
Nonlinear approximation and its applications

Ronald A. DeVore

Abstract I first met Wolfgang Dahmen in 1974 in Oberwolfach. He looked like a
high school student to me but he impressed everyone with his talk on whether poly-
nomial operators could produce both polynomial and spectral orders of approxima-
tion. We became the best of friends and frequent collaborators. While Wolfgang’s
mathematical contributions spread across many disciplines, a major thread in his
work has been the exploitation of nonlinear approximation. This article will reflect
on Wolfgang’s pervasive contributions to the development of nonlinear approxima-
tion and its application. Since many of the contributions in this volume will address
specific application areas in some details, my thoughts on these will be to a large
extent anecdotal.

1 The early years

I was first exposed to approximation theory in a class taught by Ranko Bojanic in
the Fall of 1964 at Ohio State University. Each student was allowed one optional
class (outside of the required algebra and analysis). I do not know why I chose this
from among the other options - perhaps another student had recommended it to me
as a well structured interesting class - but I was immediately hooked. It just seemed
like a natural subject answering natural questions. If we cannot explicitly solve most
real world problems then we better learn how to approximate them.

The course was more on the theory than on the computational side since the
demand for fast computational algorithms did not yet seem as urgent. There were
no wavelets and splines were in their infancy. But there was plenty to intrigue the
student including the Jackson-Bernstein theory of polynomial approximation which
remains to this day as the prototype for understanding the quantitative side of ap-
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proximation. Let us describe the modern form of this theory since it will be useful
as we continue this exposition.

Suppose that we are interested in approximating the elements from a space X
equipped with a norm ‖ · ‖ := ‖ · ‖X by using the elements of the spaces Xn, n =
1,2, . . . . Typical examples are X = Lp or a Sobolev space while the usual suspects
for Xn are spaces of polynomials, splines, or rational functions. We assume that for
all n,m ≥ 1, we have

Xn +Xm ⊂ Xc(n+m), for some fixed c ≥ 1, (1)

which is certainly the case for the above examples. Given f ∈ X , we define

En( f ) := inf
g∈Xn

‖ f −g‖. (2)

The main challenge in the quantitative arena of approximation is to describe pre-
cisely the elements of X which have a prescribed order of approximation. Special
attention is given to the approximation orders which are of the form n−r since these
occur most often in numerical computation. This gives the primary approximation
spaces A r := A r(X ,(Xn)), r > 0, consisting of all f ∈ X for which

| f |A r := sup
n≥1

nrEn( f ) (3)

is finite. The left side of (3) serves to define a semi-norm on A r. We obtain the norm
for this space by adding ‖ f‖X to the semi-norm.

While the spaces A r are sufficient to understand most approximation methods, it
is sometimes necessary to go to a finer scale of spaces when dealing with nonlinear
approximation. Accordingly, if q > 0, we define A r

q via the quasi-norm

| f |A r
q (X) := ‖(2krE2k( f ))‖�q . (4)

Again, we obtain the norm for this space by adding ‖ f‖X to the semi-norm. When
q = ∞, we obtain the spaces A r because of (1).

The problem of characterizing A r was treated in the following way for the case
when X = C[−π,π] is the space of continuous 2π periodic functions and Xn is the
space of trigonometric polynomials of degree ≤ n. One proves two fundamental
inequalities for trigonometric approximation. The first of these is the following in-
equality proved by D. Jackson:

En( f ) ≤Ck‖ f (k)‖C[−π,π]n
−k, n,k = 1,2, . . . . (5)

A companion to this is the famous Bernstein inequality which says

‖T (k)‖C[−π,π] ≤ nk‖T‖C[−π,π], n,k = 1,2, . . . (6)

From these two fundamental inequalities, one can show that A r is the general-
ized Lipschitz space Lip r space (defined later in §2) and more generally the A r

q are
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the same as the Besov spaces Br
q(L∞) which are also discussed in §2. It is interesting

to note that the modern way of deriving such characterizations is not much different
than the classical approach for trigonometric polynomials except that everything is
now encasted in the general framework of interpolations spaces. This leads to the
following theory.

Suppose for our approximation setting, we can find a space Yk such that the fol-
lowing generalized Jackson and Bernstein inequalities hold

En( f )X ≤Ck‖ f‖Yk n−k, n = 1,2, . . . . (7)

and
‖S‖Yk ≤Cknk‖S‖X , S ∈ Xn, n = 1,2, . . . . (8)

Then for any 0 < r < k and 0 < q ≤ ∞, we have

A r
q (X ,(Xn)) = (X ,Yk)θ ,q, θ := r/k, (9)

where the spaces on the right are the interpolation spaces given by the real method of
interpolation (K-functionals) as described in the next section. In our case of trigono-
metric polynomial approximation the space Yk is Ck with its usual semi-norm. It is
well known that the interpolation spaces between C and Ck are the Besov spaces and
in particular the generalized Lipschitz spaces when q = ∞.

The beauty of the above theory is that it boils down the problem of characterizing
the approximation spaces for a given method of approximation to one of proving
two inequalities: the generalized Jackson and Bernstein inequalities for the given
approximation process. This recipe has been followed many times. An interesting
question is whether the characterization (9) provides essential new information. That
this is indeed the case rests on the fact that these interpolation spaces can be given
a concrete description for most pairs (X ,Yk) of interest. This fact will be discussed
next.

2 Smoothness and interpolation spaces

We all learn early on that the more derivatives a function has then the smoother it
is. This is the coarse idea of smoothness spaces. Modern analysis carries this idea
extensively forward by introducing a myriad of spaces to delineate properties of
functions. We will touch on this with a very broad stroke only to communicate the
heuerestic idea behind the smoothness spaces we shall need for describing rates of
approximation.

For an integer s > 0, the Sobolev space W s(Lp(Ω)), on a domain Ω ⊂ IRd con-
sists of all f ∈ Lp(Ω) for which all of the distributional derivatives Dν f of order s
are also in Lp(Ω). This space is equipped with the semi-norm

| f |W s(Lp(Ω)) := max
|ν|=s

‖Dν f‖Lp(Ω). (10)



172 Ronald A. DeVore

We obtain the norm on W s(Lp(Ω)) by adding ‖ · ‖Lp(Ω) to this semi-norm.
It is of great interest to extend this definition to all s > 0. One can initiate such

an extension from many viewpoints. But the most robust of these approaches is to
replace derivatives by differences. Suppose that we wish to define fractional order
smoothness spaces on IRd . The translation operator Th for h ∈ IRd is defined on a
function f by Th( f ) := f (·+h) and leads to the difference operators

Δ r
h :=

r

∑
k=0

(−1)r−k
(

r
k

)
Tkh. (11)

If we apply Δ r
h to a smooth function f then h−rΔ r

h( f )(x)→ r! f (r)(x) as h→ 0. We
can obtain smoothness spaces in Lp by placing conditions on how fast ‖Δ r

h( f )‖Lp

tends to zero as h → 0. To measure this we introduce the moduli of smoothness

ωr( f , t)p := sup
|h|≤t

‖Δ r
h( f )‖Lp(Ωrh), (12)

where Ωt consists of all x ∈ Ω for which the line segment [x,x + t] is contained in
Ω .

We get a variety of spaces by placing decay conditions on ωr( f , t)p as t → 0. The
most classical of these are the generalized Lipschitz spaces Lip α := Lip(α,Lp) in
Lp which consist of all f for which

| f |Lip(α,Lp) := sup
t>0

t−α ωr( f , t)p, α < r, (13)

is finite. We obtain the norm on this space by adding ‖ f‖Lp to (13). The above defini-
tion holds for all 0 < p ≤ ∞. We usually make the convention that L∞ is replaced by
the space of continuous functions. Note that the above definition apparently depends
on r but it is easy to show that one obtains exactly the same spaces no matter which
r one choses (as long as r > α) and the (quasi-)seminorms (13) are equivalent.

The generalized Lipschitz spaces are fine for a good understanding of approxi-
mation. However, certain subtle questions require a finer scaling of spaces provided
by the Besov scale. Now, in addition to α we introduce a second fine scale parameter
q ∈ [0,∞). Then the Besov space Bα

q (Lp) is defined by its semi-norm

| f |Bα
q (Lp) := {

∫
t>0

[t−αωr( f , t)p]q
dt
t
}1/q, α < r. (14)

2.1 The role of interpolation

We have already noted that approximation spaces can be characterized as interpola-
tion spaces provided the fundamental Bernstein and Jackson type inequalities have
been proven. For this characterization to be of use, we need to be able to describe
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these interpolation spaces. Although this is not always simple, it has been carried out
for all pairs of spaces that arise in linear and nonlinear approximation. To describe
these results we will make a very brief incursion into interpolation.

The subject of operator interpolation grew out of harmonic analysis in the quest
to have a unified approach to characterizing the mapping properties of its primary
operators such as Fourier transforms, conjugate operators, maximal functions and
singular integrals. Of primary interest in approximation theory are the real interpo-
lation spaces. Given a pair of normed linear spaces X ,Y which are both embedded
in a common topological space, we can define the K-functional

K( f , t) := K( f , t;X ,Y ) := inf
f = f0+ f1

{‖ f0‖X + t‖ f1‖Y}. (15)

Often, the norm on Y is replaced by a semi-norm as is the case below when consid-
ering Y as a Sobolev space. The real interpolation spaces (X ,Y )θ ,q are now defined
for any θ ∈ (0,1) and q > 0 by the quasi-norm

‖ f‖(X ,Y )θ ,q
:= ‖t−θ K( f , t)‖Lq(μ), (16)

where μ(t) := dt
t is Haar measure. By this time the reader is sure to observe the

common flavor of all these norms (approximation spaces, Besov spaces, and inter-
polation spaces).

We have already mentioned that these interpolation spaces are identical to the
approximation spaces whenever we have the Jackson and Bernstein inequalities in
fold. What is ever more enlightening is that for classical pairs of spaces the K-
functional and the interpolation spaces are always familiar quantities which have
been walking the streets of analysis for decades. Let us give a couple of examples
which will certainly convince even the most skeptical reader of the beautiful way in
which the whole story pieces together.

The Lp spaces are interpolation spaces for the pair (L1,L∞) as is encapsulated
in the Riesz-Thorin interpolation theorem (usually proved by means of complex
interpolation). This theorem also follows from the real method of interpolation since
the K-functional for this pair is easy to describe

K( f , t,L1,L∞) =
t∫

0

f ∗(s)ds, (17)

where f ∗ is the nondecreasing rearrangement of f as introduced by Hardy and
Littlewood. From this characterization, one easily deduces that the interpolation
spaces (L1,L∞)θ ,q are identical to the Lorentz spaces Lp,q with the identification
θ = 1−1/p. When q = p, we obtain Lp = Lp,p.

As a second example, consider the K-functional for the pair (Lp(Ω),W k(Lp(Ω)))
on a Lipschitz domain Ω ⊂ IRd . Johnen and Scherer [37] showed that

K( f , t,Lp(Ω),W k(Lp(Ω)) ≈ ωr( f , t)p (18)
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our old friend the modulus of smoothness. From this, one immediately deduces that
(Lp(Ω),W k(Lp(Ω))θ ,q = Bs

q(Lp(Ω)) for θ = s/k.
There are numerous other examples of this sort beautifully reported on in the

book by Bennett and Sharpley [8] that unquestionably convince us that the K-
functional is indeed a natural object. These results make our job of characterizing
the approximation spaces quite clear. We need only establish corresponding Jack-
son and Bernstein inequalities for the given approximation process and then finish
the characterization via interpolation theory. This will be our modus operandi in the
sequel.

3 The main types of nonlinear approximation

In application domains, there are four types of nonlinear approximation that are
dominant. We want to see what form the general theory takes for these cases. We
suppose that we are interested in approximating the elements f ∈ X where X is a
(quasi-) Banach space equipped with a norm ‖ · ‖X .

3.1 n-term approximation

A set D ⊂ X of elements from X is called a dictionary if each element g ∈ D has
norm one and the finite linear combinations of the elements in D are dense in X . The
simplest example of a dictionary is when D is a basis for X . However, redundant
systems D are also important. An issue is how much redundancy is possible while
retaining reasonable computation.

Given a positive integer n, we define Σn as the set of all linear combinations of at
most n elements from D . Thus, the general element in Σn takes the form

S = ∑
g∈Λ

cgg, #(Λ) = n. (19)

If we use the elements of Σn to approximate a function f ∈ X , then it induces an
error

σn( f )X := inf
S∈Σn

‖ f −S‖X . (20)

Here we are following tradition to denote the error of nonlinear approximation by
σn rather than using the generic En introduced earlier. The approximation spaces
A r

q (X) are defined as in the general setting. The approximation problem before us
is whether we can characterize these spaces.

Let us consider the simplest case of the above setting where X = H is a real
Hilbert space and D = {φ j}∞

j=1 is an orthonormal basis for H . Then, each f ∈ H
has an orthogonal expansion
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f =
∞

∑
j=1

〈 f ,φ j〉φ j, ‖ f‖2
H =

∞

∑
j=1

〈 f ,φ j〉2. (21)

Because of the H −→ �2 isometry, a best n term approximation to a given f ∈ H
is obtained by retaining its n largest terms (the possibility of ties in the size of the
coefficients shows that this best approximation is not necessarily unique). Thus,
if we let c j = 〈 f ,φ j〉 and (c∗j) be the rearrangement of their absolute values into
nonincreasing order, then the approximation error of n-term approximation to f is

σ 2
n ( f ) = ∑

j>n
[c∗j ]

2, n = 1,2, . . . . (22)

There is a simple characterization of the approximation spaces in this setting of
n-term approximation. For example, for the primary spaces, we have that f ∈ A r if
and only if the coefficients (c j) are in weak �τ with 1/τ = s+1/2 and

‖ f‖A r ≈ ‖(c j)‖w�τ , (23)

where we recall that weak �τ is the space of all sequences (a j) which satisfy

‖(a j)‖w�τ := sup
n≥1

n1/τ a∗n < ∞. (24)

Similar results hold for the secondary spaces A r
q characterizing them by the mem-

bership of the coefficient sequences in the Lorentz spaces �τ ,q, 1/τ = s + 1/2. In-
deed, this can be proved by establishing generalized Jackson-Bernstein inequalities
for the pair H and Yk as the set of f ∈ H whose coefficient are in weak �p with
1/p = k +1/2. We refer the reader to [25] for details.

In the case where we are interested in approximation in other spaces than H ,
for example in Lp, p �= 2, things are more subtle and depend very much on the
particular basis {φ j}. Let us restrict our attention to to the wavelet basis which will
play a special role in our discussion.

Suppose that ϕ is a compactly supported univariate scaling function (i.e. ϕ sat-
isfies a two scale relationship) whose shifts form an orthonormal system. Let ψ
be the compactly supported mother wavelet associated to ϕ normalized in L2(IRd):
‖ψ‖L2 = 1. There are two ways to form an orthonormal wavelet system from this
pair. The standard construction is to define ψ0 := ϕ and ψ1 := ψ . If E ′ is the set of
vertices of the unit cube and E the set of nonzero vertices, we define

ψe(x1, . . . ,xd) := ψe1(x1) · · ·ψed (xd), e ∈ E ′. (25)

The shifted dilates ψe
j,k(x) := 2 jd/2ψe(2 j(x− k)), j ∈ ZZ, k ∈ ZZd , e ∈ E, form an

orthonormal system for L2(IRd).
It is convenient to index these wavelets according to their spacial scaling. Let

D(IRd) denote the set of all dyadic cubes in IRd . Each I ∈ D(IRd) has the form
I = 2− jd [k,k + 1] with 1 := (1, . . . ,1). We identify the wavelets with the dyadic
cubes via
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ψe
I := ψe

j,k, I ∈ D(IRd),e ∈ E. (26)

This gives the wavelet decomposition

f = ∑
I∈D

∑
e∈E

fI,eψe
I , fI,e := 〈 f ,ψe

I 〉, (27)

which is valid for each f ∈ L1(IRd)+L∞(IRd).
There is a second wavelet basis built directly from tensor products of univariate

wavelets. If R = I1 × ·· ·× Id , I j ∈ D(IRd), j = 1, . . . ,d, is a d dimensional dyadic
rectangle, then we define

ψR(x) := ψI1(x1) · · ·ψId (xd), (28)

where each ψI j is a univariate wavelet. This basis is sometimes called the hyperbolic
wavelet basis or sparse grid basis in PDEs. The support of ψR is now associated to
the rectangle R and in the case that ψ is the univariate Haar wavelet it is precisely
this rectangle.

To continue the discussion, let us consider the first of these bases. Some of the re-
sults for L2 approximation carry over to other approximation norms. The vehicle for
doing this is the Littlewood-Paley theory for wavelets which allows one to compute
other norms such as the Lp norms by simple expressions (the square function) of the
wavelet coefficients. Rather than go too far down this road, which is well reported
on in [25], we mention only some of the consequences of this. The first of which
is the fact that it is possible to characterize the approximation spaces A r

q (Lp) for
certain special values of q even when the approximation takes place in an Lp space,
p > 1. This even extends to p ≤ 1 if we replace the Lp space by the Hardy space Hp.
Namely, A r

q (Lp(IRd)) = Brd
q (Lq(IRd)), provided 1/q = r +1/p. These results carry

over to approximation on domains Ω ⊂ IRd but now more care must be taken to
define appropriate wavelet bases. The only case that is completely straightforward
is to use the Haar wavelets for a cube such as [0,1]d in IRd .

From the Besov characterizations of the approximation spaces given in the previ-
ous paragraph, we can see the power of nonlinear approximation. If we use the ele-
ments from linear spaces of dimension n (such as polynomials or splines on uniform
partitions) to approximate a function f ∈ Lp(Ω), Ω ⊂ IRd , then we will obtain ap-
proximation of order O(n−r) if and only if f ∈ Brd

∞ (Lp(Ω), i.e. roughly speaking we
need f to have rd derivatives in Lp. However, when using nonlinear methods such
as n-term wavelet approximation it is sufficient to have f ∈ Brd

q (Lq), 1/q = r +1/p,
i.e. rd derivatives in Lq. The gain here is not in the number of derivatives (rd) but
in the space where these derivatives must lie. Since q < p this requirement is much
weaker in the case of nonlinear approximation. Indeed, functions with singularities
may be in f ∈ Brd

q (Lq) but not in f ∈ Brd
∞ (Lp).

Here is a useful way to think about this comparison between linear and nonlinear
for approximation in Lp. If we use linear methods, there will be a largest value sL

such that f ∈ Bs
∞(Lp) for all s < sL. Similarly, there will be a largest sNL such that

f ∈ Bs
q(Lq), 1/q = s/d + 1/p for all s < sNL. We always have sNL ≥ sL. However,
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in many cases sNL is much larger than sL. This translates into being able to approxi-
mate such f with accuracy O(n−sNL/d) for nonlinear methods with n parameters but
only accuracy O(n−sL/d) for linear methods with the same number of parameters.
Consider the case d = 1 and a function f which is piecewise analytic with a finite
number of jump discontinuities. If we approximate this function in L2[0,1] using
linear spaces of dimension n, we will never get approximation orders better than
O(n−1/2) because sL = 1/2, but using nonlinear methods we obtain order O(n−r)
for all r > 0 because sNL = ∞.

Let us turn to the question of how we build a good n-term approximation to
a function f ∈ Lp where there is an important story to tell. It is very simple to
describe how to choose a near best n-term approximation to a given f by simply
choosing the n-terms in the wavelet expansion for which ‖ fI,eψe

I ‖Lp is largest. Let
Λ̃n( f ) := {(I,e)} be the indices of these n largest terms (with ties in the size of the
coefficients handled in an arbitrary way) and Sn( f ) := ∑(I,e)∈Λ̃n( f ) fI,eψe

I . Then we
have the beautiful result of Temlyakov[50]

‖ f −Sn( f )‖Lp(IRd) ≤Cσn( f )Lp(IRd), (29)

with the constant C depending only on d and p.
Sometimes it is notationally beneficial to renormalize the wavelets in Lp. Let

us denote by ψe
I,p these renormalized wavelets and by fI,e,p the coefficients of f

with respect to this renormalized bases. Then a consequence of (29) is that a sim-
ple thresholding of the wavelet coefficients yields near best approximants. Namely,
given any threshold δ > 0, we denote by Λδ ( f ) := Λδ ,p( f ) := {(I,e) : | fI,e,p| > δ},
and the approximation

Tδ ( f ) := ∑
(I,e)∈Λδ ( f )

fI,e,pψe
I,p. (30)

Then, Tδ ( f ) is a near best n-term approximation to f in Lp(IRd) for n = #(Λδ ( f )).
Notice that there is a slight distinction here between Tδ ( f ) and Sn( f ) because for
some values of n, Sn( f ) cannot be obtained by thresholding because of possible ties
in the size of coefficients.

Let us conclude this discussion of n-term approximation by remarking that it can-
not be implemented directly in a numerical application because it requires a search
over all wavelet coefficients which is an infinite task. In numerical practice this
search is limited by fixing a maximal dyadic level J to limit the search. Other nu-
merically friendly nonlinear algorithms are adaptive and tree based algorithm which
we discuss next.
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3.2 Adaptive approximation

This type of approximation has a long history and owes a lot of its interest to its use-
fulness in describing certain numerical methods for PDEs. To drive home the main
ideas behind adaptive approximation, let us consider the simple setting of approxi-
mating a function f on the unit cube Ω := [0,1]d in IRd using piecewise polynomials
on partitions consisting of dyadic cubes from D(Ω) := {I ∈D(IRd) : I ⊂ Ω}. Given
an integer r > 0 and an f ∈ Lp(Ω), we denote by

Er( f , I)p := inf
Q∈Pr−1

‖ f −Q‖Lp(I), (31)

the Lp error in approximating f on I by polynomials of order r (total degree r−1).
The simplest adaptive algorithms are built on an estimator E(I) for Er( f , I)p:

Er( f , I)p ≤ E(I), I ∈ D(Ω). (32)

To build an adaptive approximation to f , we let Λ0 := {Ω)} and given that
Λn = Λn( f ) has been defined, we generate Λn+1 by choosing the dyadic cube I = In

from Λn for which the estimator E(In) is largest (with again ties handled arbitrar-
ily) and then removing I and replacing it by its 2d children. Thus, the idea is to
only subdivide where the error is largest. There have been several papers discussing
the approximation properties of such adaptive algorithms starting with the pioneer-
ing work of Birman and Solomjak [13] which established convergence rates (in the
case E(I) = E( f , I)p) very similar to the estimates of the previous section for n-
term wavelet approximation. A typical result is that if a function f is in a Besov
space Bs

q(Lτ) which compactly embeds into Lp then a suitable adaptive algorithm

will provide an approximation to f with accuracy O(n−s/d) where n is the number
of parameters ( proportional to the number of cells in the adaptive partition). One
can easily argue that one cannot do away with the assumption of compact embed-
ding. Such results on adaptive approximation are only slightly weaker than those
for n-term approximation. In the latter one does not assume compactness of the
embedding into Lp.

One can even guarantee a certain near optimal performance of adaptive algo-
rithms although now the rule for subdividing is more subtle. These will be described
in the next section in the more general setting of tree approximation.

3.3 Tree approximation

We have already noted that trees arise in a natural way in nonliner approximation.
The wavelet decomposition organizes itself on trees whose nodes are dyadic cubes
in IRd . We have also seen that adaptive partitioning is described by a tree whose
nodes are the cells created during the adaptive algorithm. It is useful to formalize
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tree approximation and extract its main features since we shall see that it plays a
significant role in applications of nonlinear approximation.

We assume that we have a (generally infinite) master tree T ∗ with one root node.
In the case of adaptive partitioning this root node would be the domain Ω . We also
assume that each node has exactly K children. This matches both the wavelet tree
and the usual refinement rules in adaptive partitioning. Note that in the case the mas-
ter tree arises from adaptive partitioning, it fixes the way a cell must be subdivided
when it arises in an adaptive algorithm. So this setting does not necessarily cover all
possible adaptive strategies.

We shall be interested in finite subtrees T ⊂T ∗. Such a tree T has the property
that for any node in T its parent is also in T . We define L (T ) to be the leaves
of T . This is the set of all terminal nodes in T , i.e. such a node has none of its
children in T . We say that the tree is complete if whenever a node is in T all
of its siblings are also in T . We shall restrict our discussion to complete trees.
Any adaptively generated partition is associated to a complete tree T . We define
N (T ) to be the set of the internal nodes of T , i.e. the ones which are not leaves.
Then T = N (T )∪L (T ), if considered as sets.

As the measure of complexity of a tree T ⊂ T ∗ we consider the number of
subdivisions n(T ) needed to create T from its root. We shall often use the fact that

n(T ) = #(N (T )). (33)

It follows that
#(T ) = Kn(T )+1 (34)

Also, for a complete tree, L (T ) = 1 +(K − 1)n(T ). So, n(T ) is a fair measure
of the complexity of T .

In tree approximation, we assume that to every node I ∈T ∗, we have an error or
energy e(I). We measure the performance of a finite tree T by

E(T ) := ∑
I∈L (T )

e(I). (35)

If we are considering trees corresponding to adaptive partitioning then we would
take e(I) = E( f , I)p

p where E( f , I)p is the local Lp(I) error on the cell I. Sim-
ilarly, if we are doing wavelet approximation in L2 then we would take e(I) :=
∑J⊂I ∑e∈E | f e

I |2 which would be the energy in the wavelet coefficients on all nodes
of the tree below I (this corresponds to the error contributed by not including these
coefficients). We are interested in the best performance of trees of size n(T ) ≤ n
which is given by

σn := inf
n(T )≤n

E(T ). (36)

Using this definition of σn gives the approximation classes A r
q (Lp) for tree approx-

imation in Lp.
What is the cost of tree approximation versus n-term approximation? The main

point of our work with Wolfgang on wavelet tree approximation given in [20] is
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that the cost is almost negligible. Recall that for n-term wavelet approximation in
Lp(Ω), Ω ⊂ IRd , we achieve error O(n−r/d) for a function f if it is in the Besov
space Br

q(Lq(IRd)) with 1/q = r/d + 1/p. These latter spaces are barely embedded
in Lp and are not compactly embedded. We prove in [20] that whenever a Besov
space Br

q(Lτ) is compactly embedded into Lp(Ω) then wavelet tree approximation

gives the same approximation rate O(n−r/d). Said in another way, this Besov space

is embedded into A
r/d

∞ (Lp). Of course, we get such a compact embedding whenever
τ > (r/d + 1/p)−1 because of the Sobolev embedding theorem. Thus, from this
point of view, tree approximation performs almost as well as n-term approximation.

The proof of the above result on the performance of wavelet tree approximation
requires the counting of the new nodes added in order to guarantee the tree structure.
However, the number of these new nodes can be controlled by grouping the nodes
according to the size of the wavelet coefficients and counting each grouping. Finally,
let us remark that in [11] we prove similar theorems on tree approximation for trees
generated by adaptive partitioning. This plays an important role in understanding
which solutions to elliptic partial differential equations can be well approximated
by adaptive finite element methods.

Let us turn to the discussion of finding near best trees. Finding the best tree that
matches σk in (36) is practically infeasible since it would require searching over all
trees T ⊂ T ∗ with n(T ) = k and the number of such trees is exponential in k.
Remarkably, however, it is possible to design practical algorithms that do almost as
well while involving only O(n) computations. The first algorithms of this type were
given in [12]. We shall describe a modification of this approach that gives slightly
better constants in the estimation of performance.

The tree algorithm we shall consider can be implemented in the general setting
of [12]. However, here, we shall limit ourselves to the following setting. We assume
the error functionals are subadditive in the sense that

e(I) ≥ ∑
I′∈C (I)

e(I′), (37)

where C (I) is the set of children of I. This property holds for the examples we have
described above.

A naive strategy to generate a good tree for adaptive approximation would be to
mark for subdivision the cells which have largest local errors. However, such a strat-
egy would not generate near optimal trees because it could happen that subdividing
a cell and its successive generations would not reduce at all the global error and so a
better strategy would have been to subdivide some other cell. To obtain near optimal
algorithms, one has to be more clever and penalize successive subdivisions which
do not markedly reduce the error. This is done through certain modified error func-
tionals ẽ(I) whose precise definition we postpone for a moment. The tree algorithm
we propose will grow a given tree IT by including the children of I as new nodes
when ẽ(I) is the largest among all ẽ(I′) ∈ Λ(IT ).

In our formulation and analysis of the tree algorithm, the local error functional e
can be any functional defined on the nodes I in T which is subadditive.
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Tree-Algorithm:

• Let T 0 := {X} be the root tree.
• If T k has been defined for some k ≥ 0, then define

I∗ = argmax{ẽ(I) : I ∈ L (Tk)}

and T k+1 := T k ∪{C (I∗)}.

As the modified error functional, we employ

ẽ(I) := e(I) for I = X and ẽ(I) :=
(

1
e(I)

+
1

ẽ(I′)

)−1

for I ∈ C (I′). (38)

The purpose of the modified error is to penalize children of cells which are chosen
for subdivision but the resulting refinement does not significantly decrease the total
error. Notice that in such a case the modified error ẽ decreases for the children and
therefore makes them less apt to be chosen in later subdivisions.

The following theorem describes the performance of the tree algorithm.

Theorem 3.1. At each step n of the above tree algorithm the output tree IT = IT n

satisfies

E(T ) ≤
(

n
n− k

)
σk, (39)

whenever k < n.

The main distinction of the above results from previous ones in [12] is that the
constant on the right hand side of (39) is now completely specified and, in particular,
does not involve the total number of children of a node. Note that the computational
complexity of implementing the tree algorithm with a resulting tree T depends
only on n(T ). Therefore, when applying this algorithm to adaptive partitioning, it
is independent of the spatial dimension d. The proof of the above theorem will be
given in a forthcoming paper with Peter Binev, Wolfgang, and Phillipp Lamby.

3.4 Greedy algorithms

In application domains, there is a desire to have as much approximation power as
possible. This is accomplished by choosing a large dictionary D to increase approx-
imation power. However, their sheer size can cause a stress on computation. Greedy
algorithms are a common approach to keeping computational tasks reasonable when
dealing with large dictionaries. They have a long history in statistics and signal pro-
cessing. A recent survey of the approximation properties of such algorithms is given
in [51] where one can find the main results of this subject.

We shall consider only the problem of approximating a function f from a Hilbert
space H by a finite linear combination f̂ of elements of a given dictionary D =
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(g)g∈D . We have already discussed the case where D is an orthonormal basis. One
of the motivations for utilizing general dictionaries rather than orthonormal systems
is that in many applications, such as signal processing or statistical estimation, it is
not clear which orthonormal system, if any, is best for representing or approximating
f . Thus, dictionaries which are a union of several bases or collections of general
waveforms are preferred. Some well known examples are the use of Gabor sytems,
curvelets, and wavepackets in signal processing and neural networks in learning
theory.

When working with dictionaries D which are not orthonormal bases, the real-
ization of a best n-term approximation is usually out of reach from a computational
point of view since it would require minimizing ‖ f − f̂‖ over all f̂ in an infinite or
huge number of n dimensional subspaces. Greedy algorithms or matching pursuit
aim to build “sub-optimal yet good” n-term approximations through a greedy selec-
tion of elements gk, k = 1,2, · · · , within the dictionary D , and to do so with a more
manageable number of computations.

There exist several versions of these algorithms. The four most commonly used
are the pure greedy, the orthogonal greedy, the relaxed greedy and the stepwise
projection algorithms, which we respectively denote by the acronyms PGA, OGA,
RGA and SPA. All four of these algorithms begin by setting f0 := 0. We then define
recursively the approximant fk based on fk−1 and its residual rk−1 := f − fk−1.

In the PGA and the OGA, we select a member of the dictionary as

gk := argmaxg∈D |〈rk−1,g〉|. (40)

The new approximation is then defined as

fk := fk−1 + 〈rk−1,gk〉gk, (41)

in the PGA, and as
fk = Pk f , (42)

in the OGA, where Pk is the orthogonal projection onto Vk := Span{g1, · · · ,gk}. It
should be noted that when D is an orthonormal basis both algorithms coincide with
the computation of the best k-term approximation.

In the RGA, the new approximation is defined as

fk = αk fk−1 +βkgk, (43)

where (αk,βk) are real numbers and gk is a member of the dictionary. There exist
many possibilities for the choice of (αk,βk,gk), the most greedy being to select them
according to

(αk,βk,gk) := argmin
(α,β ,g)∈IR2×D

‖ f −α fk−1 −βg‖. (44)

Other choices specify one or several of these parameters, for example by taking gk

as in (40) or by setting in advance the value of αk and βk, see e.g. [38] and [4]. Note
that the RGA coincides with the PGA when the parameter αk is set to 1.
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In the SPA, the approximation fk is defined by (42) as in the OGA, but the choice
of gk is made so as to minimize over all g∈D the error between f and its orthogonal
projection onto Span{g1, · · · ,gk−1,g}.

Note that, from a computational point of view, the OGA and SPA are more ex-
pensive to implement since at each step they require the evaluation of the orthogonal
projection Pk f (and in the case of SPA a renormalization). Such projection updates
are computed preferrably using Gram-Schmidt orthogonalization (e.g. via the QR
algorithm) or by solving the normal equations

Gkak = bk, (45)

where Gk := (〈gi,g j〉)i, j=1,··· ,k is the Gramian matrix, bk := (〈 f ,gi〉)i=1,··· ,k, and
ak := (α j) j=1,··· ,k is the vector such that fk = ∑k

j=1 α jg j.
In order to describe the known results concerning the approximation properties of

these algorithms, we introduce the class L1 := L1(D) consisting of those functions
f which admit an expansion f = ∑g∈D cgg where the coefficient sequence (cg) is
absolutely summable. We define the norm

‖ f‖L1 := inf{ ∑
g∈D

|cg| : f = ∑
g∈D

cgg} (46)

for this space. This norm may be thought of as an �1 norm on the coefficients in
representation of the function f by elements of the dictionary; it is emphasized that
it is not to be confused with the L1 norm of f . An alternate and closely related way
of defining the L1 norm is by the infimum of numbers V for which f /V is in the
closure of the convex hull of D ∪ (−D). This is known as the “variation” of f as
introduced in [3].

In the case where D is an orthonormal basis, we find that if f ∈ L1,

σN( f ) = ( ∑
g/∈Λn( f )

|cg|2)1/2 ≤ (‖ f‖L1 min
g∈Λn( f )

|cg|)1/2 ≤ ‖ f‖L1N−1/2, (47)

which is contained in (23).
For the PGA, it was proved in [29] that f ∈ L1 implies that

‖ f − fN‖<∼N−1/6. (48)

This rate was improved to N− 11
62 in [40], but on the other hand it was shown [43]

that for a particular dictionary there exists f ∈ L1 such that

‖ f − fN‖ >∼ N−0.27. (49)

When compared with (47), we see that the PGA is far from being optimal.
The RGA, OGA and SPA behave somewhat better: it was proved respectively in

[38] for the RGA and SPA, and in [29] for the OGA, that one has

‖ f − fN‖<∼‖ f‖L1N−1/2, (50)

for all f ∈ L1.
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For each of these algorithms, it is known that the convergence rate N−1/2 cannot
in general be improved even for functions which admit a very sparse expansion in
the dictionary D (see [29] for such a result with a function being the sum of two
elements of D).

At this point, some remarks are in order regarding the meaning of the condi-
tion f ∈ L1 for some concrete dictionaries. A commonly made statement is that
greedy algorithms break the curse of dimensionality in that the rate N−1/2 is in-
dependent of the dimension d of the variable space for f , and only relies on the
assumption that f ∈ L1. This is not exactly true since in practice the condition that
f ∈ L1 becomes more and more stringent as d grows. For instance, in the case
where we work in the Hilbert space H := L2([0,1]d) and when D is a wavelet
basis (ψλ ), it follows from our earlier observations in §3.1 that the smoothness
property which ensures that f ∈ L1 is that f should belong to the Besov space
Bs

1(L1) with s = d/2, which roughly means that f has all its derivatives of order
less or equal to d/2 in L1 (see [25] for the characterization of Besov spaces by the
properties of wavelet coefficients). Another instance is the case where D consists
of sigmoidal functions of the type σ(v · x−w) where σ is a fixed function and v
and w are arbitrary vectors in IRd , respectively real numbers. For such dictionar-
ies, it was proved in [4] that a sufficient condition to have f ∈ L1 is the conver-
gence of

∫
|ω ||F f (ω)|dω where F is the Fourier operator. This integrability con-

dition requires a larger amount of decay on the Fourier transform F f as d grows.
Assuming that f ∈ L1 is therefore more and more restrictive as d grows. Simi-
lar remarks also hold for other dictionaries (hyperbolic wavelets, Gabor functions
etc.).

The above discussion points to a significant weakness in the theory of greedy
algorithms in that there are no viable bounds for the performance of greedy algo-
rithms for general functions f ∈ H . This is a severe impediment in some appli-
cation domains (such as learning theory) where there is no a priori knowledge that
would indicate that the target function is in L1. One of the main contributions of the
work with Wolfgang [7] was to provide error bounds for the performance of greedy
algorithms for general functions f ∈ H . This was accomplished by developing a
technique based on interpolation of operators that provides convergence rates N−s,
0 < s < 1/2, whenever f belongs to a certain intermediate space between L1 and
the Hilbert space H . Namely, we used the spaces

Bp := [H ,L1]θ ,∞, θ := 2/p−1, 1 < p < 2, (51)

which are the real interpolation spaces between H and L1. We showed that if
f ∈ Bp, then the OGA and RGA, when applied to f , provide approximation rates
CN−s with s := θ/2 = 1/p−1/2. Thus, if we set B1 = L1, then these spaces pro-
vide a full range of approximation rates for greedy algorithms. Recall, as discussed
previously, for general dictionaries, greedy algorithms will not provide convergence
rates better than N−1/2 for even the simplest of functions. The results we obtained
were optimal in the sense that they recovered the best possible convergence rate in
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the case where the dictionary is an orthonormal basis. For an arbitrary target func-
tion f ∈ H , convergence of the OGA and RGA holds without rate.

4 Image compression

The emergence of wavelets as a good representation system took place in the late
1980’s. One of the most impressive applications of the wavelet system occured in
image processing, especially compression and denoising. There are a lot of stories
to be told here including the method of thresholding wavelet coefficients for de-
noising, first suggested by Donoho and Johnstone [31], as a simple methodology
for effectively solving imaging problems. But we shall restrict our attention to the
problem of understanding the best implementation of wavelets in compression (im-
age encoding).

What is an image? Too often the view is a digitized image. While this matches
what we treat in application, it is not the correct launching point for a theory. En-
gineers usually view images and signals as realizations of a stochastic process. One
can debate the efficacy of this viewpoint versus the deterministic viewpoint I am
going to now advocate.

In [26], we proposed to view images as functions f defined on a continuum
which we shall normalize as the unit square [0,1]2. The digitized images we observe
are then simply samples of f given as averages over small squares (pixels). Thus,
any representation system for functions on [0,1]2 can be used to for images and
computations are made from the samples. We advocated the use of wavelets because
of its multiscale structure and the remainder of our discussion of image processing
will be limited to wavelet decompositions.

Suppose we we wish to compress functions using wavelet decompositions. The
first step is to chose the norm or metric in which we wish to measure distortion. This
is traditionally done using the L2 norm which corresponds to what Engineers use in
their measure of Peak Signal to Noise Ratio (PSNR). However, for the purposes of
this discussion any Lp norm would work equally well. We have already seen that
a near best n term approximation (actually best when p = 2) is gotten by simply
keeping the n largest terms (measured in Lp) of the wavelet decomposition. So this
must be how to do compression. However to convert everything to a binary bitstream
one has to further quantize the coefficients since in general the wavelet coefficients
are real numbers.

Understanding how to quantize is quite easy if one recalls the connection be-
tween n-term approximation and thresholding. Namely, as explained earlier, except
for possible ties in the sizes of wavelet coefficients, choosing the biggest n terms
corresponds to setting a threshold and retaining the wavelet coefficients above this
threshold. Since thresholding takes the view that coefficients below the threshold
size η > 0 should not be retained, it makes perfect sense that quantizing a wavelet
coefficient a should be made by taking the smallest number of binary bits of a so that
the recovery â from these bits satisfies |a− â| ≤ η . This makes a perfectly reason-
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able compression scheme except that in addition one has to send bits to identify the
index of the wavelet coefficient. Here the matter becomes a little more interesting.

Before embarking on the index identification problem, let us remark that the char-
acterization (given in §3.1) of the approximation classes A r

τ (Lp) as Besov spaces
Bs

τ(Lτ) when 1/τ = r +1/p and r = s/2 (because we are in two space dimensions)
gives a very satisfying characterization of which images can be compressed with a
given distortion rate if we measure complexity of the encoding by the number of
terms retained in the wavelet decomposition. This was the story told in [26]. How-
ever, there was rightfully considerable objection to this theory since it was based on
the number of terms n retained and not on the number of bits needed to encode this
information.

A major step in the direction of giving a theory based on the number of bits was
taken in the paper of Cohen, Daubechies, Gulyeruz, and Orchard [21]. It was how-
ever limited to measuring distortion in the L2 norm. With Wolfgang, we wanted to
give a complete theory that would include measuring distortion in any Lp space.
The key step in developing such a theory was to consider the notion of tree approx-
imation and in fact this is where the theory of tree approximation characterizing the
spaces A r

q (Lp, tree) for the wavelet basis (described earlier) was developed. Let us
see how this solves our encoding problem.

To build a compression for functions, we first choose our compression metric Lp.
We then agree on a minimal smoothness ε that we shall assume of the functions in
Lp. This step is necessary so that the encoder is applied to a compact set of functions.
Next, we find the wavelet coefficients of the wavelet decomposition of the image
with respect to the wavelet basis normalized in Lp. We then build a sequence of
trees Tk associated to the image as follows. We consider the set Λk of all wavelet
indices for which the coefficient of the image is in absolute value ≥ 2−k. The nodes
in Λk will not form a tree so we complete them to the smallest tree Tk which contains
Λk. An important point here is that the sets Λk and the tree Tk can be found without
computing and searching over an infinite set of wavelet coefficients because of our
assumption on minimal smoothness in Lp.

Notice that the tree Tk is contained in Tk+1. Therefore Δk := Tk \Tk−1 will tell
us how to obtain Tk once Tk−1 is known. This process is called growing the tree.

We shall send a progressive bitstream to the receiver. After receiving any portion
of this bitstream the receiver will be able to construct an approximation of the image
with higher and higher resolution (in our chosen Lp metric) as more and more bits
are received. The first bits will identify the smallest value of k0 for which Λk0 is
nonempty. Then come the bits to identify Tk0 followed by bits to identify the sign of
the coefficients in Tk0 and one bit of the binary expansion of each of the coefficients.
Later bits come in packets. Each packet tells us how to go from Tk−1 to Tk and how
to increase the resolution of each of the coefficients in hand.

Precisely, in the k-th packet we first send bits that tell how to grow Tk−1 to Tk.
Next, we send a bit for each new coefficient (i.e. those in Δk) to identify its sign,
next comes one bit (the lead bit) of the binary expansion for each new coefficient.
Finally, we send one additional bit for each of the old coefficients that had been
previously sent.
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For the resulting encoder one can prove the following result of [20]:
Performance of image encoder: If the image f ∈ Bs

q(Lτ) for some s > 0 and τ >

(s/2+1/p)−1, then after receiving n bits, these bits can be decoded to give an image
f̂ such that ‖ f − f̂‖Lp ≤Cn−s/2.

There were two key ingredients in proving the above result on the performance of
the encoder. The first of these is to show that tree approximation is as effective as n-
term approximation when approximating functions in Besov classes that compactly
embed into Lp. We have already discussed this issue in our section on tree approxi-
mation. The second new ingredient is to show that any quad tree with m nodes can
be encoded using at most 4m bits. Here, we borrowed the ideas from [21].

5 Remarks on nonlinear approximation in PDE solvers

Certainly, the construction of numerical algorithms based on nonlinear approxima-
tion for solving PDEs has been one of Wolfgang’s major accomplishments. An ex-
tensive description of this development for elliptic PDEs will be presented in the
contribution of Morin, Nochetto and Siebert in this volume. We will restrict our
remarks to some historical comments.

We shall discuss only the model Laplace problem

−Δ(u) = f on Ω , u = 0 on ∂Ω , (52)

where f ∈ H−1 and the solution u is to be captured in the energy norm which in
this case is the H1

0 (Ω) norm. The solution to such equations is well known to gen-
erate singularities of two types. The first is due to singularities in f itself while
the other come from the boundary of the domain, for example corner singularities.
So it is natural to envision nonlinear approximation methods as the basis for effec-
tive numerical solvers. Indeed, it was already shown in [23], that the solutions to
(52) on Lipschitz domains always have higher smoothness in the scale of Besov
spaces corresponding to nonlinear approximation than they do in the scale for linear
approximation. So the theoretical underpinnings were there to advocate nonlinear
methods and they were certainly in vogue beginning with the work of Ivo Babuska
and his collaborators (starting with [1]). Surprisingly, there was no algorithm based
on nonlinear methods which was proven to outperform linear methods save for some
univariate results.

Wolfgang brought Albert and I this problem and explained the bulk chasing
technique of Doerfler [32] which can be used to show convergence (but no rates)
for adaptive finite element methods (with some massaging as provided by Morin,
Nochetto, and Siebert [44]). We thought that the easiest type algorithm to analyze
would be based on wavelet decompositions. One advantage of chosing wavelets is
that (52) can be converted to an infinite matrix operator equation

A ū = f̄ (53)
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where A is bounded and boundedly invertible on �2. Here one employs the wavelet
preconditioning (diagonal rescaling) utilized in the analysis of preconditioning in
[24]. The key property inherited by this matrix is off diagonal decay which can also
be described as a compressibility in that A can be well approximated by finite rank
matrices.

In analogy with the results on image encoding, we wanted to create a Galerkin al-
gorithm for numerically solving (52) based on wavelet tree approximation such that
whenever u is in one of the approximation classes A s then the algorithm produces
an approximant to u (in the energy norm) with near optimal rate distortion. Namely,
if N is the cardinality of the tree T associated to the numerical approximation uT ,
then

‖u−uT ‖H1
0
≤C0‖u‖A sN−s. (54)

In the end we actually did much better since we showed the operational count
needed to compute uT could also be kept proportional to N.

We were quickly able to build the framework for the wavelet numerical algo-
rithm. However, we wrestled for quite some time to derive optimal bounds for the
number of terms in the wavelet decomposition of the approximant. This of course
is necessary for any rate distortion theory. In the end, we went back to our anal-
ogy with image compression where one discards small coefficients in such decom-
positions when seeking optimal compression and noise reduction. This led to our
coarsening algorithm and a subsequent proof of optimal performance of the numer-
ical algorithm. It was an important contribution of Stevenson [48] that it is actually
possible to build adaptively wavelet algorithms without coarsening with the same
optimal rate distortion theory. Heuristically, if one is not too aggressive with the
bulk chasing then the majority of the nodes chosen will in the end survive coarsen-
ing.

Our first paper [16] on adaptive wavelet methods was built on solving finite dis-
crete problems formed by taking appropriate subsections of the matrix A . This ac-
tually turned out to be the wrong view. Wolfgang proposed the idea that we should
retain as long as possible the infinite matrix form (53) and algorithms should be
viewed as solving this infinite dimensional problem. This turned out to be not only
the right conceptual view but also very powerful in algorithm development. This
allowed us to solve non-coercive problems and provide a very robust and elegant
theory in [17].

With Peter Binev, Wolfgang and I wondered why we could not carry our wavelet
theory over to finite element methods based on adaptive triangulations . We quickly
found out that these algorithms had major differences from wavelet algorithms. First
of all, in contrast to having one matrix (53) governing the algorithm, the matrices
changed at each iteration. This made the effect of refining triangles much more
subtle than the growing wavelet trees. Fortunately, we were able to borrow the the-
ory of local error estimators for finite elements developed by Morin, Nochetto, and
Siebert [44]. Another major difficulty was the fact the problem of hanging nodes (or
non-conforming elements). This required us to develop a way to count the additional
refinements necessary to guarantee conforming elements. This was eventually given
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by a nice maximal function type algorithm. Our algorithm for adaptive finite element
methods again had a coarsening step based on the tree algorithm of [12]. Again, Rob
Stevenson was able to show that one can proceed without coarsening. Now there is
a much finer understanding of adaptive finite element algorithms which will be well
presented in the contribution of Morin, Nochetto, and Siebert in this volume.

6 Learning theory

Learning theory is a problem in data fitting. The data is assumed to be generated by
an unknown measure ρ defined on a product space Z := X ×Y . We shall assume
that X is a bounded domain of IRd and Y = IR. The article of Gerard Kerkyacharian,
Mathilde Mougeot, Dominique Picard, and Karine Tribouley in this volume will
give a general exposition of this subject. Here we want to touch on some aspects of
this subject that relate to nonlinear approximation.

We assume that we are given m independent random observations zi = (xi,yi),
i = 1, . . . ,m, identically distributed according to ρ . We are interested in finding the
function fρ which best describes the relation between the yi and the xi. This is the
regression function fρ(x) defined as the conditional expectation of the random vari-
able y at x:

fρ(x) :=
∫
Y

ydρ(y|x) (55)

with ρ(y|x) the conditional probability measure on Y with respect to x. We shall use
z = {z1, . . . ,zm} ⊂ Zm to denote the set of observations.

One of the goals of learning is to provide estimates under minimal restrictions on
the measure ρ since this measure is unknown to us. We shall work under the mild
assumption that this probability measure is supported on an interval [−M,M]

|y| ≤ M, (56)

almost surely. It follows in particular that | fρ | ≤ M. This property of ρ can usually
be inferred in practical applications.

We denote by ρX the marginal probability measure on X defined by

ρX (S) := ρ(S×Y ). (57)

We shall assume that ρX is a Borel measure on X . We have

dρ(x,y) = dρ(y|x)dρX(x). (58)

It is easy to check that fρ is the minimizer of the risk functional

E ( f ) :=
∫
Z

(y− f (x))2dρ, (59)
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over f ∈ L2(X ,ρX ) where this space consists of all functions from X to Y which are
square integrable with respect to ρX . In fact one has

E ( f ) = E ( fρ)+‖ f − fρ‖2, (60)

where
‖ · ‖ := ‖ · ‖L2(X ,ρX ). (61)

The goal in learning is to find an estimator fz for fρ from the given data z.
The usual way of evaluating the performance of such an estimator is by studying
its convergence either in probability or in expectation, i.e. the rate of decay of the
quantities

Prob{‖ fρ − fz‖ ≥ η}, η > 0 or E(‖ fρ − fz‖2) (62)

as the sample size m increases. Here both the expectation and the probability are
taken with respect to the product measure ρm defined on Zm. Estimations in prob-
ability are to be preferred since they give more information about the success of a
particular algorithm and they automatically yield an estimate in expectation by inte-
grating with respect to η . Much more is known about the performance of algorithms
in expectation. This type of regression problem is referred to as random design or
distribution-free because there are no a priori assumption on ρX . An excellent survey
on distribution free regression theory is provided in the book [35], which includes
most existing approaches as well as the analysis of their rate of convergence in the
expectation sense.

A common approach to regression estimation is to choose an hypothesis (or
model) class H and then to define fz, in analogy to (59), as the minimizer of the
empirical risk

fz := argmin
f∈H

Ez( f ), with Ez( f ) :=
1
m

m

∑
j=1

(y j − f (x j))2. (63)

In other words, fz is the best approximation to (y j)m
j=1 from H in the the empirical

norm

‖g‖2
m :=

1
m

m

∑
j=1

|g(x j)|2. (64)

Typically, H = Hm depends on a finite number n = n(m) of parameters. Of course,
we advocate the use of nonlinear families Hm for the reasons already made abun-
dantly clear in this exposition. In some algorithms, the number n is chosen using
an a priori assumption on fρ . Better algorithms avoid such prior assumptions and
the number n is adapted to the data in the algorithm. This is usually done by what
is called model selection in statistics but this can be sometimes be an expensive
numerical procedure in practical implementations.

Estimates for the decay of the quantities in (62) are usually obtained under certain
assumptions (called priors) on fρ . We emphasize that the algorithms should not
depend on prior assumptions on fρ . Only in the analysis of the algorithms do we
impose such prior assumptions in order to see how well the algorithm performs.
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Priors on fρ are typically expressed by a condition of the type fρ ∈ Θ where Θ
is a class of functions that necessarily must be contained in L2(X ,ρX ). If we wish
the error, as measured in (62), to tend to zero as the number m of samples tends to
infinity then we necessarily need that Θ is a compact subset of L2(X ,ρX ). There are
three common ways to measure the compactness of a set Θ : (i) minimal coverings,
(ii) smoothness conditions on the elements of Θ , (iii) the rate of approximation of
the elements of Θ by a specific approximation process.

In studying the estimation of the regression function, the question arises at the
outset as to what are the best approximation methods to use in deriving algorithms
for approximating fρ and therefore indirectly in defining prior classes? With no ad-
ditional knowledge of ρ (and thereby fρ ) there is no general answer to this question.
This is in contrast to numerical methods for PDEs where regularity theorems for the
PDEs can lead to the optimal recovery schemes.

However, it is still possible in learning to draw some distinctions between certain
strategies. Suppose that we seek to approximate fρ by the elements from a hypoth-
esis class H = Σn. Here the parameter n measures the complexity associated to the
process. In the case of approximation by elements from linear spaces we will take
the space Σn to be of dimension n. For nonlinear methods, the space Σn is not linear
and now n represents the number of parameters used in the approximation.

If we have two approximation methods corresponding to sequences of approx-
imation spaces (Σn) and (Σ ′

n), then the second process would be superior to the
first in terms of rates of approximation if E ′

n(g) ≤ CEn(g) for all g and an abso-
lute constant C > 0. For example, approximation using piecewise linear functions
would in this sense be superior to using approximation by piecewise constants. In
our learning context however, there are other considerations since: (i) the rate of
approximation need not translate directly into results about estimating fρ because
of the uncertainty in our observations, (ii) it may be that the superior approximation
method is in fact much more difficult (or impossible) to implement in practice. For
example, a typical nonlinear method may consist of finding an approximation to g
from a family of linear spaces each of dimension N. The larger the family the more
powerful the approximation method. However, too large of a family will generally
make the numerical implementation of this method of approximation impossible.

Suppose that we have chosen the space Σn to be used as our hypothesis class
H in the approximation of fρ from our given data z. How should we define our
approximation? As we have already noted, the most common approach is empirical
risk minimization which gives the function f̂z := f̂z,Σn defined by (63). However,
since we know | fρ | ≤ M, the approximation will be improved if we post-truncate f̂z
by M. For this, we define the truncation operator

TM(x) := min(|x|,M)sign(x) (65)

for any real number x and define

fz := fz,H := TM( f̂z,H ). (66)
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There are general results that provide estimates for how well fz approximates fρ .
One such estimate given in [35] (see Theorem 11.3) applies when H is a linear
space of dimension n and gives

E(‖ fρ − fz‖2)<∼
n log(m)

m
+ inf

g∈H
‖ fρ −g‖2. (67)

The second term is the bias and equals our approximation error En( fρ) for approx-
imation using the elements of H . The first term is the variance which bounds the
error due to uncertainty. One can derive rates of convergence in expectation by bal-
ancing both terms (see [35] and [27]) for specific applications.

The deficiency of this approach is that one needs to know the behavior of En( fρ)
in order to choose the best value of n and this requires a priori knowledge of fρ .
There is a general procedure known as model selection which circumvents this dif-
ficulty and tries to automatically choose a good value of n (depending on fρ ) by
introducing a penalty term. Suppose that (Σn)m

n=1 is a family on linear spaces each
of dimension n. For each n = 1,2, . . . ,m, we have the corresponding function fz,Σn

defined by (66) and the empirical error

Ên,z :=
1
m

m

∑
j=1

(y j − fz,Σn(x j))2. (68)

Notice that En,z is a computable quantity which we can view as an estimate for
En( fρ). In complexity regularization, one chooses a value of n by

n∗ := n∗(z) := argmin {En,z +
n logm

m
}. (69)

We now define
f̂z := fz,Σn∗ (70)

as our estimator to fρ . One can then prove (see Chapter 12 of [35]) that whenever
fρ can be approximated to accuracy En( fρ) ≤ Mn−s for some s > 0, then

E(‖ fρ − fz‖2
L2(X ,ρX )) ≤C[

(logm)2

m
]

2s
2s+1 (71)

which save for the logarithm is an optimal rate estimation in expectation. For a
certain range of s, one can also prove similar estimates in probability (see [27]).
Notice that the estimator did not need to have knowledge of s and nevertheless
obtains the optimal performance.

Model selection can also be applied in the setting of nonlinear approximation, i.e.
when the spaces Σn are nonlinear but in this case, one needs to invoke conditions on
the compatibility of the penalty with the complexity of the approximation process
as measured by an entropy restriction. We refer the reader to Chapter 12 of [35] for
a more detailed discussion of this topic
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Let us also note that the penalty approach is not always compatible with the
practical requirement of on-line computations. By on-line computation, we mean
that the estimator for the sample size m can be derived by a simple update of the
estimator for the sample size m− 1. In penalty methods, the optimization problem
needs to be globally re-solved when adding a new sample. However, when there is
additional structure in the approximation process such as the adaptive partitioning,
then there are algorithms that circumvent this difficulty.

With Wolfgang, we wanted to develop algorithms based on nonlinear piecewise
polynomials which are universally optimal and in addition are numerically easy to
implement. Our first paper [9] built such an algorithm based on piecewise constant
approximation. Its implementation is very simple (wavelet like) and can be done on
line with streaming data. We proved theorems which showed the optimality of this
algorithm in terms of the desirable probability estimates.

While proving the results in [9], we were puzzled by the fact that these results
did not carry over nontrivially to general piecewise polynomials. Through a fam-
ily of counterexamples, we found that if we wanted estimators which perform well
in probability then either we must assume something more about the underlying
probability measure ρ or we must find an alternative to empirical risk minimization.
The simplest way out of this dilemma was to use post truncation as described in
(66). Using this type of truncation, we developed in [7] optimal adaptive partition-
ing learning algorithms for arbitrary polynomial degrees and proved their universal
optimality.

6.1 Learning with greedy algorithms

We have already emphasized that keeping the computational task reasonable in
learning algorithms is a significant issue. For this reason, with Wolfgang we studied
the application of greedy algorithms for learning. The main goal of our extension of
the theory of greedy algorithms, as discussed in §3.4 was to apply these to the learn-
ing problem. Indeed, we built an estimator based on the application of the OGA or
RGA to the noisy data (yi) in the Hilbert space defined by the empirical norm

‖ f‖n :=
1
n

n

∑
i=1

| f (xi)|2, (72)

and its associated inner product. At each step k, the algorithm generates an approx-
imation f̂k to the data. Our estimator was then defined by

f̂ := T f̂k∗ (73)

where T is the truncation operator (65) and the value of k∗ is selected by a complex-
ity regularization procedure. Our main result for this estimator was (roughly) that
when the regression function fρ is in Bp (where this space is defined with respect
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to the norm ‖u‖2 := E(|u(x)|2) as in §3.4), the estimator has convergence rate

E(‖ f̂ − fρ‖2)<∼
( n

logn

)− 2s
1+2s

, (74)

again with s := 1/p− 1/2. In the case where fρ ∈ L1, we obtain the same result
with p = 1 and s = 1/2. We also show that this estimator is universally consistent.

In order to place these results into the current state of the art of statistical learn-
ing theory, let us first remark that similar convergence rate for the denoising and
the learning problem could be obtained by a more “brute force” approach which
would consist in selecting a proper subset of D by complexity regularization with
techniques such as those in [2] or Chapter 12 of [35]. Following for instance the
general approach of [35], this would typically first require restricting the size of the
dictionary D (usually to be of size O(na) for some a > 1) and then considering all
possible subsets Λ ⊂ D and spaces GΛ := Span{g ∈ Λ}, each of them defining an
estimator

f̂Λ := T
(

Argmin f∈GΛ
‖y− f‖2

n

)
(75)

The estimator f̂ is then defined as the f̂Λ which minimizes

min
Λ⊂D

{‖y− f̂Λ‖2
n +Pen(Λ ,n)} (76)

with Pen(Λ ,n) a complexity penalty term. The penalty term usually restricts the size
of Λ to be at most O(n) but even then the search is over O(nan) subsets. In some
other approaches, the sets GΛ might also be discretized, transforming the subprob-
lem of selecting f̂Λ into a discrete optimization problem.

The main advantage of using the greedy algorithm in place of (76) for construct-
ing the estimator is a dramatic reduction of the computational cost. Indeed, instead
of considering all possible subsets Λ ⊂ D the algorithm only considers the sets
Λk := {g1, · · · ,gk}, k = 1, . . . ,n, generated by the empirical greedy algorithm. This
approach was proposed and analyzed in [41] using a version of the RGA in which

αk +βk = 1 (77)

which implies that the approximation fk at each iteration stays in the convex hull C1

of D . The authors established that if f does not belong to C1, the RGA converges to
its projection onto C1, In turn, the estimator was proved to converge in the sense of
(74) to fρ , with rate (n/ logn)−1/2, if fρ lies in C1, and otherwise to its projection
onto C1. In that sense, this procedure is not universally consistent.

Our main contribution in the work with Wolfgang was to remove requirements of
the type fρ ∈L1 when obtaining convergence rates. In the learning context, there is
indeed typically no advanced information that would guarantee such restrictions on
fρ . The estimators that we construct for learning are now universally consistent and
have provable convergence rates for more general regression functions described
by means of interpolation spaces. One of the main ingredient in our analysis of the
performance of our greedy algorithms in learning is a powerful exponential con-
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centration inequality which was introduced in [41]. Let us mention that a closely
related analysis, which however does not involve interpolation spaces, was devel-
oped in [5, 6].

Let us finally mention that there exist some natural connections between the
greedy algorithms which we have discussed and other numerical techniques for
building a sparse approximation in the dictionnary based on the minimization of
an �1 criterion. In the statistical context, these are the celebrated LASSO [52, 36]
and LARS [33] algorithms. The relation between �1 minimization and greedy se-
lection is particularly transparent in the context of deterministic approximation of a
function f in an orthonormal basis: if we consider the problem of minimizing

‖ f − ∑
g∈D

dgg‖2 + t ∑
g∈D

|dg| (78)

over all choices of sequences (dg), we see that it amounts in minimizing |cg−dg|2 +
t|dg| for each individual g, where cg := 〈 f ,g〉. The solution to this problem is given
by the soft thresholding operator

dg := cg −
t
2

sign(cg) if |cg| >
t
2
, 0 else, (79)

and is therefore very similar to picking the largest coefficients of f .

7 Compressed sensing

Compressed sensing came into vogue during the last few years but its origins lie
in results from approximation and functional analysis dating back to the 1970’s.
The primary early developers were Kashin [39] and Gluskin [34]. Donoho [30] and
Candés and Tao [14] showed the importance of this theory in signal processing and
added substantially to the theory and its numerical implementation, especially how
to do decoding in a practical way.

In discrete compressed sensing, we want to capture a vector (signal) x ∈ IRN with
N large. Of course if we make N measurements we will know x exactly. The problem
is to make comparably fewer measurements and still have enough information to
accurately recover x. Since the subject is intimately intertwined with sparsity and
nonlinear approximation, the problems of compressed sensing immediately peaked
our interest.

The m measurements we are allowed to make about x are of the form of an
inner product of x with prescribed vectors. These measurements are represented by
a vector

y = Φx, (80)

of dimension m < N, where Φ is an m×N measurement matrix (called a CS matrix).
To extract the information that the measurement vector y holds about x, one uses a
decoder Δ which is a mapping from IRm into IRN . The vector x∗ := Δ(y) = Δ(Φx)
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is our approximation to x extracted from the information y. In contrast to Φ , the
operator Δ is allowed to be non-linear.

In recent years, considerable progress has been made in understanding the perfor-
mance of various choices of the measurement matrices Φ and decoders Δ . Although
not exclusively, by far most contributions focus on the ability of such an encoder-
decoder pair (Φ ,Δ) to recover a sparse signal. For example, a typical theorem says
that there are pairs (Φ ,Δ) such that whenever x ∈ Σk, with k ≤ am/ log(N/k), then
x∗ = x.

Our view was that from both a theoretical and a practical perspective, it is highly
desirable to have pairs (Φ ,Δ) that are robust in the sense that they are effective
even when the vector x is not assumed to be sparse. The question arises as to how
we should measure the effectiveness of such an encoder-decoder pair (Φ ,Δ) for
non-sparse vectors. In [18] we have proposed to measure such performance in a
metric ‖ · ‖X by the largest value of k for which

‖x−Δ(Φx)‖X ≤C0σk(x)X , ∀x ∈ IRN , (81)

with C0 a constant independent of k,n,N. We say that a pair (Φ ,Δ) which satisfies
property (81) is instance-optimal of order k with constant C0. It was shown that this
measure of performance heavily depends on the norm employed to measure error.
Let us illustrate this by two contrasting results from [18]:

(i) If ‖ · ‖X is the �1-norm, it is possible to build encoding-decoding pairs (Φ ,Δ)
which are instance-optimal of order k with a suitable constant C0 whenever
m≥ ck log(N/k) provided c and C0 are sufficiently large. Moreover, the decoder
Δ can be taken as

Δ(y) := argmin
Φz=y

‖z‖�1 . (82)

Therefore, in order to obtain the accuracy of k-term approximation, the number
m of non-adaptive measurements need only exceed the amount k of adaptive
measurements by the small factor c log(N/k). We shall speak of the range of k
which satisfy k ≤ am/ log(N/k) as the large range since it is the largest range
of k for which instance-optimality can hold.

(ii) In the case ‖ · ‖X is the �2-norm, if (Φ ,Δ) is any encoding-decoding pair which
is instance-optimal of order k = 1 with a fixed constant C0, then the number
of measurement m is always larger than aN, where a > 0 depends only on C0.
Therefore, the number of non-adaptive measurements has to be very large in
order to compete with even one single adaptive measurement.

The matrices Φ which have the largest range of instance-optimality for �1 are all
given by stochastic constructions. Namely, one creates an appropriate random fam-
ily Φ(ω) of m×N matrices on a probability space (Ω ,ρ) and then shows that with
high probability on the draw, the resulting matrix Φ = Φ(ω) will satisfy instance-
optimality for the large range of k. There are no known deterministic constructions.
The situation is even worse in the sense that given an m×N matrix Φ there is no
simple method for checking its range of instance-optimality.
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While the above results show that instance-optimality is not a viable concept in
�2, it turns out that the situation is not as bleak as it seems. For example, a more
optimistic result was established by Candes, Romberg and Tao in [15]. They show
that if m ≥ ck log(N/k), it is possible to build pairs (Φ ,Δ) such that for all x ∈ IRN,

‖x−Δ(Φx)‖�2 ≤C0
σk(x)�1√

k
, (83)

with the decoder again defined by (82). This implies, in particular, that k-sparse sig-
nals are exactly reconstructed and that signals x in the space weak �p with ‖x‖w�p ≤
M for some p < 1 are reconstructed with accuracy C0Mk−s with s = 1/p−1/2. This
bound is of the same order as the best estimate available on max{σk(x)�2 : ‖x‖w�p ≤
M}. Of course, this result still falls short of instance-optimality in �2 as it must.

What intrigued us was that instance-optimality can be attained in �2 if one accepts
a probabilistic statement. A first result in this direction, obtained by Cormode and
Mutukrishnan in [22], shows how to construct random m×N matrices Φ(ω) and a
decoder Δ = Δ(ω), ω ∈ Ω , such that for any x ∈ IRN ,

‖x−Δ(Φx)‖�2 ≤C0σk(x)�2 (84)

holds with overwhelming probability (larger than 1−ε(m) where ε(m) tends rapidly
to 0 as m → +∞) as long as k ≤ am/(logN)5/2 with a suitably small. Note that this
result says that given x, the set of ω ∈ Ω for which (84) fails to hold has small
measure. This set of failure will depend on x.

From our viewpoint, instance-optimality in probability is the proper formulation
in �2. Indeed, even in the more favorable setting of �1, we can never put our hands on
matrices Φ which have the large range of instance-optimality. We only know with
high probability on the draw, in certain random constructions, that we can attain
instance-optimality. So the situation in �2 is not that much different from that in �1.

The results in [18] pertaining to instance-optimality in probability asked two
fundamental questions: (i) can we attain instance-optimality for the largest range
of k, i.e. k ≤ an/ log(N/k), and (ii) what are the properties of random families that
are needed to attain this performance. We showed that instance-optimality can be
obtained in the probabilistic setting for the largest range of k, i.e. k ≤ an/ log(N/k)
using quite general constructions of random matrices. Namely, we introduced two
properties for a random matrix Φ which ensure instance-optimality in the above
sense and then showed that these two properties hold for rather general constructions
of random matrices (such as Gaussian and Bernoulli). However, one shortcoming of
the results in [18] is that the decoder used in establishing instance-optimality was
defined by minimizing ‖y−Φx‖�2 over all k-sparse vectors, a task which cannot be
achieved in any reasonable computational time.

This led us to consider other possible decoders which are numerically friendly
and can be coupled with standard constructions of random matrices to obtain an
encoding/decoding pair which is instance-optimal for the largest range of k. There
are two natural classes of decoders.
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The first is based on �1 minimization as described in (82). It was a nontrivial
argument given by Przemek Wojtaczszyk [54] that this decoder gives �2 instance
optimality in probability when coupled with random Gaussian matrices. The key
feature of his proof was the fact that such an m×N Gaussian matrix maps the unit
ball in �N

1 onto a set that contains the ball of radius log(N/m)
m in �m

2 .
The above mapping property fails to hold for general random matrices. For ex-

ample for the Bernouli family, any point that maps into the vector e1 = (1,0, . . . ,0)
must have �N

1 norm ≥
√

n. So some new ideas were needed to prove instance opti-
mality in probability for general random families. This is provided by new mapping
properties which state that the image of the unit �N

1 ball covers a certain clipped �N
2

ball. These remarkable mapping properties were first proved in [42] and rediscov-
ered in [28] where the instance optimality is proved.

The other natural decoders for compressed sensing are greedy algorithms. The
idea to apply greedy algorithms for compressed sensing originated with Gilbert and
Tropp [53] who proposed to use the orthogonal greedy algorithm or orthogonal
matching pursuit (OMP) in order to decode y. Namely, the greedy algorithm is ap-
plied to the dictionary of column vectors of Φ and the input vector y. After k itera-
tions, it identifies a set of Λ of k column indices (those corresponding to the vectors
used to approximate y by the greedy algorithm. Once the set Λ is found, we decode
y by taking the minimizer of ‖y−Φ(z)‖�2 among all z supported on Λ . The latter
step is least squares fitting of the residual and is very fast.

These authors proved the following result for a probabilistic setting for general
random matrices which include the Bernouli and Gaussian families: if m ≥ ck logN
with c sufficiently large, then for any k sparse vector x, the OMP algorithm returns
exactly xk = x after k iterations, with probability greater than 1−N−b where b can
be made arbitrarily large by taking c large enough.

Decoders like OMP are of high interest because of their efficiency. The above
result of Gilbert and Tropp remains as the only general statement about OMP in the
probabilistic setting. A significant breakthrough on decoding using greedy pursuit
was given in the paper of Needel and Vershynin [46] (see also their followup [47])
where they showed the advantage of adjoining a batch of coordinates at each itera-
tion rather than just one coordinate as in OMP. They show that such algorithms can
deterministically capture sparse vectors for a slightly smaller range than the largest
range of k.

With Wolfgang, we were interested in whether decoders based on thresholding
could be used as decoders to yield �2 instance-optimality in probability for general
families of random matrices for the large range of k. In [19] we give an algorithm
which does exactly that. This algorithm adds a batch of coordinates at each itera-
tion and then uses a thinning procedure to possibly remove some of them at later
iterations. Conceptually, one thinks in terms of a bucket holding all of the coordi-
nates to be used in the construction of x. In the analysis of such algorithms it is
important to not allow more than a multiple of k coordinates to gather in the bucket.
The thinning is used for this purpose. Thinning is much like the coarsening used in
PDE solvers which we described earlier Our algorithm is similar in nature to the
COSAMP algorithm of Needel and Tropp [45].
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8 Final thoughts

As has been made abundantly clear in this brief survery, Wolfgang Dahmen’s con-
tributions to both the theory of nonlinear approximation and to its application in a
wide range of domains has been pervasive. Fortunately, the story is still going strong
and I am happy to be going along for the ride.
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