Solutions #4

81. (a) The translates of N fill up $[0,1]$ and are disjoint so the translates of E are disjoint and are contained in $[0,1]$. Thus $\mu(E) = 0$ otherwise $\mu([0,1]) = \infty$.

(b) If $m(E) > 0$ then $m(E \cap [n,n+1]) \neq 0$ for some n, so by translation we may assume that $E \subseteq [0,1]$. Since $E = \bigcup E \cap N_r$ and all $E \cap N_r$ are Lebesgue measurable, then $m(E \cap N_r) = 0$ by (a) so $m(E) = 0$ contradiction. Thus at least one $E \cap N_r$ is non-measurable.
Q2. It is immediate from the definition that
g is an increasing function. If there is a
point of discontinuity x_0 for g, then
\[\lim_{x \to x_0^-} g(x) < \lim_{x \to x_0^+} g(x). \]

Call these a and b. Then $g(x)$ does not take
any value in (a, b), contradicting the density of
$f(s)$ in $[0, 1]$. Thus g is continuous.

Suppose that h is another such continuous
increasing function. For any point $x \in [0, 1]$ we
may choose points $x_n \in S$ such that $x_n \to x$, using
density of S. Then
\[g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} h(x_n) = h(x), \]
so $g = h$ proving uniqueness.
The initial step in defining the Cantor function is to define \(f \) on the removed intervals and for every \(n \) we get values:

\[
0, \quad \frac{j}{2^n} \text{ for } 1 \leq j < 2^n, \quad 1.
\]

This \(f \) has dense range to one part 1 to extend \(f \) to an increasingly continuous function.

Q3

a) \(g(x) = f(x) + x \).

\(f \) is increasing so \(g(x) \) is strictly increasing.

Thus, \(g \) maps \([0,1]\) to \([0,2]\). \(h = g^{-1} \) is increasing and onto so is continuous as in Q2.

b) \(g \) maps each middle \(\frac{1}{3} \) to an interval of the same length; a total of 1, so

\[
m(g(C)) = 2 \cdot 1 = 1.
\]

(c) \(g(C) \) contains a non-measurable set \(A \). Part
\[B = g^{-1}(A). \] Then \(B \in \text{Cantor set} \Rightarrow \) is a null set and thus is in \(L \). To see that \(B \) is not Borel, we show that \(g \) maps Borel sets to Borel sets. Then if \(B \) is Borel we get \(A = g(B) \) is Borel, a contradiction.

Let \(M = \{ E : g(E) \text{ is Borel} \} \).

Since \(g([a,b]) = [g(a), g(b)] \), closed intervals are in \(M \). If \(E \in M \) and \(F \) is its complement in \([0,1] \) then \(g(F) \) is the complement of \(g(E) \) in \([0,1] \) so \(M \) is closed under complements.

\(M \) is closed under countable unions since

\[g(\bigcup E_n) = \bigcup g(E_n), \] so \(M \) is a \(\sigma \)-algebra.

and so contains the Borel sets.
(i) \(\mu \left(\left[0, \frac{1}{n} \right] \right) \leq \frac{1}{n} \) since \(n \) disjoint translates of \(\left[0, \frac{1}{n} \right] \) fit in \([0, 1] \). Thus

\[\mu \left(\left[0, \frac{1}{n} \right] \right) \leq \frac{1}{n} \] for all \(n \to \infty \)

\[\mu \left\{ 0 \right\} = 0, \text{ and } \mu \left\{ \frac{1}{n} \right\} = 0 \text{ by translation.} \]

(ii) \(\mu \left[a, b \right] = \mu \left(a, b \right) + \mu \left[a + \frac{1}{n}, b + \frac{1}{n} \right] = \mu \left(a, b \right) \)

so there four intervals have the same \(\mu \) measure.

(iii) \[1 = \mu \left[0, 1 \right] = \mu \left[0, \frac{1}{n} \right] + \mu \left[\frac{1}{n}, \frac{2}{n} \right] + \ldots + \mu \left[\frac{n-1}{n}, 1 \right] = n \mu \left[0, \frac{1}{n} \right]. \]

From (iii) \(\mu \left[0, \frac{1}{n} \right] = \mu \left(0, \frac{1}{n} \right) = \frac{1}{n} \).

(iv) Look at \([0, c] \). For any integer \(n \), choose

\(m \) such that \(\frac{m}{n} \leq c < \frac{m+1}{n} \). Then, by translates,

we have from (iii) that

\[\frac{m}{n} \leq \mu \left[0, c \right] \leq \frac{m+1}{n}. \]

Thus \(c - \frac{m}{n} \leq \frac{1}{n} \) and \(\mu \left[0, c \right] - \frac{m}{n} \leq \frac{1}{n} \).
\(|c - \mu([0,c])| \leq 2/n \) for all \(n \geq 1 \)

so \(\mu([0,c]) = c \). Thus

\[
\mu([a,b]) = \mu([0,b-a]) = b-a.
\]

(v) This is clear if \(\lambda(E) = \infty \). If \(\lambda(E) < \infty \),
given \(\varepsilon > 0 \), choose open intervals \((I_n)_n \), so that

\[
E \subseteq U I_n \quad \text{and} \quad \sum \lambda(I_n) < \lambda(E) + \varepsilon.
\]

Then \(\mu(E) \leq \sum \mu(I_n) = \sum \lambda(I_n) < \lambda(E) + \varepsilon. \)

Thus \(\mu(E) \leq \lambda(E) \) for all \(E \in \mathcal{L} \).

(vi) Let \(E \subseteq [a,b] \) and let \(F = E \cap [a,b] \).

Then \(\mu(E) + \mu(F) = b-a \) and \(\lambda(E) + \lambda(F) = b-a \).

If \(\mu(E) < \lambda(E) \) then \(\mu(F) > \lambda(E) \) contradicting

\[
(\ast). \quad \therefore \quad \mu(E) = \lambda(E)
\]

(vii) \(\mu(E) = \sum \mu(E \cap [n/n]) = \sum \lambda(E \cap [n/n]) \) (by vi)

\[= \lambda(E). \]
For each \(n \), there exists \(m \) such that
\[
|f_i(x) - f_j(x)| < \frac{1}{n} \quad \text{for} \quad i, j \geq m.
\]

Let
\[
E_{i,j,m} = \left\{ x : f_i(x) - f_j(x) \in (-\frac{1}{n}, \frac{1}{n}) \right\}.
\]

Put
\[
F_{m,n} = \bigcap_{i,j \geq m} E_{i,j,m}.
\]

\[
G_n = \bigcup_{m=1}^{\infty} F_{m,n}.
\]

\[
H = \bigcap_{n \geq 1} G_n.
\]

\(H \) is a measurable net and
\(H \) is precisely where \(\{f_n(x)\} \) is Cauchy.