LITTLEWOOD’S PROOF OF THE FUNDAMENTAL THEOREM
OF ALGEBRA: A SIMPLER VERSION

A. BAUVAL

ABSTRACT. We present an elementary proof of the fundamental theorem of
algebra, following Cauchy’s version but avoiding his use of circular functions.
It is written in the same spirit as Littlewood’s proof of 1941, but reduces it to
more elementary and constructive arguments.

1. Introduction

Among the many ways to prove the FTA, which says that every nonconstant
complex polynomial \(P \) has at least one complex root, the most commonly taught
since Cauchy [2, pp. 331-339] consists in showing that \(|P| \) has a global minimum
and that its value at any local minimum point has to be zero.

Neither of these two steps is completely elementary: the first one, after the
straightforward remark that \(|P(z)| \) tends to infinity with \(|z| \), uses – in its modern
formulation – the Heine-Borel characterization of compact subspaces of the complex
plane and the behaviour of continuous functions on such spaces; the second step
seems to involve the fact that any complex number has roots of arbitrary order \(k \),
which is obvious if the use of circular functions is allowed.

In 1941, Littlewood [3] recalled that this use of De Moivre’s formula can be
replaced by a less theoretically demanding algorithm [6], combining the case \(k = 2 \)
and the case where \(k \) is odd: the former only relies on the existence of real square
roots for nonnegative real numbers and the latter uses moreover the existence of
a real zero for any real polynomial of odd degree. Since the latter property is, in
turn, a corollary of the FTA, he found interesting to build two simple proofs of the
FTA, relying only on the existence of square roots and on the minimum argument:
one proof uses that argument again, and the other one replaces this repetition by
an inductive reasoning.

More directly inspired by Cauchy’s proof – an analytic transcription of Argand’s
geometric one [1] – we shall get rid of both repetition and induction, and escape the
use of square roots as well. Of course, there is no theoretical interest in this whole
story, since the extreme value theorem is equivalent to the upper bound property
[5], which characterizes \(\mathbb{R} \) (among ordered fields), hence entails real-closedeness.
Littlewood’s sole aim was to give a cheaper version of the “pedestrian” proof of
the FTA, and so is ours. Incidentally, we also replace the modern compactness
arguments by the less sophisticated Bolzano theorem for real sequences.

Meanwhile writing this paper, we discovered that a similar one [4] was published
two years ago. We defer to it for more context and bibliography, and hope our
definitely simpler version to show up worthwhile.
2. CAUCHY’S PROOF REVISITED

Let us first rephrase the three steps of Cauchy’s proof in terms which avoid square roots – hence only talk about \(|z|^2 = x^2 + y^2 \) instead of \(|z| = \sqrt{x^2 + y^2} \), unless \(z \) is real. Using only Bolzano’s theorem for real sequences – which had just been proved in 1817 – we shall also make explicit, as elementarily and faithfully as possible, Cauchy’s informal justification of the existence of a minimum for the (square of the) absolute value of a complex polynomial of degree \(n > 0 \),

\[
P(z) = a_0 + a_1 z + \ldots + a_n z^n.
\]

Lemma 1. \(\lim_{|z| \to +\infty} |P(z)|^2 = +\infty. \)

Proof. By the Cauchy-Schwarz inequality in \(\mathbb{C}^{n+1} \),

\[
|a_n z^n|^2 = \left| P(z) - \sum_{k=0}^{n-1} a_k z^k \right|^2 \leq (n+1) \left(|P(z)|^2 + \sum_{k=0}^{n-1} |a_k z^k|^2 \right),
\]

hence

\[
|P(z)|^2 \geq |z|^{2n} \left(\frac{|a_n|^2}{n+1} - \sum_{k=0}^{n-1} \frac{|a_k|^2}{|z|^{2(n-k)}} \right). \]

\(\square \)

Lemma 2. The function \(|P|^2 \) has a global minimum.

Proof. Let \(m \) be the greatest lower bound of its values, and \((z_k) \) a sequence such that \(|P(z_k)|^2 \to m \). By the previous lemma, \((|z_k|^2) \) is bounded, hence so are the sequences of real and imaginary parts \(x_k, y_k \) of \(z_k \). By Bolzano’s theorem, \((x_k) \) has a convergence subsequence, \(x_{\varphi(k)} \to x \), and \((y_{\varphi(k)}) \), in turn, has a convergent subsequence, \(y_{\varphi(\varphi(k))} \to y \). By continuity of \(|P|^2 \) (viewed as a polynomial function of two real variables, with real coefficients), \(|P(x + iy)|^2 = m \).

\(\square \)

Lemma 3. A point where \(|P|^2 \) does not vanish cannot be a local minimum.

Proof. For such a point \(z \), there exists an integer \(k > 0 \) and a complex polynomial \(Q \) such that

\[
P(z + h) = a + h^k Q(h), \quad a = P(z) \neq 0, \quad b = Q(0) \neq 0.
\]

Fix some \(h \in \mathbb{C} \) such that \(\text{Re}(h^k b\overline{a}) < 0 \), and consider the real polynomial

\[
|P(z + th)|^2 = (a + t^k h^k Q(th)) \left(\overline{a} + t^k h^k Q(th) \right) = b_0 + b_k t^k + \ldots + b_{2n} t^{2n},
\]

where \(b_0 = a\overline{a} \), and \(b_k = 2\text{Re}(h^k b\overline{a}) < 0 \). Then, for any \(t > 0 \) small enough (more precisely: \(t \leq 1 \) and \(-b_k / \sum_{j>k} |b_j| \)),

\[
|P(z + th)|^2 - |P(z)|^2 = t^k \sum_{j \geq k} b_j t^{j-k} \leq t^k \left(b_k + t \sum_{j > k} |b_j| \right) < 0.
\]

\(\square \)

When \(k = 1 \), the existence of an \(h \) like in the last proof is obvious. Cauchy used circular functions to justify the existence of such an \(h \), even when \(k > 1 \). The next section gives a more elementarily construction.
3. Two constructive key lemmas

The next lemma pretends to ignore the following inequality, but shows that it happens earlier than expected:

\[
\lim_{k \to +\infty} \Re \left((1 + 3i/k)^k \right) = \cos 3 < 0.
\]

Lemma 4. For any integer \(k \geq 2 \), let \(z_k = 1 + 3i/k \). Then, \(\Re(z_k^k) < 0 \).

Proof. The binomial formula gives a finite alternate sum

\[
\Re(z_k^k) = x_0 - x_1 + x_2 - x_3 + \ldots \text{ where } x_j = \binom{k}{2j}(3/k)^{2j},
\]

whith the comfortable convention that \(\binom{k}{\ell} = 0 \) for any \(\ell > k \).

The first term is \(x_0 = 1 \) and the following ones can be grouped by pairs. For any integer \(p \geq 0 \),

\[
-x_{2p+1} + x_{2p+2} = \binom{k}{4p+2} \left(\frac{3}{k} \right)^{4p+2} \left(-1 + \frac{9(k-4p-2)(k-4p-3)}{(4+4p)(3+4p)k^2} \right) \leq 0.
\]

A more accurate upper bound for the first pair ends the proof:

\[
-x_1 + x_2 < \frac{4(k-1)}{k} \left(-1 + \frac{3(k-2)(k-3)}{4k^2} \right) = -1 - \frac{14k^2 - 33k + 18}{8k^3} < -1.
\]

\[\square\]

This lemma gives the following constructive argument to conlude the proof of the FTA, as claimed at the end of the previous section:

Lemma 5. For any complex number \(c \neq 0 \) and any integer \(k \geq 2 \), there exist an \(h \in \mathbb{C} \) such that \(\Re(h^k c) < 0 \).

Proof. Let \(\alpha, \beta \) be the real and imaginary parts of \(c \). According to the property of \(z_k \) in the previous lemma, in order to get \(\alpha \Re(h^k) - \beta \Im(h^k) < 0 \), just choose:

- if \(\alpha < 0 \): \(h = 1 \),
- if \(\alpha > 0 \): \(h = z_k \) or its conjugate (the one for which \(\beta \Im(h^k) \geq 0 \)),
- if \(\alpha = 0 \) (hence \(\beta \neq 0 \)): \(h = z_{2k} \) or its conjugate, chosen similarly (note that \(\Im(z_{2k}^k) \neq 0 \), since \((\Re(z_{2k}^k))^2 - (\Im(z_{2k}^k))^2 = \Re(z_{2k}^k) < 0 \)).

\[\square\]

References

[3] J. E. Littlewood, Mathematical notes (14): Every polynomial has a root, *J. London Math. Soc. (Ser. 1)* 16 no. 2 (1941) 95-98, http://dx.doi.org/10.1112/jlms/s1-16.2.95

Anne Bauval
Institut de Mathématiques de Toulouse
Équipe Émile Picard, UMR 5580
Université Toulouse III
118 Route de Narbonne, 31400 Toulouse - France
bauval@math.univ-toulouse.fr