MATH 447, HOMEWORK 3, DUE FEB 17
Everyone does Q1-Q5, honors students also do Q6, Q7

Q1. Prove that a function \(f \) between topological spaces is continuous if and only if \(f^{-1}(E) \) is closed for all closed \(E \).

Q2. Let \(f_i: (X_i, T_i) \to (Y_i, S_i), i = 1, 2 \) be continuous functions. Define \(g: (X_1 \times X_2, T_1 \times T_2) \to (Y_1 \times Y_2, S_1 \times S_2) \) by \(g(x_1, x_2) = (f_1(x_1), f_2(x_2)) \). Prove that \(g \) is continuous.

Q3. Let \((X, T)\) be a Hausdorff topological space. Let \(E \) be a compact subset. Prove that \(E \) is closed.

Q4. Let \((X, T)\) be a compact topological space. Let \(E \) be a closed subset. Prove that \(E \) is compact.

Q5. Let \((X, T)\) and \((Y, S)\) be topological spaces. Prove that a net \(((x_\alpha, y_\alpha)) \) converges to \((x, y)\) in the product topology if and only if \(x_\alpha \to x \) and \(y_\alpha \to y \).

Q6. Let \((X, T)\) and \((Y, S)\) be compact Hausdorff topological spaces. If \(f: X \to Y \) is one-to-one onto and continuous, prove that the inverse function is continuous.

Q7. Let \((X, T)\) be a Hausdorff topological space. \(X \) is said to be locally compact if, given \(x \in X \) there exists an open set \(U \) containing \(x \) and \(\overline{U} \) is compact (for example, the real line). Adjoin a point \(\omega \) to \(X \) to form \(\hat{X} = X \cup \{\omega\} \) and declare a subset to be open if it is an open subset of \(X \) or if it is the complement of a compact subset of \(X \). Prove that \(\hat{X} \) is a compact Hausdorff space, that the identity is a continuous embedding of \(X \) into \(\hat{X} \), and that the real valued continuous functions on \(X \) separate points.