1nequa11ty,
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K - _
(3.2) lasee,m) < h® § €2 (etwh), K >0, ave. o x.
- veg %P

The proof of (3.2) is aimpla'and i11uatrat1ve, ao-we‘ahouid at least
sketch {t. If T D1I* are two intervals with |I| < 2[I%]| then

-l/p
(3.3) 1P_£-p flL 18y < el1} IP_£- PI*fIL (T

S_c[II-llp[lf-PIfj + V6P 1

/ i
Lp(I) LP(I*)

< cII] 1nf fb .
- I* a,p

Here, the first equality is a comparison of polyﬁomial norms (see [&, Lemma

3.1]). The inequality (3.3) holds without the restrictfon |I| < 2|1%]

since given any I a&nd I¥ "we can choose IO = I D'[l:) cae :)Iu = T% gith

|Ijj = 2113+1|, 3=0,...,0-2 sund !In_1| < 2|1 ]. Then ueing (3.3), ve find
i a

: ] - n
(3.4) 1P, £-P_£1 < T, e ofn . <l ]T,]%)ne £b
1%L (1*) Ty Fg Iy LD 0 3 qx WP

< &[1]® tnf b .
- I* a,p

It follows from the Lebesgue diffarentiation thearem (see [4, Lemma 4.1))
that :
(3.5) m P LE(x) = £(x) a.e. .

I*i-{x} :

Hence for such x, taklag a limit in (3.4) gives

(-6 R E0-E@] = e e, £(x)-" P )] < cl1]%b ().
: I*+{x} - P

This gives (3.2) since given x,-..,x+kh, we choose T go that ]I] = kh
and X,...,xHh € I. Since. deg PIf £k,

K
|A§(f,x)l‘-,lbi(f-PIE.x)l <c g 1f(vah)~ylf(x+vh)]

k N . .
<ch® § €0 (xtvh), ae. x .
<% 5 Tag
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He see from (3.2) that fg p behaves like a (fractional) derivative of
3

f. In fact when a 1s an intager we have [4]
(3.7 e 80 < £8 ) ¢ e meeyx) ane.
1 - Ta,1 -2
with ¢y cé depending oaly on a. Similar fnequalities ecan be proved for
other values of p.
Let us define the space of functions C: as the set of functions f for
which
E 3 I V- I 72 I V) IR PSR
ca P | !C“ i 'c“ o4,p p
p p P
are finite. These are smoothneas spaces of order a 1in Lp. For example,
it follows from (3.7) that

(3.8) cﬁ - w:,_1 <p <= kal,2,... .

Also, it 18 easy to show that C: = Lip a for 2ll o > 0. Hence the C:
are generallizations of the Sobolev spaces te all aq,p > 0. Por any p and
@ non-integral we have the embeddingg

(3.9) n:'p > c; * B
with B:’p the Besov spaces (see [4]).

We now want to show how fb a,p can be used to extend loequalivy (1.5).
We can no longer use ordinary derivatives Iin the definition of P and
therefore we begin by Introducing the notion of Peano darivativea.

The proof of (3.4) together with Markov 8 inequality shows that for
IDO1I*

h| - a3 b
(3-10) 1D (sz,pI*f):Lm(I*) < cl1} ;:f Eop

Therefore, 1€ £ (x) ¢ =, then
a,p

(3.11) D £(x): = lim DJPif(x)
N I+{x}

exists J=0,...,¢a). The Djf ‘are called the Peano derivatives of f. When
these Peane derivatives exiat, we define
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(a) PR |
(3.12) PE(Y) = ] D £ (x) (Yj’;‘)
4u0

The following lerma generalizes (1.3).

LEMMA 3.1. Suppose 1 {q (= 0<p<q and 7T: = a+ é—— l-> 0. 1f

P
fe Cg, then for almost all x and all intervals 1 coatalaning x, we have 5

(3.13) 1E-P_f£1 < c|Tf*/a M (F)(x)

Lq(I)
where F: = £0  and M (g): = (H(iz!p))llp'
a,p P

PROOF. We first estimate If-PIfILq(I). Let IO = {I} and in general

the set of intervals Ij is gotten from Ij-l by halving the intervals in
11“1. Define

S: = P £ .
1 J)‘:':I Iy
h|

Then SO - PIf and Sj + f a.a. on I because of (3.5). It follows Ffrom
the argument in (3.3) that whenever J ¢ Ij—l and J%* e I, with J&C J, we

J
have
- atl/q
O N T clJ} 1:?. F
q J
T 1
<claTf B Ie,
J*
Therefore,

A

1T HT T (f pPyleyt/a
Je

is -8 i
17 1, s

(A

1] f@Hh¥y #Hlle
I

where in the last inequality we used the fact that an gq/p norm 18 smaller

than an 21 norm gqfp > 1. This last {inequality gives |7
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(3.14) 1£-p_fg = lim 0S5 ~S.1 <31
1

5,-8 I
1 Lq(I) jo 30 Lq(I) - J 31 Lq(U

< el Ry e

<™ @y
In view of (3.10) and (3.11)
[Dj(?If)(x)-—DJf(x)l <)1) ¥Ry
and hence

< 111Mp_eop gy

(3.15) IPIf-Pxf! 18, L_(I)

Lq(I)

. (a) ]
<eytay |DJ(PIf)(x)-njf(x)l l%%—
1=0

S_clI[ﬂl/qF(x) d.@. X.
Since P S_HP(F) a.e., (3.15) combines with (3.14) to give (3.3).0
4. FURTHER BESULTS 0N RATIOHAL APPRORTHATION. We need to wodlfy slightly
the partition of unity (2.3). Again, let I, i=l,...,m be intervals with

dis joint interiors whoee union is- (0,1] and let Ej € Ij’ J=l,¢e.,m. We
define for k: = {(a) + 3

.. 2 e y2yvk ¥
$40r): = (1+]1,[ "¢y EPHTH @ %ej
and
(4.1) Rj= = ¢j/¢ .
Then, the Rj satlafy
m
(4.2) 1) IR, =1on {0,1]
1 d

ko1 -2 e 1247k “Lyonr [y-2k
11) lajcyylgz Q1,1 €0 5c(1+lrjl ly-&,107% .
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Here the last inequality uses the fact that (1+:2)—k S_c(1+x)_2k, x> 0.

TREOREM 4.1. Lat a,p > 0; 1 iq i @ and P > 0: @ (u+ _:_)'1. 1f
£ e C%then
p
(4.3) r (£) <clfl o
n q - Ca
P

with ¢ independent of n and f.

i FROOF. The maximal function Hp boundedly wmaps Lp into Lt for all

r < p. Choose o <r < p. Then, thare is a conatant o such that

IHP(F)Ir icoiflca -
P

with F: = fg p' It will be enocugh to prove (4.3) for functions f which
' -
satiasfy !f'u = col. In this case, IHp(F)Ir £1 and hence we can choose
C .

P
intervals Il""'IZn guch that

(4.4) 1) the I, have disjoiot interiors and [0,1] -u“"l1 1

3 3

11) lzj| _<_n'1, $=L,...,2n

1) [ peET <.

Ty

For each j=1,...,2n, choose & point § 1 such that

1€ 73

¥ - .
Hp( )(Ej) 1:15 HP(F)
3
Then,
1 . ., M/t -1/x
(4.5) LNCHICIVES (W II M) < @mlEh .
J
Let P£ be the polynomial in Lemms 3.1 for x = Ej. The ratfonal function ’
]
2§ : = .
B: = (P_ £)R
1 &5
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has degree S.Bkn and it will be enough to show that

(4.6) 1E-RY <en ®

with c 1independent of f and n.
The proof of (4.6) is similar to the proof of Theorem 2.1. Ian fact, the

cage q = = 1g identical and so we proceed puly with the case q ¢ =. Let
I, be the set of those intervals Ij such that 2 "a % ¢ IIJ} < 2"V,

Then, for any interval I,, we have

i’

(4.7) HE-R1 <] st
Fq(Ii) =y v Lh(Ii)

IJEIV 3 .
Suppose Ii 3 Iu. Fix 1 for the woment. We want to estimate
- . - + -~
lsvqu(Ii)' It will be couvenient to write §,=8,+ S‘J where S‘J ‘is the
sum over all intervals in I, to the left of I, and St Ls the sum over
all intervals in I, to the right of I

« We aoow estimate IS the

g vl @1,y
eatimate for S: is the same.  If u > v, we let JO: = Ii. If v > u, we
take wl: = 2° ¥ and let JD,...,Jm be diajqint intervals of length
(m+1)—1|11| whose union 1s I1 and which are ordered from left to right.
It follows that for Ij € Iv’

dij + s]Ijl $_|y—EJ[ < Z’Ijl + di + s[Ijl when y ¢ JB

3
where dij: = min{|a-b]: a ¢ I, beI}. If 38 is the smallest interval
which contains J_ and Ej‘ then |33| S-dij + (sz)JIj[. Using these facts
with (3.13), (4.2) 11) and (4.5), we have, with

o - (Z—U)a+1/q—}/r n—(Gfllq)'

o,V
(4.8) IS 1, < Y8(E-P_ )R, .
' SV L W) - ?j 1L Gy .
Seay I (e fr | ThEkreR/e
Ijer

@ . : )
~2ktar - a+l/a+
< ca z {1+s+2) 2k+ 1/q < ca_  (l+s) Zktatl/q 1-
— n, v o1 -_ n,v
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Since t: = 2k - a - ﬁ-— 1> 1, we can use (&33) and a similar eatimate For

-+
S, to find
5 -1q,1/q
(4.9) is_1 Ceca (I (l4a) D8 aeq |
v Lq(Ii) n,v gwl n,v
Using this back in (4.7) shows that if--RlL (1.) < cn—(c+1/q). and therefore
q 1
2n 2n
If<RI_ = ( ] kf-Ri12 )llq < cn (u+1/q)( ) 1)1/q <en %, O

COROLLARY 4.2. If 1 S_p,q~$_ﬂ and k 18 a non-negative integer
(k>11f p=1 and q = ®) then For each f ¢ Ht we have

(k)l n_k

T (6) < et

PROOF. 1If p > 1, this follovs. from Theorem 4.1 and (3.8). When

p = 1, the same proof as Theorem 2.1 gives the result. 0O

COROLLARY 4.3. If a,p >0 p £q£= and a-+ %—~ &-) G then whenever

@ 1 not an integer and £ ¢ B;'p, we have

d ¢ 4

£) < cifs
rn( )q Le Ba’pn
p

PROOF. This follows from Theorem 4.1 and (3.9). O
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