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ABSTRACT

We reveal a complexity chasm, separating the trinomial and tetra-

nomial cases, for solving univariate sparse polynomial equations

over certain local fields. First, for any fixed field K ∈ {Q2,Q3,Q5, . . .},

we prove that any polynomial f ∈ Z[x] with exactly 3 monomial

terms, degree d , and all coefficients having absolute value at most

H , can be solved over K within deterministic time logO (1)(dH ) in

the classical Turing model. (The best previous algorithms were of

complexity exponential in logd , even for just counting roots in

Qp .) In particular, our algorithm generates approximations in Q

with bit-length logO (1)(dH ) to all the roots of f in K , and these ap-

proximations converge quadratically under Newton iteration. On

the other hand, we give a unified family of tetranomials requiring

Ω(d logH ) digits to distinguish the base-p expansions of their roots

in K .

CCS CONCEPTS

• Theory of computation→ Algebraic complexity theory; •

Mathematics of computing → Number-theoretic computa-

tions; • Computing methodologies → Number theory algo-

rithms.
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1 INTRODUCTION

Solving polynomial equations over the p-adic rational numbers

Qp underlies many classical questions in number theory, and is

close to numerous applications in cryptography, coding theory,

and computational number theory. Furthermore, the complexity

of solving structured systems — such as those with a fixed number

of monomial terms or invariance with respect to a group action —

arises naturally inmany computational geometric applications and

is closely related to a deeper understanding of circuit complexity

(see, e.g., [17]). So we will classify when it is possible to separate

and approximate roots in Qp in deterministic polynomial-time.

Recall that thanks to 17th century work of Descartes, and 20th

century work of Lenstra [19] and Poonen [23], it is known that uni-

variate polynomials with exactly t monomial terms have at most

tO (1) roots in a fixed field K only when K is R or a finite algebraic

extension of Qp for some prime p ∈ N. We’ll use | · |p (resp. | · |)

for the absolute value on the p-adic complex numbers Cp [25] nor-

malized so that |p |p =
1
p (resp. the standard absolute value on C).

Recall also that for any function f analytic onK , the corresponding

Newton endomorphism is Nf (z) := z−
f (z)
f ′(z)

, and the corresponding

sequence of Newton iterates of a start-point z0 ∈K is the sequence

(zi )
∞
i=0 where zi+1 :=Nf (zi ) for all i ≥ 0. Finally, we call any polyno-

mial in Z[x1, . . . , xn] having exactly t terms in its monomial term

expansion an n-variate t-nomial. We will often use x in place of x1.

Our first main result is that we can efficiently count the roots of

trinomials in Qp , and find succinct start-points in Q under which

Newton iteration converges quickly to all the roots in Qp . We use

#S for the cardinality of a set S .

Theorem 1.1. Suppose K =Qp for some fixed1 prime p ∈N. Then

there is an algorithmwhich, for any input trinomial f ∈Z[x]with de-

gree d and all coefficients of (Archimedean) absolute value

≤H , outputs a set
{
a1
b1
, . . . ,

am
bm

}
⊂Q of cardinalitym=m(K, f ) such that:

1. For all j we have aj ,0 =⇒ log |aj |, log |bj | = O(log
8(dH )).

2. There is a µ=µ(d,H )>1 such that for all j we have that z0 :=aj/bj
implies that f has a root ζj ∈ K such that the corresponding sequence

of Newton iterates satisfies |zi − ζj |p ≤ µ
−2i−1 |z0 − ζj |p for all i ≥ 1.

3.m=#{ζ1, . . . , ζm } is exactly the number of roots of f in K .

Moreover, the underlying algorithm (Algorithm 5.9 in Section 5 be-

low) takes deterministic time O
(
log16(dH ) log log(dH )

)
.

We prove Theorem 1.1 in Section 5. (An analogue of Theorem 1.1 in

fact holds forK =R as well, and will be presented in a sequel to this

1We clarify the dependence of our complexity bounds on p in Section 5.
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paper.) We will call the convergence condition on z0 above being

an approximate root (in the sense of Smale2),with associated true root

ζj . This type of convergence provides an efficient encoding of an

approximation that can be quickly tuned to any desired accuracy.

Remark 1.2. Defining the input size of a univariate polynomial

f (x) :=
∑t
i=1 cix

ai ∈Z[x] as
∑t
i=1 log((|ci | + 2)(|ai | + 2)) we see that

Theorem 1.1 implies that one can solve univariate trinomial equa-

tions, over any fixed p-adic field, in deterministic time polynomial in

the input size. ⋄

Remark 1.3. Efficiently solving univariate t-nomial equations over

K in the sense of Theorem 1.1 is easier for t ≤ 2: The case t =1 is clearly

trivial (with 0 the only possible root) while the case (K, t)= (R, 2) is

implicit in work on computer arithmetic from the 1970s (see, e.g., [9]).

We review the case (K, t)= (Qp , 2) with p prime in Corollary 2.6 and

Theorem 2.16 of Section 2 below. ⋄

Despite much work on factoring univariate polynomials over

Qp (see, e.g., [7, 8, 10, 13]), all known general algorithms for solv-

ing (or even just counting the solutions of) arbitrary degree d poly-

nomial equations overQp have complexity exponential in logd . So

Theorem 1.1 presents a significant new speed-up, and improves an

earlier complexity bound (membership in NP, for detecting roots

in Qp ) from [1]. We’ll see in Section 3 how our speed-up depends

on p-adic Diophantine approximation [35]. Another key new in-

gredient in proving Theorem 1.1 is an efficient encoding of roots

in Z/(pk ) from [12, 18] (with an important precursor in [8]).

1.1 Why is the Field Fixed?

Much as real algebraic geometry fixes the underlying field toK =R

once and for all, our results focus on K =Qp with p fixed once and

for all. In particular, while there are certainly number-theoretic

algorithms with deterministic complexity having dependence (logp)O (1)

on an input prime p, solving sparse polynomial equations in one

variable overQp appears to have much larger complexity as a func-

tion of p. There are naive reasons, and subtle reasons, for this:

R1. Whereas a binomial has at most 3 roots in R (e.g., x3 − x), a bi-

nomial can have as many as p roots inQp (e.g., xp −x). Furthermore,

trinomials have at most 5, 7, 9, or 3p − 2 roots in K , according as K

is R, Q2 [19], Q3 [36], or Qp with p ≥ 5 [4], and each bound is sharp.

R2. Approximating square-roots of p-adic integers not divisible by p,

within accuracy 1, is equivalent to finding square-roots in the finite

field Fp . The latter problem is still not known to be doable in deter-

ministic time polynomial in logp, even though the decision version

is doable in deterministic polynomial-time (see, e.g., [5, 24]).

In particular, even if one only wants to approximate just one or

two roots in Qp , the minimal currently provable accuracy needed

to decide if two approximations converge to the same root appears

to have quasi-linear dependence on p. Interestingly, the truth of

strong forms of the abc-Conjecture would imply a much smaller

and practical dependence on p: See [6, 26] and Section 3 below.

1.2 The Separation Chasm at Four Terms

The p-adic rational roots of sparse polynomials can range from

well-separated to (possibly) tightly spaced, alreadywith just 4 terms.

2This terminology has only been applied over C with µ =2 so far [31], so we take the
opportunity here to extend it to the p-adic rationals.

Theorem 1.4. Consider the family of tetranomials

fd ,ε (x) := xd − ε−2hx2 + 2ε−(h+1)x − ε−2

with h ∈ N, h ≥ 3, and d ∈ {4, . . . , ⌊eh⌋} even. Let H :=max{ε±2h }.

Then fd ,ε has distinct roots ζ1, ζ2 ∈ K with | log |ζ1 − ζ2 |p | or

| log |ζ1 − ζ2 | | of order Ω(d logH ), according as (K, ε) = (Qp ,p) or

(K, ε)= (R, 1/2). In particular, the coefficients of p2h fd ,p (resp. fd , 12
)

all lie in Z and have O(logH ) base-p digits (resp. bits).

We prove Theorem 1.4 in Section 4. The special case K =R was de-

rived earlier (in different notation) byMignotte [21]. (See also [27].)

The case K = Qp with p prime appears to be new, and our proof

unifies the Archimedean and non-Archimedean cases via tropical

geometry. Note that Theorem 1.4 implies that the roots in K of a

tetranomial can be so close that one needs Ω(d logH ) many digits

to distinguish their base-p expansions in the worst case.

Mignotte used the tetranomial fd ,1/2 in [21] to show that an

earlier root separation bound of Mahler [20], for arbitrary degree

d polynomials in Z[x], is asymptotically near-optimal. We recall

the following paraphrased version:

Mahler’s Theorem. Suppose f ∈Z[x] has degree d , all coefficients

of (Archimedean) absolute value at mostH , and is irreducible in Z[x].

Let ζ1, ζ2 ∈C be distinct roots of f . Then | log |ζ1 − ζ2 | |=O(d log(dH )). �

Our new algorithmic results are enabled by our third and final main

result: Mahler’s bound can be dramatically improved for trinomials.

Theorem1.5. Supposep is prime and f ∈Z[x] is square-free, has ex-

actly 3monomial terms, degreed , and all coefficients of (Archimedean)

absolute value at most H . Let ζ1, ζ2 ∈Cp be distinct roots of f . Then

| log |ζ1 − ζ2 |p |=O
(

p

log2 p
log(d) log2(dH + p) log log(dH + p)

)
.

We prove Theorem 1.5 in Section 3. Theorem 1.5 is in fact a p-adic

analogue of a separation bound of Koiran for roots in R [16]. Even

sharper bounds can be derived for binomials: We review these

bounds in Section 2.2.

1.3 Previous Complexity and Sparsity Results

Deciding the existence of roots over Qp for univariate polynomi-

als with an arbitrary number of monomial terms is already NP-

hard with respect to randomized (ZPP, a.k.a. Las Vegas) reduc-

tions [1]. On the other hand, detecting roots over Qp for n-variate

(n + 1)-nomials is known to be doable in NP [1]. Speeding this up

to polynomial-time, even for n=2 and fixed p, hinges upon detect-

ing roots in (Z/(pk ))2 for bivariate trinomials of degree d in time

(k+logd)O (1). The latter problem remains open, but some progress

has been made in author Zhu’s Ph.D. thesis [36].

On a related note, counting points on trinomial curves over the

prime fields Fp in time (log(pd))O (1) remains a challenging open

question. Useful quantitative estimates in this direction were de-

rived in [15] and recently given an alternative proof via quadratic

optimization over R [3].

2 BACKGROUND

2.1 Newton Polygons and Newton Iteration

Definitive sources for p-adic arithmetic and analysis include [25,

28, 29]. We use ordp : Cp −→ Q for the standard p-adic valuation

on Cp , normalized so that ordp p = 1. The most significant (p-adic)

digit of
∑∞
j=s ajp

j ∈Qp is as , assuming the aj ∈ {0, . . . ,p − 1} and as ,0.



The notion of Newton polygon goes back to 17th century work

of Newton on Puiseux series solutions to polynomial equations [32,

pp. 126–127]. We will need variants of this notion over Cp and C.

(See, e.g., [34] for the p-adic case and [2, 22] for the complex case.)

Definition 2.1. Suppose f (x) :=
∑t
i=1 cix

ai ∈ Z[x] with ci , 0 for

all i and a1 < · · · < at . We then define the p-adic Newton polygon,

Newtp (f ) (resp. Archimedean Newton polygon, Newt∞(f )) to be

the convex hull of the set of points {(ai , ordp ci ) | i ∈ {1, . . . , t}}

(resp. the convex hull of {(ai ,− log |ci |) | i ∈ {1, . . . , t}}). We call an

edge E of a polygon in R2 lower if and only if E has an inner normal

with positive last coordinate. We also define the horizontal length of

a line segment E connecting (r , s) and (u,v) to be λ(E) := |u − r |. ⋄

Example 2.2. Following the notation of Theorem 1.4, we set h = 3

and illustrate Newtp
(
f5,p

)
(for p odd) and Newt∞(f5,1/2) below:

Note that the p-adic Newton polygon on the left has exactly 2 lower

edges (with horizontal lengths 2 and 3), while the Archimedean New-

ton polygon on the right has exactly 3 lower edges (with horizontal

lengths 1, 1, and 3). ⋄

Theorem 2.3. Following the notation above, the number3 of roots of

f in Cp of valuation v is exactly the horizontal length of the face of

Newtp (f ) with inner normal (v, 1). Furthermore, if Newt∞(f ) has a

lower edge E with slope v , and no other lower edges with slope in the

open interval (v − log 3,v + log 3), then the number3 of roots ζ ∈C

of f with log |ζ | ∈ (v − log 3,v + log 3) is exactly λ(E). �

The first portion of Theorem 2.3 goes back to early 20th century

work of Hensel, while the second portion is an immediate conse-

quence of [2, Thm. 1.5] (with an important precursor in [22]).

We will also use the following version of Hensel’s famous crite-

rion for the rapid convergence of Newton’s method over Cp :

Hensel’s Lemma. (See, e.g., [11, Thm. 4.1 & Inequality (5.7)].) Sup-

pose p is prime, f ∈ Z[x], j ≥ 1, ζ ∈ Zp , ℓ = ordp f ′(ζ ) < ∞, and

f (ζ ) ≡ 0 mod p2ℓ+j . Let ζ ′ :=ζ −
f (ζ )
f ′(ζ )

. Then f (ζ ′)=0mod p2ℓ+2j ,

ordp f ′(ζ ′)=ℓ, and ζ =ζ ′ mod pℓ+j . �

2.2 Separating Roots of Binomials

When f ∈ Z[x] is a binomial, all of its roots in C are multiples of

roots of unity that are evenly spaced on a circle. The same turns out

to be true over Cp , but the root spacing then depends more subtly

on p and less on the degree. For convenience, we will sometimes

write | · |∞ instead of | · | for the standard norm on C. In summary,

we have the following:

Proposition 2.4. Suppose f (x) := c1 + c2x
d ∈ Z[x], c1c2 , 0, and

|c1 |, |c2 | ≤ H . Also let p ∈ {∞, 2, 3, 5, . . .} and let Kp denote C or

Cp , according as p = ∞ or p is prime. Then for any distinct roots

ζ1, ζ2 ∈Kp of f , we have that | log |ζ1 − ζ2 |p | is bounded from above by

3counting multiplicity




���log(d) + log
(
H1/d

)
+

3
2 log 3

��� ; for p=∞ and d ≥ 3,
���log

(
H1/d

)��� ; for d >pordp d , and
���log

(
H1/d

)
+

logp
p−1

��� ; for d=pordp d ≥p.

Proof: See Appendix of ArXiv version [26]. �

2.3 Counting Roots of Binomials Over Q∗p
For any ring R we let R∗ denote the multiplicatively invertible ele-

ments of R. Counting roots of binomials over Qp is more involved

than counting their roots over R, but is still quite efficiently doable.

Lemma 2.5. Suppose p is an odd prime and f (x) :=c1+c2x
d ∈Z[x]

with |c1 |, |c2 | ≤H , c1c2,0, and ℓ :=ordp d . Then the number of roots

of f in Qp is either 0 or gcd(d,p− 1). In particular, f has roots in Qp
if and only if both of the following conditions hold: (1) d | ordp (c1/c2)

and (2)
(
−
c1
c2
pordp (c2/c1)

)pℓ (p−1)/gcd(d ,p−1)
=1 mod p2ℓ+1. �

Lemma 2.5 is classical and follows from basic group theory and [1,

Cor. 3.2]. The case p = 2 is slightly more involved and is stated in

the Appendix of the ArXiv version of this paper [26].

Corollary 2.6. Following the notation and assumptions of Lemma

2.5, one can count exactly the number of roots of f in Qp in time

O
(
[log(dpH ) log log(dpH )]2

)
. Furthermore, for any root ζ ∈Q∗p there

is an x0 ∈ Z
/(

p2ℓ+1
)
that is a root of the mod p2ℓ+1 reduction of

c1
pordp c1

+
c2

pordp c2
xd , and with z0 :=p

ordp (c2/c1)/dx0 ∈Q an approxi-

mate root of f with associated true root ζ . In particular, the logarith-

mic height4 of z0 is O
(
log

(
dH1/d

))
.

Proof: See Appendix of ArXiv version [26]. �

We now detail how to efficiently find the magical x0 above to start

our p-adic approximations.

2.4 Trees and Roots in Z/(pk ) and Zp
The p-adic analogue of bisecting an isolating interval containing a

real root is to approximate the next base-p digit of an approximate

root in Qp . Shifting from bisecting intervals to extracting digits is

crucial since Qp is not an ordered field. We will write f ′ for the

derivative of f and f (i) for the ith order derivative of f .

Definition 2.7. [18] For any f ∈ Z[x] let f̃ denote the mod p reduc-

tion of f . A root ζ0 ∈ Fp of f̃ is degenerate if and only if f̃ ′(ζ0)= 0

mod p. For any degenerate root ζ0 of f̃ (represented as an element of

{0, . . . ,p − 1}), we then define s(f , ζ0) := mini≥0{i + ordp
f (i )(ζ0)

i ! }.

Fixing k ∈ N, for i ≥ 1, let us inductively define a set Tp,k (f ) of

pairs (fi−1,µ ,ki−1,µ ) ∈ Z[x] × N: We set (f0,0,k0,0) := (f ,k). Then

for any i ≥ 1 with (fi−1,µ ,ki−1,µ ) ∈ Tp,k (f ), and any degenerate

root ζi−1 ∈ {0, . . . ,p − 1} of f̃i−1,µ with si−1 := s(fi−1,µ , ζi−1) ∈

{2, . . . ,ki−1,µ −1}, we define ζ := µ+pi−1ζi−1,ki ,ζ := ki−1,µ −si−1,

fi ,ζ (x) := p
−s(fi−1,µ ,ζi−1) fi−1,µ (ζi−1 + px) mod pki ,ζ , and then in-

clude (fi ,ζ ,ki ,ζ ) in Tp,k (f ). ⋄

4The logarithmic height of a rational number a/b with gcd(a, b) = 1 is simply
logmax{ |a |, |b | } (and we declare the logarithmic height of 0 to be 0).



Example 2.8. If f (x)=x10−10x+738 andp=3 then f̃ (x)=x(x−1)9

mod 3, 1 is a degenerate root of f̃ , and one can check that s(f , 1)=4

(no greater than the multiplicity of the factor x−1 in f̃ ). In particular,

f1,1 has degree 10 (and 10 monomial terms) but f̃1,1=x
3
+ 2x2. ⋄

The collection of pairs (fi ,ζ ,ki ,ζ ) admits a tree structure that

will give us a way to extend Hensel lifting to degenerate roots.

Definition 2.9. [18] Let us identify the elements of Tp,k (f ) with

nodes of a labelled, rooted, directed tree Tp,k (f ) defined inductively

as follows5: (i) We set f0,0 := f , k0,0 := k , and let (f0,0,k0,0) be the

label of the root node of Tp,k (f ).

(ii) The non-root nodes of Tp,k (f ) are uniquely labelled by each

(fi ,ζ ,ki ,ζ ) ∈ Tp,k (f ) with i ≥ 1.

(iii) There is an edge from node (fi−1,µ ,ki−1,µ ) to node (fi ,ζ ,ki ,ζ )

if and only if there is a degenerate root ζi−1 ∈ {0, . . . ,p − 1}

of f̃i−1,µ with s(fi−1,µ , ζi−1) ∈ {2, . . . ,ki−1,µ − 1} and ζ =

µ + pi−1ζi−1 ∈Z/(p
i ). ⋄

We call each fi ,ζ with (fi ,ζ ,ki ,ζ ) ∈Tp,k (f ) a nodal polynomial of

Tp,k (f ). It is in fact possible to list all the roots of f in Z/(pk ) from

the data contained in Tp,k (f ) [12, 18]. We will instead use Tp,k (f ),

with k chosen via our root separation bounds, to efficiently count

the roots of f in Zp , and then in Qp by rescaling.

Example 2.10. Tp,k (x
2) is a chain of length

⌊
k−1
2

⌋
for any p,k . ⋄

Example 2.11. Let f (x) = 1 − x397. Then T17,k (f ), for any k ≥ 1,

consists of a single node, labelled (1 − x397,k), since f̃ has no de-

generate roots in F17. In particular, f has 1 as its only root in Q17. ⋄

Example 2.12. Let f (x)= 1 − x340. Then, when k ∈ {1, 2}, the tree

T17,k (f ) consists of a single root node, labelled (1−x
340,k). However,

when k ≥ 3, the tree T17,k (f ) has depth 1, and consists of the afore-

mentioned root node and exactly 4 child nodes, labelled (f1,ζ0 ,k − 2)

where the f̃1,ζ0 are, respectively, 14x , 12x + 10, 5x + 15, and 3x + 3.

Note that f̃ has exactly 4 roots ζ0 ∈ F17 (1, 4, 13, and 16), each of

which is degenerate, and the roots ζ1 ∈ F17 of the f̃1,ζ0 encode the

“next” base-17 digits (0, 2, 14, and 16) of the roots of f in Z/(172). In

particular, the roots of f in Q17 are 1 + 0 · 17 + · · · , 4 + 2 · 17 + · · · ,

13 + 14 · 17 + · · · , and 16 + 16 · 17 + · · · and are all non-degenerate. ⋄

Nodal polynomials thus encode individual base-p digits of roots

of f in Zp . Their degree also decays in a manner depending on

root multiplicity6 as follows:

Lemma 2.13. [18, Lem. 2.2 & 3.6] Following the notation of Defini-

tion 2.9, suppose i ≥ 1, ζi−1 has multiplicity m over Fp , and

(fi ,ζ ,ki ,ζ ) ∈ Tp,k (f ). Then Tp,k (f ) has depth ≤ ⌊(k − 1)/2⌋ and

deg f̃i ,ζ ≤ s(fi−1,µ , ζi−1) ≤ min{ki−1,µ − 1,m}. Also, fi ,ζ (x) =

1
ps f (ζ0 + ζ1p + · · · + ζi−1p

i−1
+ pix) where s :=

i−1∑

j=0
s(fj ,ζ0+· · ·+ζj−1p j−1 , ζj ). �

Let np (f ) denote the number of non-degenerate roots in Fp of

the mod p reduction of f .

5This definition differs slightly from the original in [18].
6Over any field K , we define the multiplicity of a root ζ ∈ K of f ∈ K [x ] as the
greatestm with (x − ζ )m |f in K [x ].

Lemma 2.14. If f ∈Z[x], D is the maximum of ordp (ζ1 − ζ2) over

all ζ1, ζ2 ∈Zp with f (ζ1)= f (ζ2)=0,ζ1 − ζ2, and k ≥ 1 + D, then f

has exactly
∑
(д, j)∈Tp ,k (f ) np (д) non-degenerate roots in Zp .

Proof: By Lemma 2.13, fi ,ζ (x)=
1
ps f (ζ0 + · · ·+ ζi−1p

i−1
+pix). So

by Hensel’s Lemma, any root ζi ∈ Fp of fi ,ζ lifts to a unique non-

degenerate root ζi + pζi+1 + · · · ∈ Zp of fi ,ζ . In other words, we

obtain ζ0+ζ1p+· · · ∈Zp as a root of f . Any sequence (ζ0, . . . , ζi−1) ∈

Fip defined by a nodal polynomial fi ,ζ thus determines a unique

root in Zp of f , and we thus see that
∑
(д, j)∈Tp ,k (f ) np (д) is a lower

bound on the number of non-degenerate roots of f in Zp .

To see that we obtain all non-degenerate roots of f in Zp this

way, note that the mod pk reduction of any root of f in Zp is a root

of the mod pk reduction of f in Z/(pk ). By the definition of k , the

resulting map is an injection since distinct roots in Zp must differ

somewhere within their 1 + D most significant digits. �

2.5 Trees and Extracting Digits of Radicals

We prove the following useful lemma in Remark 5.7 of Section 5:

Lemma 2.15. Suppose f (x)=c1 + c2x
d ∈Z[x] with c1c2 , 0. Then

every non-root nodal polynomial fi ,ζ for Tp,k (f ) with ζ ∈ (Z/(p
i ))∗

satisfies deg f̃i ,ζ ≤ 2 or deg f̃i ,ζ ≤ 1, according as p=2 or p ≥ 3.

With our tree-based encoding of p-adic roots in place, we can

now prove that it is easy to find approximate roots in Qp for bino-

mials when p is fixed.

Theorem 2.16. Suppose f ∈ Z[x] is a binomial of degree d with

coefficients of absolute value at most H , f (0) , 0, γ = gcd(d,p − 1),

and {ζ1, . . . , ζγ } is the set of roots of f in Qp . Then in time

O
(
p log(dp) log log(dp) + [log(dpH ) log log(dpH )]2

)
,

we can find, for each j ∈ {1, . . . ,γ }, a z
(j)
0 ∈Q of logarithmic height

O
(
log

(
dH1/d

))
that is an approximate root of f with associated

true root ζj .

An algorithm that proves Theorem 2.16, and more, is outlined

below. See the ArXiV version of this paper [26] for the case p=2.

Algorithm 2.17. (Solving Binomial Equations OverQ∗pQ
∗
pQ
∗
p )

Input. An odd prime p and c1, c2,d ∈Z \ {0} with |ci | ≤H for all i .

Output. A true declaration that f (x) :=c1+c2x
d has no roots inQp ,

or z1, . . . , zγ ∈Q with logarithmic heightO
(
log

(
dH1/d

))
such that

γ =gcd(d,p − 1), zj is an approximate root of f with associated true

root ζj ∈Qp for all j, and the ζj are pair-wise distinct.

Description.

1: If ordp c1,ordp c2 mod d then say “No roots in Qp!” and STOP.

2: Rescale roots so that we may replace ci by
ci

pordp ci
for all i .

3: Invert roots (if needed) so that d ≥ 1, and let ℓ :=ordp d .

4: If
(
−
c1
c2

)pℓ (p−1)/γ
,1 mod p2ℓ+1 then say “No roots in Qp!” and STOP.

5: Let д be any generator for F∗p , r := (d/γ )
−1 mod (p − 1), c := (−c1/c2)

r

mod p, and let h̃(x) :=xγ − c .

6: Find a root x1 ∈

{
д0, . . . ,д

p−1
γ −1

}
of h̃ via brute-force search.

7: For all j ∈ {2, . . . ,γ } let x j :=x j−1д
(p−1)/γ mod p.

8: If ℓ≥ 1 then, for each j ∈ {1, . . . ,γ }, replace x j by x j −
f (x j )/p

ℓ

f ′(x j )/pℓ ∈Z/(p
2ℓ+1).

9: Output
{
x1p

ordp (c2/c1)/d , . . . , xγp
ordp (c2/c1)/d

}
.



Remark 2.18. If one allows randomization then one can consider-

ably speed up Step 6: See, e.g., [5, Ch. 7, Sec. 3]. ⋄

Proof of Theorem2.16: It clearly suffices to prove the correctness

of Algorithm 2.17, and then analyze complexity. In particular, we

assume p is odd henceforth. (See [26] for the case p=2.)

Correctness: Theorem 2.3 implies that Step 1 merely checks

whether the valuations of the roots of f inC∗p in fact lie in Z, which

is necessary for f to have roots in Q∗p .

Steps 2 and 3 merely involve substitutions of the form x ← pδx

and x ← x−1, and it is elementary to check that the bit length of

any resulting approximate roots in Q remains within O
(
log

(
dH1/d

))
.

Lemma 2.5 implies that Step 4 merely check that the coset of

roots of f in C∗p intersects Z∗p .

Step 5 is merely the application of an automorphism of F∗p (that

preserves the existence of roots of f̃ in F∗p ) that enables us to work

with a binomial of degree γ (≤d).

Steps 6–9 then clearly find the correct coset of F∗p that makes

f vanish. In particular, since F∗p is cyclic, Step 10 clearly gives the

correct output if ℓ=0.

If ℓ >0 then, because deg f̃1,ζ0 ≤ 1 thanks to Lemma 2.15, Defini-

tion 2.7 tells us that the unique root of f1,ζ0 in Z/(p
2ℓ+1−s ) (with

s :=s(f , ζ0)) determines the next 2ℓ+1−s base-p digits of a unique

root of f in Zp . (See also the proof of [18, Lemma 1.5].) So Steps

7–9 indeed give us suitable approximants in Q to all the roots in

Zp of (our renormalized) f in Zp . So our algorithm is correct.

Note also that the outputs, being numbers in Z/(p2ℓ+1), rescaled

by a factor of pordp (c2/c1)/d , clearly each have bit-length

O
(
ordp (d) log(p) +

| log(c2/c1) |
d logp

logp
)
=O

(
log(d) +

logH
d

)
=O

(
log

(
dH1/d

))
. �

Complexity Analysis: Via Corollary 2.6, [30], and some addi-

tional elementary bit complexity estimates for modular arithmetic

[33], it is clear that, save for Steps 6–9, Algorithm 2.17 has complexity

O(p1/4 log(p) log logp + [log(dpH ) log log(dpH )]2),

provided we use Harvey and van der Joeven’s recent fast multipli-

cation algorithm [14]. Steps 6–7 (whose complexity dominates the

complexity of Steps 6–9), involve
p−1
γ −1 multiplications in Fp and

γ − 1 multiplications in Z/(p2ℓ+1). This takes time no worse than

O(p log(dp) log log(dp)), so we are done. �

3 PROVING THEOREM 1.5

Let us first recall the following version of Yu’s Theorem:

Theorem3.1. [35, Cor. 1] Supposep is any prime,n≥ 2,α1, . . . ,αn ∈

Q with αi = ri/si a reduced fraction for each i , and b1, . . . ,bn ∈ Z

are not all zero. Then α
b1
1 · · ·α

bn
n , 1 implies that αb11 · · ·α

bn
n − 1

has p-adic valuation bounded from above by

11145
(
24(n+1)2

logp

)n+2
(p − 1)

(∏n
i=1 logAi

)
log(4B)

×max
{
log(212 · 3n(n + 1) logAn),

logp
n

}
,

where B :=max{|b1 |, . . . , |bn |, 3}, and A1, . . . ,An are any real numbers

such that A1 ≤ · · · ≤ An and, for each j, Aj ≥ max{|r j |, |sj |,p}. �

To prove that two distinct roots ζ1, ζ2 ∈ Cp of a trinomial f

can not be too close, we will build a special point m ∈ C with

four special properties: (i) f ′(m) = 0, (ii) | f (m)|p is not too small,

(iii) |ζ1 − ζ2 |p ≥p
−1/(p−1) |ζ1 −m |p , and (iv) |ζ1 −m | is not too small.

So let us quantify this approach toward proving Theorem 1.5.

Proposition 3.2. Let f (x) = c1 + c2x
a2 + c3x

a3 ∈ Z[x] with

a3 > a2 ≥ 1, c1 , 0, and suppose m ∈ Cp is a root of f ′. Then

ma3−a2 =−
a2c2
a3c3

and f (m)=c1 + c2m
a2

(
1 − a2

a3

)
. �

Lemma 3.3. Following the notation above, assume further that f is

square-free. Then

| f (m)|p ≥ exp
(
−O

(
p

log2 p
log(d) log2(dH + p) log log(dH + p)

))
.

Proof: First note that if f is square-free then f has no repeated

factors, and thus no degenerate roots in Cp . So f (m),0. By Propo-

sition 3.2 we then obtain ordp f (m) = ordp (c1 + c2m
a2 (1− a2/a3))

= ordp (c1) + ordp (−1) + ordp

(
−c2(a3−a2)

c1a3

(
−
a2c2
a3c3

)a2/(a3−a2)
− 1

)
. (1)

Clearly, ordp c1 ≤
logH
logp

and ordp (−1) = 0. To bound the third

summand above, let T :=
−c2(a3−a2)

c1a3

(
−
a2c2
a3c3

)a2/(a3−a2)
and observe

that T a3−a2 − 1=
∏a3−a2

j=1 (T − ζ
j ) for ζ ∈Cp a primitive (a3 − a2)-

th root of unity. In particular, T a3−a2 , 1 since f (mζ j ) , 0 for all

j ∈ {1, . . . ,a3−a2}, thanks to Proposition 3.2 and f not having any

degenerate roots. So then

M :=ordp (T
a3−a2 − 1) =

∑a3−a2
j=1 ordp (T − ζ

j ) < ∞,

with the (a3 − a2)-th term of the sum exactly ordp (T − ζ
a3−a2 ) =

ordp (T − 1), i.e., the third summand from (1).

Suppose ordp T <0. Then for each i ∈ {1, . . . ,a3 −a2}, the Ultra-

metric Inequality gives us ordp (T − ζ
j ) = ordp T < 0, since roots

of unity always have p-adic valuation 0. We must then have

ordp f (m) = ordp (c1) + ordp (T − ζ
a3−a2 ) <

log(dH )
logp

and we obtain our lemma.

On the other hand, should ordp T ≥ 0, we get ordp (T − ζ
j ) ≥

j ordp (ζ ) = 0, for each j, by the Ultrametric Inequality. So M ≥

ordp (T − 1) and we’ll be done if we find a sufficiently good upper

bound onM .

By luck,M is boundable directly fromTheorem 3.1, upon setting

n = 2, α1 = −c2
a3−a2
c1a3

, α2 = −
a2c2
a3c3

, b1 = a3 − a2, and b2 = a2. In

particular, we can use Ai = max{dH ,p} for i ∈ {1, 2} and B =

max{d, 3}, yielding logA1, logA2, logB = O(max{log(dH ), logp}),

so thatM ≤Cp log2max{dH ,p} log(4max{d, 3})

×max
{
log

(
18 · 212 logmax{dH ,p}

)
,
logp
2

}/
log4 p

for C=11145 · 2164. So then

M =O
(

p

log4 p
log2(dH + p)(logd)(log log(dH + p) + logp)

)

= O
(

p

log4 p
log(d) log2(dH + p) log log(dH + p) logp

)

= O
(

p

log3 p
log(d) log2(dH + p) log log(dH + p)

)
.

In other words, the third summand from (1) is bounded from above

by the lastO-bound, and thus ordp f (m)=O(M) since
logH
logp
=O(M).

Since | f (m)|p =e
− log(p) ordp f (m), we are done. �

Thanks to the Ultrametric Inequality we can effectively bound

| f ′(x)|p for |x |p ≤ 1 with f ′(x) , 0.

Proposition 3.4. Following the notation and assumptions of Lemma

3.3 we have |x |p ≤ 1 =⇒ | f ′(x)|p ≤ 1. �



The following is a rescaled version of a p-adic version of Rolle’s

Theorem that appeared in [25, Sec. 2.4, Thm., Pg. 316]

Theorem 3.5. Let f ∈ Cp [x] have two distinct roots ζ1, ζ2 ∈ Cp

with |ζ1 − ζ2 |p = cp
1/(p−1) for some c > 0. Then f ′ has a rootm ∈Cp

with |ζ1 −m |p , |ζ2 −m |p ≤c . �

We can now prove one of our main results.

Proof of Theorem 1.5: For convenience, let us abbreviate the

stated O-bound by O(M). Note that if one of the ζi is 0 then the

other root ζj has valuation satisfying ordp ζj ≤
logH
logp

, thanks to

Theorem 2.3. So then

| log |ζi − ζj |p |= | log |ζj |p |=
���log e− log(p) ordp ζj

���
= | − log(p) ordp ζj | ≤ logH =O(M).

So we may assume ζ1ζ2,0 and f (0),0.

Case 1: (Both roots are small: |ζ1 |p , |ζ2 |p ≤ 1|ζ1 |p , |ζ2 |p ≤ 1|ζ1 |p , |ζ2 |p ≤ 1.)

Suppose |ζ1 − ζ2 |p > p−2/(p−1). Then |ζ1 − ζ2 |p > e−2 log(p)/(p−1).

Since 2 log(p)/(p − 1) = O(M) we are done.

Now assume that |ζ1 − ζ2 |p ≤ p−2/(p−1). Then by Theorem 3.5

there is anm ∈ Cp such that f ′(m) = 0 and

|ζi −m |p ≤ p1/(p−1) |ζ1 − ζ2 |p ≤ p−1/(p−1)

for all i ∈ {1, 2}. Note that the Ultrametric Inequality implies that

|m |p ≤p
−1/(p−1).

Since f is square-free, Lemma 3.3 implies that | f (m)|p ≥ e−O (M ).

Applying Theorem 3.5 toд(x) := f (x)−
f (m)−f (ζ1)

m−ζ1
x−

mf (ζ1)−ζ1f (m)
m−ζ1

(which vanishes at m and ζ1), we then see that there is a ζ ∈ Cp
with |ζ − ζ1 |p ≤ 1 (and thus |ζ |p ≤ 1) such that д′(ζ ) = 0, i.e.,

f (m) = f (m) − f (ζ1) = f ′(ζ )(m − ζ1). As f (m) , 0 we get

f ′(ζ ) , 0 andm , ζ1. From Proposition 3.4 we have | f ′(ζ )|p ≤ 1,

so then |m − ζ1 |p =
|f (m) |p
|f ′(ζ ) |p

≥ e−O (M ). We thus get |ζ1 − ζ2 |p ≥

p−1/(p−1) |m − ζ1 |p ≥ e
−O (M )−

logp
p−1 =e−O (M ). �

Case 2: (Both roots are large: |ζ1 |p , |ζ2 |p > 1|ζ1 |p , |ζ2 |p > 1|ζ1 |p , |ζ2 |p > 1.)

See the Appendix of the ArXiv version of this paper [26]. �

Case 3: (Only one root has norm > 1> 1> 1.)

Without loss of generality, we may assume that |ζ1 |p ≤ 1 < |ζ2 |p .

We then simply note that, as |ζ1 |p , |ζ2 |p , we have |ζ1 − ζ2 |p =

max
{
|ζ1 |p , |ζ2 |p

}
>1 and we are done. �

4 PROVING THEOREM 1.4

4.1 The Case of Prime ppp

Let д(x) = p2h f (x + ph−1) = p2h (x + ph−1)d − p2h
(
x+ph−1

ph
− 1

p

)2

= p2h (x +ph−1)d − x2. Then д has the same roots as fd ,p , save for

a “small” shift by ph−1. Rescaling, we get G(x) :=
д(p(h−1)d/2+hx )

p(h−1)d+2h

= p−(h−1)d−2h
[
p2h (p(h−1)d/2+hx + ph−1)d − p(h−1)d+2hx2

]

=

∑d
i=0

(d
i

)
p(h−1)(di/2−i)+ihx i − x2 = 1 − x2 mod pd (h−1)/2+1,

which is square-free for odd prime p. (The case of p = 2 is in the

Appendix of the ArXiv version of this paper [26].) Hensel’s Lemma

then implies that there are roots ζ1, ζ2 ∈ Zp of G such that ζ1 ≡ 1

mod pd (h−1)/2+1 and ζ2 ≡ −1 mod pd (d−1)/2+1.

So |ζ1 |p = |ζ2 |p = 1. For each i ∈ {1, 2}, yi = p(h−1)d/2+hζi is

the corresponding root of G, and thus of д. Then x1 = y1 + p
h−1

and x2 = y2 +p
h−1 are two roots of f in Zp such that |x1 − x2 |p =���(y1 + ph−1) − (y2 + ph−1)

���
p
= |y1 − y2 |p ≤ max

{
|y1 |p , |y2 |p

}
=

p−(h−1)d/2−h = p−Ω(dh). �

4.2 The Case p=∞p=∞p=∞

While this case was derived earlier in [21], we provide a new proof

based entirely on the Archimedean Newton polygon in the Appen-

dix to the ArXiv version of this paper [26].

5 SOLVING TRINOMIALS OVER Qp
Unlike the binomial case, the tree Tp,k (f ) can have high depth for

large k and f an arbitrary trinomial. However, Lemma 5.2 below

will show that the structure of Tp,k (f ) is still simple: Depth no

greater than ⌊(k − 1)/2⌋, and all but possibly one path in Tp,k (f )

having more than 2 vertices of out-degree ≥ 2. We will prove an

upper bound on k that is large enough to count all roots in Zp (via

Lemma 2.14), but still small enough for us to approximate all these

roots in time p5+o(1) log16+o(1)(dH ).

We begin with a central bound, derived via Theorem 3.1:

Theorem 5.1. If f (x)=c1 + c2x
a2 + c3x

a3 ∈Z[x] is a trinomial of

degree d =a3 > a2 ≥ 1, with coefficients of absolute value at most H ,

then
∑

ζ ∈Zp : f (ζ )=ordp ζ =0,f ′(ζ )

ordp f ′(ζ )=O(p2 log8(dH )).

Proof: See Appendix of ArXiv version [26]. �

Lemma 5.2. Following the notation and assumptions of Theorem

5.1, every non-root nodal polynomial fi ,ζ ofTp,k (f )with ζ ∈ (Z/(p
i ))∗

satisfies deg f̃i ,ζ ≤ 4, deg f̃i ,ζ ≤ 3, or deg f̃i ,ζ ≤ 2, according as p=2,

p=3, or p ≥ 5.

Example 5.3. Recalling Example 2.8, which had

f (x)=x10 − 10x + 738,

observe that T3,7(f ) is a chain of length 2. In particular, f̃1,1(x) =

x2(x − 1), 0 is a degenerate root of f̃1,1, and s(f1,1, 0) = 2. We can

then easily calculate that f̃2,1(x)=2(x − 1)(x − 2) mod 3.

There are a total of 4 non-degenerate roots in F3 for the nodal poly-

nomials: 1 for f̃0,0, 1 for f̃1,1, and 2 for f̃2,1. These non-degenerate

roots in F3 then lift to the following roots of f in Z3: 0 + O(31),

1+ 1 · 3+O(32), 1+ 0 · 3+ 1 · 32 +O(33), and 1+ 0 · 3+ 2 · 32 +O(33).

A quick calculation via Maple’s rootp command tells us that these

are all the 3-adic rational roots of f . ⋄

Example 5.4. One can check that for f (x) :=x10+11x2−12, the tree

T2,8(f ) is isomorphic to . In particular, this f has exactly 6 roots

in Q∗2: f̃2,2 = f̃2,1 = f̃2,3 = x
2
+ x and each of these (terminal) nodal

polynomials has exactly 2 non-degenerate roots in F2. Remembering

the earlier digits encoded in T2,8(f ), these 6 roots then each lift to a

unique root of f in Z2. Note that f̃1,1(x)=x
4
+ x2 has degree 4. ⋄

Example 5.5. Composing Example 2.8 with x2, let us take f (x) :=

x20 − 10x2 + 738. One then sees that the tree T3,7(f ) is isomorphic to

. In particular, this f has exactly 8 roots in Q∗3, each arising as a

Hensel lift of a non-degenerate root in F3 of some nodal polynomial:



f̃1,0, f̃1,1, f̃2,1, f̃1,2, and f̃2,8 respectively contribute 2, 1, 2, 1, and 2

roots. Note that f̃1,2(x)=x
3
+ 2x2 + x has degree 3. ⋄

To prove Lemma 5.2 we will need a powerful result of Lenstra

[19] on the Newton polygons of shifted sparse polynomials. First,

let us define dm (r ) to be the least common multiple of all integers

that can be written as the product of at most m pairwise distinct

positive integers that are at most r , and set dm (r ) :=1 ifmr =0.

Theorem 5.6. [19, Sec. 3] Suppose f ∈ Q[x] is a t-nomial, д(x) =

f (1 + px), and r is the largest nonnegative integer such that

r − ordp dt−1(r ) ≤ max
0≤j≤t−1

{j − ordp (j!)}. Then any lower edge of

Newtp (д) with inner normal (v, 1) with v ≥ 1 lies in the strip [0, r ] × R. �

We point out that the vector of parameters (t, r ,v) from our state-

ment above would be (k+1,m, ν (x−1)) in the notation of [19], and

the parameter r there is set to 1 in our application here.

Proof of Lemma 5.2: First note that replacing x by cx , for any

c ∈ {1, . . . ,p − 1}, preserves the number of roots of f in Zp and (up

to relabelling the ζ in the subscripts of the fi ,ζ ) the tree Tp,k (f ).

So to study f1,ζ0 with ζ0 ∈ {1, . . . ,p − 1}, it suffices to study f1,1.

Note that the lower hull of any Newton polygon can be iden-

tified with a piecewise linear convex function on an interval. In

particular, f1,1(x) = p
−s(f ,1) f (1 + px) and thus the lower hull of

Newtp (f1,1) can be identified with the sum of the lower hull of

Newtp (f (1 + x)) and the function x − s(f , 1). Note also that by

the definition of Newtp , the minimal y-coordinate of a point of

Newtp (f (1 + px)) is exactly s(f , 1). Theorem 5.6 then tells us that

all lower edges of Newtp (f1,1) of non-positive slope lie in the strip

[0, r ] × R, where r is the largest nonnegative integer such that

(⋆) r − ordp d2(r )≤ εp
where ε2 = 1 and εp = 2 for all p ≥ 3. In particular, the defini-

tion of Newtp (f1,1) tells us that p divides the coefficient of x j in

f1,1 for all j ≥ r + 1 and thus deg f̃1,1 ≤ r . By Lemma 2.13, all

other non-root nodal polynomials fi ,ζ with ζ , 0 mod p satisfy

deg f̃i ,ζ ≤ deg f̃1,1. So it suffices to prove that r satisfies the stated

bounds of our lemma. This is easily verified by first observing that

d2(0)=d2(1)=1 and d2(2)=2. So Inequality (⋆) certainly holds for

r ∈ {0, 1, 2}, regardless of p. Observing that d2(3)=6 and d2(4)=24,

we then see that Inequality (⋆) holds at r =4 (resp. r =3) when p=2

(resp. p=3).

So it is enough to show that:

(i) r − ord2 d2(r )≥ 2 for r ≥ 5, (ii) r − ord3 d2(r )≥ 3 for r ≥ 4, and

(iii) r − ordp d2(r )≥ 3 for r ≥ 3 and p ≥ 5.

From [19, Prop. 2.4], we have ordp d2(r )≤ 2
log r
logp

. Note that, for any

fixed p, the quantity r − 2
log r
logp

is an increasing function of r for

r ≥ 2
logp

. Furthermore,
⌈
7 − 2

log 7
logp

⌉
≥ 2 for all p ≥ 2 and

⌈
5 − 2

log 5
logp

⌉
≥ 3

for all p ≥ 3. Noting that d2(5)=120 and d2(6)=360, it is then easily

checked that (i)–(iii) all hold. �

Remark 5.7. The proof of Lemma 2.15 is simply the variation of the

proof above where we replace Inequality (⋆) by r − ordp d1(r )≤ 1. ⋄

Lemma 5.8. For any trinomial f ∈ Z[x] with f̃ (0) , 0 mod p, we

can compute the mod p reductions of all the nodal polynomials of

Tp,k (f ) in time p1+o(1)k2+o(1).

Proof: By Lemma 2.13, Tp,k (f ) has depth ≤
⌊
k−1
2

⌋
. By Lemma 5.2,

all non-root nodal polynomials have mod p reduction of degree no

greater than 4. Thus, the root of Tp,k (f ) has at most p − 1 children

(since f̃ (0) , 0), and any node at depth ≥ 2 has no more than 2

children (since a degree 4 polynomial has at most 2 degenerate

roots). Lemma 2.13 also tells us that deg f̃i ,µ+pi−1ζi−1 is at most the

multiplicity of ζi−1 as a root of f̃i−1,µ . So any node v that has an

ancestor at level ≥ 2 with 2 children can have no more than 1 child.

Thus, there can be no more than 2(p − 1) nodes at depth i ≥ 3. It is

then clear that Tp,k (f ) has at most 1+
(
2
⌊
k−1
2

⌋
− 1

)
(p − 1) nodes.

Now, note that the coefficient of x i in the monomial term ex-

pansion of c(µ +px)a mod p j is simply c
(a
i

)
µa−ipi mod p j . Since f

is a trinomial, and Lemma 2.13 tell us that fi ,ζ (x)=p
−s f (µ + px)

mod p j for suitable (s, µ, j), we can then clearly compute the co-

efficients of x0, . . . , x4 of any non-root nodal polynomial mod pk

using O(logp) multiplications and O(1) additions. This takes time

O(k log2(p) log(k logp)) via fast modular arithmetic [33], provided

we use Harvey and van der Joeven’s recent fast multiplication al-

gorithm [14]. Summing over all non-root nodal polynomials, and

noting that the cost of reduction mod p is negligible compared to

the complexity of our earlier steps, we are done. �

We can now outline the algorithm that proves Theorem 1.1.

Algorithm 5.9. (Solving Trinomial Equations OverQ∗pQ
∗
pQ
∗
p )

Input. A prime p and c1, c2, c3,a2,a3 ∈Z \ {0} with |ci | ≤H for all

i and 1≤a2<a3=:d .

Output.A true declaration that f (x) :=c1+c2x
a2+c3x

a3 has no roots

in Qp , or z1, . . . , zm ∈ Q with logarithmic height O
(
p2 log8(dH )

)

such thatm is the number of roots of f in Qp , zj is an approximate

root of f with associated true root ζj ∈Qp for all j, and #{ζj }=m.

Description.

1: If ordp c1,ordp c2 mod a2 and ordp c2,ordp c3 mod a3−a2 then

say “No roots in Qp!” and STOP.

2: Rescale and invert roots if necessary, so that we may assume

p ∤ c1c2 and ordp c3 ≥ 0.
3: Compute the mod p reductions of all the nodal polynomials of

Tp,k (f ), for k :=2D + 1 where D ≥ max
ζ ∈Zp : ordp ζ =0

ordp f ′(ζ ).

4: Use Hensel Lifting to find the first 2D + 1 base-p digits of all the

non-degenerate roots of f in Zp of valuation 0.

5: Via Algorithm 2.17 (or its p=2 version) find the first O(log(dH ))

base-p digits of all the degenerate roots of f .

6: If p |c3 then rescale and invert roots to compute approximants for

the remaining roots of f in Qp by computing roots of valuation 0

for a rescaled version of f with coefficients reversed.

Proof of Theorem 1.1: First note that 0 can not be a root since

f (0),0 by assumption. So we can focus on roots inQ∗p . The height

bound for our approximate roots from Assertion (1) follows di-

rectly from Step 3. Assertion (2) follows easily from Theorem 5.1:

Steps 3 and 4 (which use Hensel’s Lemma) imply a decay rate of

O(p−(2D+2
i )) for the p-adic distance of the ith Newton iterate to

a true root. So the decay rate is no worse than O((p−1/(2D+1))2
i
),

and thus Assertion (2) holds with µ=p1/O (p
2 log8(dH )).

Assertion (3) on correctly counting the roots of f in Qp follows

immediately from Steps 3–5.



So all that remains is to prove correctness (including elaborating

Step 5) and to do a sufficiently good complexity analysis.

Correctness: Thanks to Theorem 2.3, Step 1 merely guarantees

that f has roots of integral valuation, which is a necessary condi-

tion for their to be roots in Qp . Step 2 merely involves simple sub-

stitutions that only negligibly affect the heights of the coefficients,

similar to the binomial case.7 Steps 3 and 4 correctly count the

number of non-degenerate roots of f in Zp of valuation 0, thanks

to Lemma 2.14.

For Step 5, since 0 is not a root, we can rearrange the equa-

tions f (ζ ) = ζ f ′(ζ ) = 0 to obtain that ζ ∈ Q∗p is a degenerate

root of f if and only if [c1, c2ζ
a2 , c3ζ

a3 ]T is a right null-vector for

B :=
[
1 1 1

0 a2 a3

]
. Since [a3−a2,−a3,a2]

T generates the right null-

space of B we must have (a3 −a2)c2ζ
a2 =−c1a3 and −a3c3ζ

a3−a2 =

c2a2. Via an application of the Extended Euclidean Algorithm, we

can find R, S ∈ Z with Ra2 + S(a3 − a2)= gcd(a2,a3) and the loga-

rithmic heights of R and S of orderO(logd). So by multiplying and

dividing suitable powers of our binomial equations, we get that ζ

must satisfy the single equation ((a3−a2)c2)
R (−a3c3)

Sζ gcd(a2,a3)=

(−c1a3)
R (c2a2)

S . The latter equation can be solved easily, within

our overall time bound, via Algorithm 2.17. Note in particular that

while the coefficient heights lookmuch larger, any root ζ ultimately

satisifies the original pair of binomials, thus implying ζ must have

low logarithmic height.

Step 6 merely takes care of the remaining roots, at negligible

affect to the coefficient heights.

Note that we do need to renormalize the roots at the end, due to

the various rescalings, but this adds a neglible summand ofO(logH )

to the logarithmic heights of the roots. So we are done. �

Complexity Analysis: Steps 3–4 dominate the overall complex-

ity: Theorem 5.1 tells us that we can take D=O
(
p2 log8(dH )

)
, and

thus Lemma 5.8 (combined with the known upper bounds on the

number of p-adic rational roots of a trinomial [4, 19]) implies that

the complexity of Steps 3–4 is no worse than

O
(
p5 log3(p) log16(dH ) log(p log(dH ))

)
,

assuming we employ brute-force search to find the roots in Fp of

the mod p reductions of the nodal polynomials. �
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