In Q1-Q4, the function \(f(x) \) is always bounded.

Q1. If \(f(x) \) is Riemann integrable on \([\varepsilon, 1]\) for \(0 < \varepsilon < 1 \), prove that is Riemann integrable on \([0, 1]\) and that
\[
\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} f(x) \, dx = \int_{0}^{1} f(x) \, dx.
\]

Q2. If \(a < c < d < b \) and \(f(x) \) is Riemann integrable on \([a, b]\), prove that it is Riemann integrable on \([c, d]\).

Q3. If \(f(x) \) is Riemann integrable on \([a, c]\) and on \([c, b]\) for \(a < c < b \), prove that it is Riemann integrable on \([a, b]\) and that
\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.
\]

Q4. If \(f(x) \) is Riemann integrable on \([0, 1]\), prove that \(e^{f(x)} \) is also Riemann integrable on \([0, 1]\). (MVT for \(e^t \) could be useful)

Q5. Let \(T : C[0, 1] \to C[0, 1] \) be defined by
\[
Tf(x) = \int_{0}^{x} f(t) \, dt, \quad x \in [0, 1], \quad f \in C[0, 1].
\]
Prove that \(T \) is not a contraction (consider constant functions) but that \(T^2 \) is a contraction. Find the fixed point for \(T \).

Q6. Let \(f : (0, 1) \to (0, 1) \) be a contraction. Prove that \(f \) extends to a contraction \(g : [0, 1] \to [0, 1] \).

Q7. Let \(U \) be an open connected set in \(\mathbb{R}^2 \). Let \(x_0 \in U \) be fixed, and let \(V \) be the set of points in \(U \) which can be connected to \(x_0 \) by a path in \(U \). Prove that \(V \) and \(V^c \cap U \) are both open sets. Deduce that \(U \) is path connected.