MATH607 THIRD HOMEWORK

Hand in the first three problems

Q1. Let X be a set and let $\{X_i\}_{i \geq 1}$ be a disjoint collection of subsets whose union is X. On each X_i let a σ–algebra \mathcal{M}_i and a measure μ_i be given. Prove that

$$\mathcal{M} = \{ E \subseteq X : E \cap X_i \in \mathcal{M}_i \text{ for all } i \geq 1 \}$$

is a σ–algebra and that

$$\mu(E) = \sum_{i=1}^{\infty} \mu_i(E \cap X_i)$$

defines a measure on \mathcal{M}.

Q2. There are four natural ways to define the Borel subsets of \mathbb{R}^2: as the smallest σ–algebra generated by (a) the open sets, (b) the open balls, (c) the open rectangles, (d) all sets of the form $A \times B$ where A and B are Borel sets in \mathbb{R}. Prove that they are equivalent.

Q3. If E is a Borel set in the plane as defined in Q2, prove that

$$E_y = \{ x : (x, y) \in E \}$$

is a Borel subset of \mathbb{R} for all $y \in \mathbb{R}$.

Q4. Let λ be Lebesgue measure on \mathbb{R} and let $f : \mathbb{R} \to \mathbb{R}$ be a strictly increasing continuous function. Prove that

$$\mu(E) = \lambda(f(E))$$

defines a measure on the Borel subsets of \mathbb{R}.

Q5. Let λ be Lebesgue measure on the Lebesgue sets \mathcal{L} in \mathbb{R}. Define a collection \mathcal{M} of subsets of \mathbb{R} by $E \in \mathcal{M}$ if, for each $\epsilon > 0$, there exists $F \in \mathcal{L}$ with $\lambda(F) < \epsilon$ and a continuous function f such that $f = \chi_E$ on F^c. Prove that open intervals lie in \mathcal{M}, that \mathcal{M} is closed under complements and finite intersections, and that \mathcal{M} is a σ–algebra containing the Borel sets and \mathcal{L}. (I list these things as a hint on how to approach the problem)