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Summary. A functionf~C(O), ~ ~ IR s is called monotone  on f2 if for any x, y e f 2  
the relation x - yelR~+ implies f (x )  >f(y) .  Given a domain f2 ~_ ~,s with a con- 
tinuous boundary  t3t2 and given any monotone  function f on •t2 we are concerned 
with the existence and regularity of monotone extensions i.e., of functions F which 
are monotone  on all of f2 and agree with f on 0~2. In particular, we show that there 
is no linear mapping that is capable of producing a monotone  extension to 
arbitrarily given monotone  boundary  data. Three nonlinear methods for construct- 
ing monotone  extensions are then presented. Two of these constructions, however, 
have the c o m m o n  drawback that  regardless of how smooth the boundary  data may 
be, the resulting extensions will, in general, only be Lipschitz continuous. This leads 
us to consider a third and more involved monotonici ty  preserving extension 
scheme to prove that, when f2 is the unit square [0, 1] 2 in IR 2, strictly monotone  
analytic boundary  data admit  a monotone  analytic extension. 

Mathematics Subject Classification (1991): 65D15 

1 Introduction 

During the past few years, shape preservin9 approximat ion and interpolation have 
been attracting considerable attention, see the survey article [1] by Utreras and the 
references therein. 'Shape preserving' typically means that the interpolant or 
approximant  is monotone  or  convex whenever the given discrete data are mono-  
tone or  convex in an appropriate  sense. Specifically, various piecewise polynomial  
interpolation schemes have been proposed for the purpose of monotonical ly  
interpolating (discrete) data  on regular grids, while variational approaches are 
employed for scattered data problems. In this paper  we consider the rather different 
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problem of constructing monotone surfaces under transfinite interpolation con- 
straints given in terms of traces of functions with respect to (sufficiently smooth) 
boundaries. To our knowledge, this problem has not been addressed yet in the 
literature. 

We say a function f is monotone (nondecreasing) on f2 __q IR ~ if for any x, y ~ f2 
the relation x - y~lR% := {x = (x, . . . .  , x~)~lR+:xl > 0, i = 1 . . . . .  s} implies 
f ( x )  > f ( y ) .  The monotonicity is called strict if in addition f ( x )  > f ( y )  whenever 
x 4: y, x - y ~ IR%. Given any domain f2 and some monotone function f on Of 2 any 
function F that agrees with f on 0f2 and is monotone on 1"2 is called a monotone 
extension of f (to f2). 

The motivation for the present investigation arose from the practical problem 
of modeling charge distributions for semiconductor design. In this particular 
setting, exact analytic representations of the charge distributions in terms of 
bivariate expressions were available everywhere except on a region f2 which 
could be transformed into a rectangle. The objective then was to determine 
a monotone transition between these two regions separated by a strip in such a way 
that the boundary values given by the known analytic expressions were matched 
precisely. 

In the case f2 = [0, 1-12 one realizes rather quickly that neither a Boolean 
transfinite interpolant nor the solution of a Dirichlet problem for Laplace's 
equation with the prescribed boundary data will work in all cases. In fact, we show 
in Sect. 2 that, whatever domain f2 is considered, there never exists a linear 
mapping L,e such that s  is a monotone extension of f to f2 for all possible 
monotone boundary data f on tgo. This fact makes the question of existence of 
monotone extensions more interesting than it might have appeared at first glance. 
So in Sect. 3 we propose nonlinear ways of constructing monotone extensions for 
general domains. Unfortunately, these methods suffer from the common drawback 
that, regardless of how smooth the boundary functions are, the extensions will in 
general be at most Lipschitz continuous. Therefore we focus in Sect. 4 on the 
construction of monotone extensions for the unit square in the plane that have the 
same smoothness as the functions on the boundary. 

2 Can monotone extensions be generated by linear operators? 

As mentioned above, any attempt to construct monotone extensions of boundary 
data, which is linear, is bound to fail. Our first theorem gives a result along these 
lines for any bounded open set f2 c IR s, s > 2. To this end, we designate ~ to be 
any mapping from monotone functions on at2 into monotone functions on t2. We 
require s to be continuous where on the boundary data we have the topology of 
uniform convergence and for functions on t2 we put pointwise convergence. 

Theorem 2.1. Suppose that t2 c IR s, s > 2, is a bounded open set with boundary OIL 
Then there is no continuous linear map ~ which yields for  every monotone boundary 
data f on ~I2, a monotone extensions .Sf f on all o f  f2. 

Proof. We can assume without loss of generality that 0 e f2. Suppose there exists 
a linear extension operator L~' such that for any monotone f on 0f2, the function 
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5 o f  is m o n o t o n e  on  (2. Since 8(2 is compact,  the linear functional 2 ( f ) : =  5~ 
has the representation 

2 ( f )  = ~ f dp , 

where d r  is a regular (signed) Borel measure on 8~. We shall show that 
#(Q c~ 8(2) = 0 for any cube Q. Since p is a Borel measure, this implies that # is 
identically zero and gives a contradiction which proves the theorem. 

To this end, let a ~ IR S and let h > 0. The cubes Q~ : = a + vh + [-0, h) ~, v e 7p are 
a tiling oflR ~. We assume that 0~ Qo. We consider h so small that  Qo is completely 
contained in (2. Let f :  = ~ c~ZQ~, with cv = 0 or  1, be a mono tone  function on IR s. 
The condition for monotonici ty  o f f  is simply that whenever c~ = 1, then c~, = 1 for 
all v' => v. 

We shall now show that #(Q~ c~8(2)= 0 for all v e Z  ~ by using the above 
functions f By our  previous remarks this will complete the proof  of the theorem. Of  
course, if Q, c~ 8(2 = ~ then #(Q, c~ 8K2) = 0. In particular, #(Qo n 8K2) = 0. 

Let v # 0. We consider first the case where there is an i = 1 . . . . .  s such that 
vz < 0. We fix this i and define c , , : =  1 if either v~ > 0 or if v~ < 0 and v' > v. 
Otherwise, we define Cv, : =  0. Then the function f is monotone  nondecreasing. Let 
j e { 1  . . . . .  s} be chosen so that j # i .  The rays L+ := {te~:t > O} and 
L_ :=  {tej: t  < 0} both intersect 8(2 (because 0 e Q and (2 is bounded). Since f = 1 
on  L+ and L_ ,  we have 2 ( f )  = 1. Moreover,  if g is obtained from f by changing 
the value of c~ from 1 to 0, then g is also monotone  and 2(g) = 1. Hence 

0 = 2 ( f - -  9) =/~(Q~ r~ 8(2). 

as desired. 
In the remaining case, we have v > 0, and v~ > 0 for some i = 1 . . . . .  s. In this 

case, we define cv,: = 1, if v' > v and c~, : = 0 otherwise. We again let j ~ { 1 . . . . .  s} 
be chosen so that j # i .  Then, since L+ := {tej: t  > O} and L _ : = { t e j : t < O }  
both intersect 8~ and f -  0 on L+ and L_ ,  we have 2 ( f )  = 0. If g is obtained from 
f by changing c~ from 1 to 0, then likewise 2 ( g ) =  0. Hence, as before 
0 = ~ 4 f -  g) = u(Q~ • 8(2). [] 

3 Construction o f  monotone  extens ions  

This section is concerned with the construction of monotone  extensions for 
bounded domains in F,2. In order to give the simplest possible arguments, we shall 
assume that (2 is convex; however some of the results of this section also hold 
without this assumption. We begin by describing a relatively simple method for 
m o n o t o n e  extensions that will also motivate subsequent discussions of the regular- 
ity of monotone  extensions. We shall assume that f is continuous on 0(2 and 
nondecreasing there. 

If x e Q, we let A ~ ' =  x 4- IR~. and define 

(3.1) m+ (x) :=  i n f { f ( y ) : y  ~ OK2 c~ A + } 

m _ ( x ) : =  s u p { f ( y ) : y e O ~  c~(Ax )} . 
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Then, any monotone extension F of f must satisfy 

(3.2) m_(x)  < F(x) < m+(x), x e f 2  . 

A natural candidate for F is a convex combination of m5: 

(3.3) F (x ) :=  (1 - a(x) )m+ (x) + a(x)m_ (x) 

where a is some appropriate nonnegative function taking values in [0, 1]. We begin 
by discussing the following choice for a: 

(3.4) 

with 

v + ( x )  . 

a(x) :=  v+(x) + v_(x)  ' 
1 

v + (x)  + v _  (x)  > 0 , 

v + (x )  + v _  (x)  = 0 

v• (x) := vols(f2 n A~ ) . 

We first note some elementary properties of the functions m• v• on s and 
O : =  ,Qu Ol2. 

Lemma 3.1. I f  s is convex and f is continuous on c3f2, then (i) each of  the functions 
v• is continuous on ~, (ii) each of  the function me  is continuous on s (iii) the 
function m• is continuous at each point x ~ ~s where v • (x) = O, (iv) the functions 
m• are continuous at each point x~c3f2 where v+(x)v_(x)  > O. 

Proof. For x, y e ~, we have 

(3.5) v• - v•  < vols((A~ \ A ~ ) ~  f2). 

Since s is a bounded domain the right side of (3.5) tends to zero uniformly as x ~ y. 
Since x, y are arbitrary, we can interchange their roles and thereby introduce 
absolute values on the left side of (3.5) and deduce the continuity of v+. This 
proves (i). 

We shall prove (ii), (iii), and (iv) for m+, a similar argument applies for m_. For 
each yef2,  let z(y)~Os c~ A~ be a point where m+(y)  = f ( z ( y ) ) .  The existence of 
such points follows from the compactness of A ;  n 0f2 and the continuity of f. We 
first show that for any x e s we have 

(3.6) m+(x) < lim inf m+(y)  . 
y ~ X  

We fix x and for each y we can write z (y ) :=  y + v(y) with v(y) > O. We take 
a subsequence {Yn},~N such that the limit infimum in (3.6) is attained. By choosing 
a further subsequence if necessary, we can suppose that v(y , )  ~ Vo, n ~ oo (be- 
cause the v(y)  come from a bounded set). The point x + Vo is in A~ + n Or2 and 
x + Vo = lim z(y,) .  Therefore, 

n--* oo 

m+(x) < f ( x  + Vo) = lim f ( z ( y , ) )  = lim inf m + ( y ) ,  
t l ~ o O  y ~ X  

which proves (3.6). 
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To complete  the p roof  of (ii), (iii), and (iv), we shall show in each of  these cases 
that  

(3.7) l im sup m+(y)  < m+(x) 
y ~ X  

with the limit supremum taken over y ~ g2. 
Consider  first the case of (ii), that  is x e  f2. We fix one of the points  z(x) for x. We 

can write z : = z(x) = x + v with v > 0. Because f2 is convex, the ray y + tv, t > 0 
intersects c~f2 at a unique po in t  ~(y). We claim that  l i m r .  ~ ~(y) = z. Indeed,  if this 
were not  the case, there would be a subsequence y,  --* x such that  ~(y,) ~ w with 
w 4: z. But clearly w = x + toy for some to > 0 and wegf2  (because ~30 is closed) 
and this contradic ts  the fact that  the ray x + tv, t > 0 intersect Of 2 at the unique z. 
Hence our  claim is established. Since m+ (y) < f ( z ( y ) ) ,  it follows that  

lim sup m+ (y) < l i m f ( z ( y ) )  = f ( z )  = m+ (x) 
y-'*Z y ~ x  

and hence we have proven (3.7) in this case. 
To verify (3.7) in case (iii), we suppose that  xeOf2 and v + ( x ) =  0. Then 

m+(x) = f ( x ) .  If  y ~ ,  we write y = x  + h, with h = h ( y ) = ( h l  . . . . .  hs). Then, 
S w ( y ) : =  y + v(y), v ( y ) : =  ~ j = l  lhjlej, is in A + and also in A + . Since v+(x) = 0, we 

must  have w(y)r  Hence, the ray y + tv(y) intersects Of 2 for some t = t(y), 
0 < t(y) < 1. It follows that  m+(y)  < f ( y  + tv(y)). Since, v(y)-- ,  O, we have 

lim sup m+(y) < l i m f ( y  + t (y )v(y) )  = f ( x )  = m+ (x) 
y-'-*X y ~ x  

which establishes (3.7) in this case. 
Finally,  we consider  (iv) with x ~ c~f2. Given e > 0, we choose 6 > 0 to be so 

small  that  Iw - xf < 6, w ~ c~f2, implies If(w) - f ( x ) l  < ~. Fur the r  denote  by B0 the 
bal l  of radius  6 centered at  x and let So :=  B6 c~ (int(x + ~ + ) .  We claim that  
So contains  points  y from Of 2. Indeed,  since v_(x)4= O, there is a poin t  
z ~ f2 n int(x - IR% ). The ray emenat ing from z and passing th rough  x enters into 
So. Points  on this ray in So must  be in O c since otherwise x would also be in 12. 
Hence there are points  in So from f2 c and also points  from f2 (because v + (x) 4= 0). 
Therefore there are points  in So from 0f2 which establishes our  claim. N o w  let w be 
one of those points.  If y is sufficiently close to x then w ~ A~ .  Therefore, 

m+(y)  < f ( w )  < f ( x )  + ~ < m + (x) + e .  

Since e is a rb i t rary ,  we have proved (3.7). [] 

Theorem 3.1. Suppose Y2 c IR s is any bounded domain. Then for any monotone 
function f on Of 2, the function F defined by (3.3), (3.4) is a monotone extension of  f t_o 
f2. Moreover, i f  Y2 is convex and f is continuous on ~12, then F is continuous on f2. 

Proof  If  x, y ~ f2 with y < x (that is y - x ~ IR% ), then 

(3.8) A + c A  + ,  A~- c A ~  
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and therefore m+ (x) > m+ (y) and m_ (x) > m_ (y). Since m+ > m_,  the monotonic-  
ity of  F will follow as soon as we have shown that 

(3.9) a(x)<a(y) ,  x > y .  

To this end, we first note that (3.8) implies 

(3.10) v+(x) < v+(y), v_(y) < v_(x), y < x . 

Hence, when v + (x) > 0, we have 

v_ (x) > v_ (y)  

v+(x) = v + ( y )  

which readily confirms (3.9). If  v+(x) = 0, then either a(x) = i or a(x) = 0. In the 
first case, we must  also have v _ ( x ) =  0, which, in view of (3.10) implies that 
v_ (y) = 0 so that a(y) = 1 and (3.9) has been verified in this case as well. Finally, if 
a(x) = 0, then (3.9) holds trivially since a(y)> O. This confirms (3.9) and the 
monotonic i ty  of F. Clearly for x e Of 2, we have 

m+ (x) = m_ (x) = f ( x )  

so that the first assertion of the theorem follows. 
Suppose now that  f2 is convex and f is continuous on 0f2. It follows from 

Lemma 3.1 that a, m • are all cont inuous at each point x ~ f2 and also at any point 
x~df2  where v+(x)v_(x)> 0. Therefore, F is also cont inuous at such points. 
Therefore, we need only check continuity of  F at points x ~ Of 2 where either 
v_(x) = 0 or v+(x)= 0. We shall only consider the first case since the second is 
completely symmetric. If in addition v+ (x) = 0, then Lemma 3.1 gives that both 
me are continuous at x and so the continuity of F at x follows from the very 
definition of  F. On  the other hand, if v+(x) > 0, then a(x) = 1 and it follows from 
the continuity of v• that a is continuous at x. Therefore, since m+ is bounded,  the 
term (1 - a ( y ) ) m + ( y )  in the definition of F tends to 0 as y ~ x. Moreover,  by 
Lemma 3.1, m_ is continuous at x. [] 

Note  that, due to the properties of  the functions m • the extensions constructed 
above will generally be only Lipschitz-continuous regardless of how smooth the 
boundary  data  might be. Moreover,  locations where such an extension is not 
differentiable may occur anywhere in ~2. In  the following section we will propose 
and discuss alternative schemes which reduce the occurrence of such singularities 
or  even avoid them totally. 

4 Regular extensions to the unit square 

This section is devoted to the construct ion of monotone  extensions to the unit 
square. In particular, we are interested in finding extensions that exhibit the same 
regularity as the boundary  data. 

We will describe first another  extension scheme which does not  quite accom- 
plish this goal but is nonetheless interesting in its own right. Suppose f is strictly 
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monotone on F = c3[0, 1"12. In particular, this implies that the functions 

f l ( t )  = f ( t ,  0), f2(t) =f(0 ,  t), f3(t) = f ( t ,  1), 

are strictly increasing. Hence, 

( f2 ( t )  ; t~[O, 13 
f . ( t )  = <(f3(t - 1); t~[1, 2] ', 

and 

fa(t) =f(1 ,  t) 

where 

we have 

l + x l > t u ( X ) > X z ,  l + x2 > q(x) > xx . 

Defining 

(4.3) V (x) : = f (x . )  = f (xe) , 

it is clear that whenever y e Lx one has F ( y )  = F(x).  To see that F is monotone let 
x, ye  [0, 1] 2, x - y e IR2+. Since F(y) = f . ( t u ( y ) )  the fact that the lines Lx and Ly do 
not cross immediately reveals that t . (x)  > tu(y) so that f . ( tu (y ) )  <f~(tu(x))  = F(x)  
confirming the monotonicity of F. 

As for the smoothness of F, let a(t) be defined by 

f~(~(t)) =fe(t), t~[0 ,2]  . 

Thus, defining the mappings 

(O,t) ; O < t <  1 , b~(t) '=( t , t ) -b~(t)  
bu(t):= ( t - l ,  1);  l < t < 2 ,  

F(x) --L(t) 

for any point x on the line spanned by bu(t) and b~(a-1(0 ). The smoothness of F is 
determined by the smoothness of the strictly increasing function ct : [0, 2] ~ [0, 2]. 
In fact, since at any point x ~ [0, 1] 2 9F possesses continuous derivatives of order 
l if and only if there exist continuous directional derivatives of order l in some 

~f~(t) ; t ~ F0, 13 
f,(O = U 4 ( t -  1); t~E1,2] ', 

are strictly increasing functions on [0, 23 satisfying, in view of the continuity of f, 

(4.1) fu(0) =f~(0), f~(2) =f t (2) .  

Therefore for any x = (xl, x2)~[0, I] 2 one has 

(4.2) f~(xl + 1) >J~(xl), f~(xz)  <J)(x2 + 1). 

Due to the strict monotonicity of fu and f~, and by (4.1), (4.2), there exists a unique 
line Lx through x with strictly negative slope such that its intersections xu, x~ with 
the upper and lower part of F, respectively, satisfy f ( x u )  = f ( x r  In terms of the 
corresponding parameters tu(x), te(x) ~ [0, 2] this may be expressed as 

f~( t . (x)  ) = fe( t l (x)  ) 
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direction not  parallel to Lx. This, in turn, requires f ,  and f~-1 of: to possess that  
many  derivatives. This is ensured by the strict monotonic i ty  of the functions f~(t), 
i = 1 . . . . .  4 and their smoothness  as long as the line Lx does not contain any of the 
corner points (0, 1), (1, 0), since fu andf~ may  not join with higher order  continuity 
at t = 1. One may  summarize  these observat ions as follows. 

Proposition 4.1. Suppose the functions f~, i = 1 . . . .  4 have continuous derivatives of 
order k. Then the monotone extension F defined by (4.3) is k times continuously 
differentiable in any point x which is not located on the lines spanned by the points 
(0, 1), bl(~- 1(1)) and bu(~(1)), (1, 0), respectively. 

The expected lack of regularity across the level lines of F intersecting the above 
corner  points  is illustrated in Fig. 1. 

Nevertheless, we will prove the following fact 

Theorem 4.1. For f~  C([0, 13 2) let the functions f/(t), i = 1 . . . . .  4 be defined as 
before by 

f l ( t ) :=f ( t ,  0), f2(t):=f(O, t), fa(t):=f(t ,  1), fg(t): = f (1 ,  t ) .  

Suppose that f is strictly monotone on F and that the f ( t )  are differentiable functions 
satisfying 

f ~ ( t ) > 0 ,  t e l 0 , 1 ] ,  i = 1  . . . . .  4 .  

Then for any order of smoothness possessed by the functions f-, i = 1 . . . . .  4, there 
exists a monotone extension F possessing the same order of smoothness on t2. 
More precisely, if f l , f3  and f2,f4 have continuous derivatives up to order kl, k2, 

Fig. 1 
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0i+J 
respectively, then ~ F(x, y) is continuous for i < kl and j < kz. Moreover, if the 

functions fi, i = 1 . . . . .  4, are analytic on [0, 1] then F is analytic on [0, 1] 2. 

The remainder of this section is devoted to the proof of Theorem 4.1. The key 
idea is to combine a blending technique based on judiciously chosen blending 
functions with a suitable parameter transformation. 

To this end, we wish to find suitable functions ~o, ~ e C 1 [0, 1] satisfying 

(4.4) go(0) = ~b(0) = 1, g0(1) = ~h(1) = 0 

such that the blending interpolant 

(4.5) L(x, y):= L(x, y ; f  go, tp) 

:= go(x) f (O, y) + (1 - go(x))f(1, y) + tp ( y ) f (x, O) 

+ (1 - tp(y))f(x, 1) - {f(O, O)go(x)O(y) 

+ f ( 0 ,  1)go(x)(l -- ~9(y)) + f  (1, 0)(1 - (p(x))tp(y) 

+ f ( 1 ,  1)(1 - go(x))(1 - 4'(y))} 

is monotone. 
In view of Theorem 2.1 the functions go and tp will have to depend on f To 

derive suitable conditions on go and ~ let 

A :=  - f ( 0 ,  0 ) - f ( 1 ,  1) + f ( 0 ,  1) + f ( 1 , 0 ) .  

One readily verifies that 

c~L Of(x, O) + (1 - O(Y)) Of 1) 
(4.6) ~-x (x, y) = ~h(y) ~xx ~xx (x, 

+ go'(x)[A$(y) +f(O, y) - f ( 1 ,  y) - f ( O ,  1) + f ( 1 ,  1)] 

and 

(4.7) ~(x,y)=go(x)~(O,y) + ( 1 -  ~o(x)) ~(1,  y) 

+ ~h'(y)[Ago(x) +f (x ,  O) - f ( x ,  1 ) - f ( 1 ,  0) + f ( 1 ,  1)] . 

This leads to the following observation 

Lemma 4.1. Suppose A 4= 0 and set 

f(1,  y) - f ( 0 ,  y) - f ( 1 ,  1) + f ( 0 ,  1) 
q'(Y):= 

f(x, 1) - f ( x ,  0) - - f (1 ,  1) + f ( 1 ,  0) 
~o(x) :=~ A 

I f  the functions go, ~h map [0, 1] into [0, 1] then the function L 9iven by (4.5) is 
a monotone extension of f 
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Proof The fact that L is an extension of f follows immediately from the Boolean 
sum construction (4.5) and (4.4). Since the above choice of ~o and ff ensures that 

c~f l) O__Lax (x, y) = ~(y) (~, o) + (~ - ~(y)) ~x (x, 

~3L (3f 
O-x (x, y) = ~o(x) ~y (0, y) + (1 - ~o(x)) (1, y) 

the assertion follows immediately. [ ]  

Lemma 4.2. Suppose A 4: O. If 

f(x, 1) - f ( x ,  0)e I f ( l ,  t) - f ( 1 ,  0),f(0, 1) - f ( 0 ,  0)] (4.8) 

and 

(4.9) f(1, y) - f ( 0 ,  y)~ I f ( l ,  1) - f ( 0 ,  1), f(1, 0) - f ( 0 ,  0)] 

then the hypotheses of Lemma 4.1 are fulfilled, i.e. the functions qg, ~ map [0, 1] 
onto [0, 1]. 

Proof We consider first (4.8) and assume 

f(1, 1) --f(1, O) <f(O, 1) --f(O, 0). 

Therefore, it is enough to show that 

0 <f(x, 1) - f ( x ,  0) - f ( 1 ,  1) +f (1 ,  0) < A 

which holds by (4.8). If f(0, 1) - f ( 0 ,  0) <f (1 ,  1) - f ( 1 ,  0) we have A < 0 and (4.8) 
implies 

f(O, 1) - f (O ,  O) <f(x, 1) - f ( x ,  O) <f (1 ,  1) - f ( 1 ,  O) 
so that 

A <f(x, 1) - f ( x ,  O) - f ( 1 ,  l) + f (1 ,  O) < O. 
Hence 

>f(x, 1) - f ( x ,  0) - f ( 1 ,  1) + f (1 ,  0) 
1 >__ 0 

- A 

which again confirms that 9(x)e  [0, 1], x e [0, 1]. 
Interchanging the roles of x and y, the rest of the assertion follows by 

symmetry. [] 

Clearly, the conditions (4.8) and (4.9) will generally not be fulfilled. To simplify 
the following discussion we may assume without loss of generality (by adding 
a constant, by scaling f and/or by interchanging the roles of x and y) that 
f(0, 0) = 0,f(1, 1) = 1 and that the values 

f(1, 0) = a, f(0,  1)= b 
satisfy 

(4.10) 0 < a < b < 1 . 
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Our  goal is to construct a strictly increasing analytic function q~: [0, 1] ~ tR, 
q~(0) = 0 such that �9 o f  satisfies (4.8) and (4.9), i.e. 

(4.11) ~(f(x, 1)) - ~(f(x, 0))~ [cb(b), q~(1) - 4~(a)]. 

and 

(4.12) q~(f(1, y ) ) -  q~(f(0, y))e  [q~(a), 4~(1) - ~(b)]  

Once we have found a function 4~ satisfying (4211), (4.12), Lemma 4.1 and Lemma 
4.2 imply that the function L(x, y; q)of O, ~) defined by (4.5) is a monotone  
extension of jT: = ~ of  where 0, ~ are defined as in Lemma 4.1 with respect to J~ 

Hence 
F(x, y ) : =  ~ - i o  L(x, y, q~ of,, ~o, ~) 

is a monotone  extension of f to [0, 1] z which, in veiw of the analyticity of 
q~ exhibits the same regularity as the boundary functions f~ (t), i = 1 . . . . .  4. 

Thus, to complete the proof  of Theorem 4.1, it remains to construct an analytic 
function �9 satisfying (4.11), (4.12). To do so we will make use of the following 
quantities derived from the boundary  data f~, i = 1 , . . . ,  4: 

6 := min (f(1,  y) -f(O, y),f(x, 1) - f (x ,  0)), 
X, y 

m := inf (f~(t)), 
i , t  

M := max (f~(t)). 
i , t  

Moreover,  since a > 8 > 0, we can choose #1 > 0 such that 

6 2/~1 
(4.13) f(x, O) < a - ~, for x < --m 

With these, we let/~ be any fixed real number satisfying 

O < # < m i n { b - a - }  6 1 - b  T , ~ l  ( 4 . 1 4 )  

and define 

(4.15) 7 :=  min {~ ,  M ,  ~, ~ Z ~  } �9 

Lemma 4.3. Let 4~ ~ C 1 ([0, 1]) be a strictly increasing convex function satisfying 
�9 (0) = O. I f  

(4.16) maxf ~ ' ( t ) :O<t<a--~t  <?min{~'(t):a<t< 1}, 

(4.17) max{~' ( t ) :O<t<b-#}<Tmin{~' ( t ) :b<t  < b + l }  
- - = - - 2 ' 

(4.18) max{rP' ( t ) :O<t<b}<ymin{~' ( t ) :b+l<t<l}  
- - = 2 = = ' 

then �9 satisfies (4.11) and (4.12). 
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Before turning to the p roof  of  L e m m a  4.3 let us point  out how to construct  
a function q~ which is analytic in a ne ighborhood of the interval [0, 1] and satisfies 
the requirements (4.16)-(4.18). Fixing ca > 0, we choose e > 0 such that  

~cl -- ~ > 0 .  

Let h(t) be the cont inuous piecewise linear function with breakpoints  
a - 6/4, a, b - p, b, b + 2/~ determined by 

h(t) = 

c l  ; 

c 2 ' =  7 - 1 ( C 1  + •) ; 

C3 : 7 - 1 (C 2 _~_ ,~) ; 

c4 > ~ - 1 ( c 3 + e )  ; 

O < - t < - a - 6 / 4  ; 

a < - t < - b - l z  , 

b < _ t < _ b + # ,  

b +  2g<_t<_ l 

when a < b, whereas we set 

h(t) = t 
c~ ; O < - t < - b - I ~  , 

c 2 : = ~ , - ~ ( c ~ + e )  ; b N t N b + p  , 

c3 ~ ~-1 (c 2 ql_ e) ; b + 2p < t < 1 , 

b + l  
when a = b. Not ing  that  by (4.14), b + # < - -  one readily verifies that  

= 2 ' 

q0'(t) = h(t) fulfills (4.16), (4.17) and (4.18) with strict inequalities. Since h(t) is 
increasing the Bernstein polynomial  

j = 0  

is increasing, too. Since Bernstein polynomials  approx imate  cont inuous functions 
arbitrari ly well we conclude that  for sufficiently large n the function ~'(t)  = B,(h) (t) 
still satisfies (4.16), (4.17) and (4.18). Hence, 

�9 (t) = i B , ( h ) ( x ) d x ,  t e [ 0 ,  1 ] ,  
0 

is an analytic function satisfying (4.16)-(4.18). Moreover ,  by choosing the constants  
c3 or c4, depending on whether  a = b or a < b, in the above definition of h(t) 
sufficiently large, we can ensure that  4(1) > ~(a) + ~(b). Hence the quant i ty  A for 
the function �9 o f  appear ing in L e m m a  4.1 and L e m m a  4.2 is different from zero. 
Therefore ~ o f  satisfies all the assumptions  in L e m m a  4.1 and L e m m a  4.2. 

Thus to finish the p roof  of Theorem 4.1, it remains to complete  the following. 

P r o o f  o f  Lemma 4.3. Let 

A(x) :=  ~ ( f ( x ,  1 ) ) -  eP(f(x,  0)) 

d ( y ) : =  ~ ( f ( 1 ,  y)) -- 4)(f(O, y) ) .  
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First we consider the range 

(4.19) 

Writing 

6 
f(O, y) < a - - -  

4" 

A(y) = O(a) + q~(f(1, y ) ) -  q~(f(1, 0 ) ) -  q~(f(0, y)) 
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we note that, since f (0 ,  0) = 0 

4~(f(O, y)) = q~(f(O, 0)) + (f(O, y) --f(O, O))qr O) + t,) 

< yMqY(ty) 

some t y ~ ( O , a - ~ ) ,  while for some ~y6(a,f(1, y)) for 

~O(f(1, y)) - q,(f(1, 0)) = (f(1,  y) - f ( 1 ,  O))O'(~r) 

>= ym min{q~'(t):a _< t < 1} . 

T h u s s e t t i n g ~ l : = m a x  ~ ' ( t ) : O < t < a - ~  andq~:=min{q)'(t):a<t<_l} we 
obtain 

A(y) >= ~(a) + ymr h - yM~I �9 

From (4.15) and (4.16) we infer that ruth > Me1 and therefore 

A(y) > O(a) 
whenever (4.19) holds. 

Suppose next that f (0 ,  y) e a - ~ ,  a so that 

f (1 ,  y) = f ( 1 ,  y) - f ( 0 ,  y) + f ( 0 ,  y) > 6 + f ( 0 ,  y) 

=> a + ~ 6  = f ( 1 ,  0) + ~ 4 6 .  
Thus 

O(f(1,  y)) = cb(a) + (f(1,  y) - f ( 1 ,  0))O'(~y) 

36 __> ~(a) + ~- ~1 

Hence, since f(0,  y) < a, we have 

(4.20) A (y) = ~ ( / (1 ,  y)) - O(f(0 ,  y)) 

36 > c/,(a) + ~-  r/~ - ~(a) 

36 
= 4 - "  q l  " 
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Since q> is convex we obtain 

a-~/4 i q0(a)= I q)'(t)dt + cb'(t)dt 
0 a-gJ/4 

Now (4.15) and (4.16) ensure that  el _-< q16/2 and therefore 

33 
(4.21) q~(a) < ~- qx �9 

This together  with (4.20) confirms that  

A (y) >= ~(a) 

when f(O, y ) e [ a - ~ , a ] .  

When f(O, y) > a one obtains for some tye [ f (O ,  y), f (1 ,  y)] __ [a, 1], 

A(y) = ~ ( f ( 1 ,  y ) ) -  * ( f ( 0 ,  y)) 

= ( f (1 ,  y) - - f ( 0 ,  y))q~'(tr) 

> 6qi >= r  

where we have used (4.21) in the last step. 
It  remains to show that  

(4.22) A ( y ) : =  r  y)) - q>(f(0, y)) < r - @(b). 

b + l  
Since a < b < l  one has a < - -  Considering first those y such 

2 
b + l  

f (1 ,  y) < ~ ,  we obtain 

A(y) < q~ < q~(1) -- ~(b) + 4~ T - 4(1) + q~(b) - q~(0) 

and we have to make  sure that  

r  - r < ~(1) - @ ( ~ - )  �9 

This is indeed the case if 

max  ~ ' ( t )b  < min r  
O<-_t<b b+ l[2<=t<= 1 

which, in turn is guaranteed by (4.15) and (4.18). 
Consider  now the second possibility: 

b + l  
f (1 ,  y) > - -  

= 2 

l - b  

2 

that  
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We first estimate f(O, y) from below. Setting 

min)" , ( t ) : b +  1 
t / 2 : =  l 2 - -  - -  

and noting that  

we obtain 

and 

where 

Hence 
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_ < t _ < l }  

b - f ( O , y )  __< M(1 - y) ,  

1 - f ( 1 ,  y) > m(1 - y ) ,  

�9 (1) - q~(f(t, y)) >__ tl2m(1 - y) 

4)(b) - cb(f(0, y)) < M(1 - y)e2 

e2 :=  max{q~'(t):0 _< t _< b} . 

�9 ( f (1 ,  y)) - q~(f(0, y)) < ~(1) - ~(b)  + q~(f(1, y)) - 4~(1) 

+ 4~(b) - q~(f(0, y)) 

< M(1 - y)e2 + ~(1) - ~(b) - t/2m(1 - y) 

< ~(1) - ~(b) 

where we have used (4.15) and (4.18) in the last step. This proves that  q~ satisfies 
(4.11). 

Concerning (4.12), we will show first that  

A(x) = ~(f(x ,  1)) - ~(f(x,  0)) > ~(b) . 

Considering first the case 

(4.23) f(x,  1) > b + 2/~ 

the convexity of  r yields 

A(x) > q~(b + 2#) - q~(b + #) + ~ (b  + p) - 4~(b) 

> 45(b) - ~(b - p) + q~(b + #) - 4~(b). 
Setting 

Ca:= m a x { ~ ' ( t ) : 0  _< t _< b - #} 
we obtain 

O ( b -  it) = O ( b -  # ) -  ~(0) < ( b -  #)e3 < e3 �9 

Hence (4.14), (4.15) and (4.17) yield, in view of (4.23), 

4~(b - #) __< #~3 _-< ~ ( b  + ~)  - ~ ( b )  
where 

t l~:=min{~ ' ( t ) :b<t< b+ l } 
- -  2 " 

This confirms that  

whenever (4.23) holds. 

A(x) _>_ ~(b) 
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Suppose now f ( x ,  1) < b + 2p < (b + 1)/2. In this case 

mx < f ( x ,  1) - b < 2p 
so that  x < 2~/m. Thus, 

O ( f ( x ,  1)) - O ( f ( x ,  0)) = ~ ( f ( x ,  1)) -- O(b) - (O( f ( x ,  0)) - (/i(O)) + O(b) 

>= rnxr l3  - -  xMel  + cb(b) , 

where we have used (4.13) and the fact that  M > 1 in the last step. Now 
6 

f ( x ,  O) < a - ~ < b - t~ by (4.13) and (4.14). Hence, in view of (4.15) and (4.17), this 

confirms that 
A (x) > ~(b) .  

Concerning the upper bound,  suppose first that f ( x ,  1) __< b + 2# so that we 
may conclude, in view of (4.13), as above, 

(4.24) q~(f(x, 1)) - @(f(x ,  0)) __< ~(1) - ~(a) + ~(a) - ~ ( f ( x ,  0)) 

+ ~ ( f ( x ,  1)) - ~(1) 

< q~(1) -- ~(a) + e3(1 -- x ) m  -- t/3m(1 -- x) 

which, by (4.15) and (4.16), yields 

A ( x )  <__ ~ ( 1 )  - ,~(a)  . 

Finally, when f ( x ,  1) > b + 2#, the last estimate in (4.24) may be replaced by 

A < q~(1) - q~(a) + ez(1 - x ) m  - r/zm(1 - x) . 

Using (4.14), (4.15) and (4.18) provides again 

A (x) < q~(1) - q~(a) 

which completes the proof  of Lemma 4.3 and also of Theorem 4.1. [] 
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