MATH 447, HOMEWORK 8, DUE Apr 10th

Q1. If \(f \) is continuous on \([0, 1]\) prove that the Riemann and Lebesgue integrals give the same value.

Q2. If \(\int_0^1 f = 0 \) and \(f \geq 0 \), prove that \(f = 0 \) a.e.

Q3. Let \(f_n \) be a sequence of measurable functions on \([0, 1]\) converging pointwise to \(f \). Given \(\varepsilon, \delta > 0 \), prove there is a measurable set \(E \) with \(\mu(E) < \delta \) and an integer \(N \) so that

\[
|f(x) - f_n(x)| < \varepsilon, \quad x \in E^c, \quad n \geq N.
\]

Q4. Let \(f_n \) be a sequence of measurable functions on \([0, 1]\) converging pointwise to \(f \). Given \(\eta > 0 \) prove that there is a measurable set \(E \) with \(\mu(E) < \eta \) so that \(f_n \to f \) uniformly on \(E^c \). (Use Q3)

Q5. If \(f : \mathbb{R} \to \mathbb{R} \) is measurable, prove that \(f(x^2) \) is measurable.