Q1. Let \(f(x) = x^3 \). Using each of the three equivalences of Theorem 0.6, prove that this function is continuous.

Q2. Let \(E \) be a closed subset of \(\mathbb{R} \). Define \(f(x) \) by

\[
f(x) = \inf_{y \in E} |x - y|.
\]

Prove that \(f(x) \) is continuous and that \(f(x) = 0 \) if and only if \(x \in E \).

Q3. Let \(U \) be an open subset of \(\mathbb{R} \). For each \(x \in U \), prove that there is a largest open interval containing \(x \) and contained in \(U \). Call it \(J_x \), and show that any pair \(J_x, J_y \) are either equal or disjoint. Now show that \(U \) is a countable disjoint union of open intervals.

Q4. If \(E \subseteq \mathbb{R} \) is not compact, show that there is an unbounded continuous function on \(E \).

Q5. Prove that if \(X \) and \(Y \) are countable sets then

\[
X \times Y = \{(x, y) : x \in X, y \in Y\}
\]

is countable.

Q6. Let \(X \) and \(Y \) be disjoint subsets of a set \(S \) with \(X \) countable and \(Y \) infinite. Prove that \(X \cup Y \) has the same cardinality as \(Y \).

Q7. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function. For each \(x \in \mathbb{R} \), define

\[
\omega(x) = \inf_{\delta > 0} \sup\{|f(y) - f(z)| : |x - y|, |x - z| < \delta\}.
\]

Prove that \(f \) is continuous at \(x \) if and only if \(\omega(x) = 0 \), and that \(\{x : \omega(x) < \varepsilon\} \) is open for all \(\varepsilon > 0 \) and for all \(x \in X \).