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Fundamental Idea: Theorems about ex1stente of roots
are close to the P vs. NP Problem. Theorems about the
deeper structure of polynomials are close to derandomization, )
i.e., the P vs. BPP Problem [Koiran, '11; Dutta, Saxena, Thlerauf Pl
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I%IIM‘TD;O‘EMZOO + '6'612101111 + 2111‘[1191“230'65 + 'C ZZO%Z“l + 01‘126 1‘61I12T68 21009("6?811 11211361‘ 1:15661‘68:{-?“‘
33 94,.50,.82 6 6,24 9,25 25203 20,,.167,64,.12, 68 _ 58 194 24 36 2 21 166_68 343
1 1'1 Ty Ty +11121Ji115+11’111’l )/+2'I Ty lelx + 17 11’1 1’Li -2 (}9(11x}1x 114 1 a*f‘lfé €Ty 1'51,

.’1“{“",1‘;94 %U 82, °U+ 1’(’1540141'1 + 1”1m z) ”+ If 15051'3“11%»211 126 1241]121(’8 20754(1{81594151101)’72%.’1%66.’1;?8,’1‘?43),

has exactly 2, 6, 6, 2, 2, or 0 positive roots, respectively
7 1 1 1 1 1

when ¢ IS 357, 55730 Tisea» 14391 130567 T3058 -
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Motivation & Background

Main Theorem (coarsely)

[Rojas, 2020] For any fixed n, one can exactly count the
roots in R, (R*)", and R™ of any generic (n + 2)-nomial
n X n polynomial system over Q in deterministic
polynomial-time.

Example: In <1 second, we can see that the 7-nomial
5 x b system defined by

7 - 9 16 B
(21“1104‘[70?“”660 n r«ﬁzuozjllr’ T 114111‘)1?111 + 4 120'3144.64 + _52011611(141121‘(8 3/13/61781&%1‘?4116 25 : .‘\15(161,2&1‘2-13‘

92 9 2 25 21 166 343
% 194 70_6242 60‘\'21’61 4011111 +I/411/912).65 + TZ T20¥r44z4+l 011671\24‘1‘1 168 248490‘[58”6;01”6“1261 -11‘:15661‘2&1?243‘

9 95 21 343
1361191z§0r52100+ryszmzfl +2Z”‘E£/q‘t§°‘65 +rz zmz“l_ﬁ»a 0667161‘112_[68721009(.6?81?11211361 1:1;6612%;13‘
2 92 2 2 21
36 191100182¢60+116J210Ji115+Ilrlllr9l25l3/+2120J 03L11“+1 011611617(12168 20769(&81%911 1126120771’,;661’,281_21{
ap 91 166 AR 24
36,,101,.50 az ou 76,240, 41 74,179,095, 57 | 25, 203, 44 167,.64,.12, 68 or 58,104, 243625 21 16668, 343
[ R AR R R S A T i A S e 1311+211 Ty sy wy — 20754cx my ws Ty 1y — 7% Ty )
f

‘N

has ea:actly 2,6, 6, 2 2, or0 posztwe roots, respectively 4 ;‘-

T R S T
when ¢ is 57, 5700 T 1T+ 309 Toe - (Derting quickly dies. )%
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Motivation & Background

Main Theorem (coarsely)

[Rojas, 2020] For any fixed n, one can exactly count the
roots in R, (R*)", and R™ of any generic (n + 2)-nomial
n X n polynomial system over Q in deterministic
polynomial-time.

Example: In <1 second, we can see that the 7-nomial
5 x b system defined by

7 a710m 9 16 34:
(21“1104‘[70‘6“”660‘\-‘C(ﬁzuozillr,+ll4IllOI§)I”+I 08y, | g Wl B 12,08 3710 \ 1012,36,25 _ ‘ibﬁl‘i&I;U,
o001y 030 | 97020541 74,179, 25, 57 | 25,203 44 20, 167 £ YOO o8,,194,21, 36, 25 ’l 166,68, 343
O S e b S S i o s I o z4+1 i leﬁn Ty T TS — Ty T

3 o P 95 21 34
I%Grlglzoi(]r%zzb() + r’szmzill + :)zllrilqtlor + 'C% 7 203 \\. 0“ o :I‘ff[ﬁs _ 21009("6?81?11211361‘ 1:15661281:;13‘

2 9t 2 2 21
36 191100182‘1/60‘\‘1(6‘1 lo‘lill +I!11119 Y ‘ZAE) g ‘14+1 01161 61 12 687')0769(‘[{8‘1%91‘1 112612077‘1:;661:381.%13;

\]e

ap 91 166 AR 24

36,,101,.50 az ou 76,240, 41 203, 44 167,.64,.12, 68 or 58,104, 243625 21 16668, 343

[ + a7y Ty v+ 1y - +11 Ty T3 Ty +211 Ty sy wy — 20754cx my ws Ty 1y — 7% Ty )
.-

has exactly 2,6, 6, 2, 2, or0 posztwe roots, respectively

7 1 1 1 1 ey
when ¢ 1S 3537s 55730 14393 T4391° 13059 13058 (Bertmz quickly dies. )%=
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
i
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.xr €R™ be any points
not all lying in an affine hyperplane,
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.xr €R™ be any points
not all lying in an affine hyperplane, and

An, 4

. . a
write z% =" - - xy
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.xr €R™ be any points
not all lying in an affine hyperplane, and

An, 4

. . ai g
write z% =" - - xy

Real Fewnomial Theorem™. Any real (n + k)-nomial
n X n polynomial system of the form...
RN

11T + -+ Cp pypxtntk

P = f)

Cn,lxal + -+ Cn,’rz—&-kl‘amuC
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.xr €R™ be any points
not all lying in an affine hyperplane, and

An, 4

. . ai g
write z% =" - - xy

Real Fewnomial Theorem™. Any real (n + k)-nomial
n X n polynomial system of the form...
RN

CLar™ + -+ etk

Cn,lxal + -+ Cn,’rz—&-kl‘amuC

k=1)(k=2)/2 ), k1

2 .
has no more than <32 non-degenerate roots in R} .
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.xr €R™ be any points
not all lying in an affine hyperplane, and

An g

. . ai g
write z% =" - - xy

Real Fewnomial Theorem™. Any real (n + k)-nomial
n X n polynomial system of the form...
W S i

11T + -+ Cp pypxtntk

Cn,lxal + -+ Cn,’rz—&-kl‘amuC
F=DE=D2pk=1 pon-degenerate roots in R

min{n,k—1}

[Bihan, Rojas, Sottile '07]: 3 systems with \\mig{tf.;il}J positive roots.: {}

2
has no more than %2(
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ¢; ; €R for all
1,7, let ay,...,a,.x €R™ be any points
not all lying in an affine hyperplane, and

An g

. . ai g
write z% =" - - xy

Real Fewnomial Theorem™. Any real (n + k)-nomial
1 X n polynomial system of the form...

crax + -+ e g tE

| F = (fla"'?fn):

Cp1 T + -+ Cp g tE

e +32(k 1)(k— 2)/2 k-1

has no more than non-degenerate roots in R} ,

[Bertrand, Bihan, Sottile '06]: Tight bound for k = 2 of £>
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2010s

2

Theorem. [Biirgisser, Ergiir, Tonelli-Cueto, 2019] For an
(n + k)-nomial n x n system with independent standard real
Gaussian coefficients
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2010s

Theorem. [Biirgisser, Ergiir, Tonelli-Cueto, 2019] For an
(n + k)-nomial n x n system with independent standard real

Gaussian coefficients and fixed support not lying in an affine
hyperplane,
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Motivation & Background

Fewnomials and the Quest for Tight Bounds: 2010s

Theorem. [Biirgisser, Ergiir, Tonelli-Cueto, 2019] For an
(n + k)-nomial n x n system with independent standard real
Gaussian coefficients and fixed support not lying in an affine

. *\n - 1 (n+k
hyperplane, the average number of roots in (R*)" is <1 ("}").
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any

DeN and ceQ..
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any

DeN and ce Q. Counting bit operations, we get time
O (size(zf — ¢)*).
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any

DeN and ce Q. Counting bit operations, we get time
O (size(zf — ¢)*).

A
\ / u Ccv
-

APV
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any
DeN and ce Q. Counting bit operations, we get time

O (size(zf — ¢)*).

A

, /=.| Trouble? _ |
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any

DeN and ce Q. Counting bit operations, we get time
O (size(zf — ¢)*).

, /_, Dlog|ul i log e[+ Dlogv|

T l

<
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Fewnomials and Number Theory

Bisection — Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(log D) steps of bisection are
enough to get you a succinct approximant to {/c for any

DeN and ce Q. Counting bit operations, we get time
O (size(zf — ¢)*).

, /_, Dlog|ul i log e[+ Dlogv|

<

[Baker, 1966] If a;,b; € Z with A:=max; log|a;|,
B:=max; log |b;|, and A:=>_ b;log a;, then

i=1
A#0 = |log|A||=0(A)"log B.
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Fewnomials and Number Theory

Real Univariate Trinomials?

eDeciding the sign of a trinomial f€Q[z] at z€Q in time
(size(f) + height(2))°() is an open problem! -
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Fewnomials and Number Theory

Real Univariate Trinomials?

eDeciding the sign of a trinomial f€Q[z] at z€Q in time
(size(f) + height(2))°() is an open problem! -

eSo bisection is obstructed!
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Fewnomials and Number Theory

Real Univariate Trinomials?

eDeciding the sign of a trinomial f€Q[z] at z€Q in time
(size(f) + height(2))°() is an open problem! -

eSo bisection is obstructed!

eDespite nice progress by [Jindal, Sagraloff, 2017 on coarse
approximants,
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Fewnomials and Number Theory

Real Univariate Trinomials?

eDeciding the sign of a trinomial f€Q[z] at z€Q in time
(size(f) + height(2))°() is an open problem!

eSo bisection is obstructed!

eDespite nice progress by [Jindal, Sagraloff, 2017 on coarse
approximants, real root counting in time (¢log(dH))°™ 1
still an open problem!
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n X n system F over Q,
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane,
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a

common affine hyperplane, and coefficient matriz [c; ;| of
rank* n,
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,

Counting Real Roots in Polynomial-Time



Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of

rank® n, we can count exactly its number of roots in R,
*\Nn
(R*)",
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of

rank® n, we can count exactly its number of roots in R,
(R*)™, and R",
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,
(R*)™, and R™, in deterministic time

O(nlog(nd) + n?log(nH)))* 4.
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,
(R*)™, and R™, in deterministic time

O(nlog(nd) + n?log(nH)))* 4.

eKey new ingredients are a refined version of Liouwville’s
Theorem,

Counting Real Roots in Polynomial-Time



Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,
(R*)™, and R™, in deterministic time

O(nlog(nd) + n?log(nH)))* 4.

eKey new ingredients are a refined version of Liouwville’s
Theorem, and a theorem of [Baker, Wustholtz, 1993]
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,
(R*)™, and R™, in deterministic time

O(nlog(nd) + n?log(nH)))* 4.
eKey new ingredients are a refined version of Liouwville’s

Theorem, and a theorem of [Baker, Wustholtz, 1993] on
linear combinations of logs in algebraic numbers...
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Faster Real Root Counting for Circuit Systems

Exact Counting for (n + 2)-nomial n X n Systems

Main Theorem. [Rojas, 2020] For any (n + 2)-nomial
n x n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matriz [c; ;| of
rank® n, we can count exactly its number of roots in R,
(R*)™, and R™, in deterministic time

O(nlog(nd) + n?log(nH)))* 4.

eKey new ingredients are a refined version of Liouwville’s
Theorem, and a theorem of [Baker, Wustholtz, 1993] on
linear combinations of logs in algebraic numbers...

eSufficiently refined versions of the abc-Conjecture can
reduce the complexity to polynomial in n...
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Faster Real Root Counting for Circuit Systems

Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5 x 5 example can
be reduced to

: - - —142 32 -3
.Tjh J4 Hb H 2&5 — 16384(’1{87‘;947‘3 142 2 521:551&+7
4

IiGJ:Z)lOIS—I% 1211—312 _ 40966‘1‘)813191]3;“2 =32

5
QT plTog 11408, =286 = 236y
I Ty Ty T =
<54J 16¢2 YJXI,I%I,—HZ

ZUJ 7I22 70/

25
1715

102 —56_—975
2[) 1(/ lL].I4ubIalm — 6_[»811‘)-11 112
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Faster Real Root Counting for Circuit Systems

Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5 x 5 example can
be reduced to

o 1

- - - ) —32 —
.Tjh J4 Hb H 2&5 — 16384(’1 ,\éerLLlr 14 y 52.1:551&+1
IiGJ:Z)lOIS—I% 1211;312 _ 40966‘1‘)813191 ;112 —32 —’518 1
a:{*aé’Ja‘;{l"lz';(’&:(,'gzg(’ _ QJG(JJB 1J4 —142 1—52 518 41

95 7 122 —6T -

fl/'f')f;mfg Izl (:/ _ 16¢1 YJXI.|94I. 14: 18 +1

- > —56_—275 -
2[) 1(/ lU Jbld 275 — 6_[»811‘)-11 14: 518 + 1

Next: Observe that the set of exponent vectors is a czrcuzt
in the sense of combinatorics:
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Faster Real Root Counting for Circuit Systems

Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5 x 5 example can
be reduced to

o 1

- - - ) —32 —
.Tjh J4 Hb H 2&5 — 16384(’1 ,\éerLLlr 14 y 52.1:551&+1
IiGJ:Z)lOIS—I% 1211;312 _ 40966‘1‘)813191 ;112 —32 —’518 1
a:{*aé’Ja‘;{l"lz';(’&:(,'gzg(’ _ QJG(JJB 1J4 —142 1—52 518 41

95 7 122 —6T -

fl/'f')f;mfg Izl (:/ _ 16¢1 YJXI.|94I. 14: 318 +1

- > —56_—275 -
2[) 1(/ lU Jbld 275 — 6_[»811‘)-11 14: 518 + 1

Next: Observe that the set of exponent vectors is a czrcuzt
in the sense of combinatorics: It is the union of a point and
the vertex set of a simplex...
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:
—2&1 + 2&2 — 2&3 + 2@4 — 2&5 + ag + 0,720.
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:

—2&1 + 2&2 — 2&3 + 2@4 — 2&5 + ag + 0,720.
So then, ( €R?. a root = u:=(P¥I¢*?¢5*"® must be a
root
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:

—2&1 + 2&2 — 2&3 + 2@4 — 2&5 + ag + 0,720.
So then, ( €R?. a root = u:=(P¥I¢*?¢5*"® must be a
root of the Gale Dual rational function
(16384cu + 1)72(4096cu + 1)2(256cu + 1)"2(16cu + 1)*(cu + 1) ~2u — 1.

Equivalently, v must be a real root of the linear
combination of logarithms
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:

—2&1 + 2&2 — 2&3 + 2@4 — 2&5 + ag + 0,720.
So then, ( €R?. a root = u:=(P¥I¢*?¢5*"® must be a
root of the Gale Dual rational function
(16384cu + 1)72(4096cu + 1)2(256cu + 1)"2(16cu + 1)*(cu + 1) ~2u — 1.

Equivalently, v must be a real root of the linear
combination of logarithms
—2log [16384cu + 1|+ 2log |4096cu + 1| — 2log[256cu + 1| + 2log |16cu + 1| - 2log |ew+ 1] + log]ul,
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Faster Real Root Counting for Circuit Systems

Key Idea #2: Gale Dual Form

The exponent vectors aq, ..., a7 in our example have a
unique affine relation:

—2&1 + 2&2 — 2&3 + 2@4 — 2&5 + ag + 0,720.
So then, ( €R?. a root = u:=(P¥I¢*?¢5*"® must be a
root of the Gale Dual rational function
(16384cu + 1)72(4096cu + 1)2(256cu + 1)"2(16cu + 1)*(cu + 1) ~2u — 1.

Equivalently, v must be a real root of the linear
combination of logarithms

—2log [16384cu + 1|+ 2log |4096cu + 1| — 2log[256cu + 1| + 2log |16cu + 1| - 2log |ew+ 1] + log]ul,
provided some additional sign conditions are met...

Note: The exponents are usually much larger!
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Faster Real Root Counting for Circuit Systems

Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...
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Faster Real Root Counting for Circuit Systems

Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

I
I
— |-
n )
T ‘ ‘ |
| | I
! |
3 | :
! I
lus o
Ug > uz

e
S
Se—
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Faster Real Root Counting for Circuit Systems

Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

I I
I I
| —_ |-
| y |
| T [ ! |
| | | |
: w :
: € ‘ :
I ! I
Jw l s !
Up U h U7
| : 2 | |
I | I
I | I
| | |
I | I
I | I
I I
| | I
I | I
I I
- A - !

Baker- Wustholtz gives height of peaks...
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Faster Real Root Counting for Circuit Systems

Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

b e &

I
I
I
I
I
I
I
I
I
I
I
o Ul l Us

Ug) Us A ur
| : 2 | |
I I

|

I | I
| | |
| | |
I | I
I I
| | |
I | I
I I

- A - '

Baker- Wustholtz gives height of peaks... Bounds of
Liouville and Markov control A and ...
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Faster Real Root Counting for Circuit Systems

Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

b e &

I
I
I
:
I
Jw l

U5
-
UU: | Us ‘ :U7
| | |
|
l | l
| | |
| | l
| | |
l l
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Baker- Wustholtz gives height of peaks... Bounds of
Liouville and Markov control A and 7... Then use
Rolle’s Theorem,
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...
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Baker- Wustholtz gives height of peaks... Bounds of
Liouville and Markov control A and 7... Then use
Rolle’s Theorem, AGM Iteration for accurate logs,
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

b & &

Baker- Wustholtz gives height of peaks... Bounds of

Liouville and Markov control A and 7... Then use
Rolle’s Theorem, AGM Iteration for accurate logs,

and Sturm-Habicht sequences to isolate critical points!...
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems,
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems, and
uniwariate tetranomials with exponentially close real roots,
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems, and
uniwariate tetranomials with exponentially close real roots,

these appear to be rare in practice [Mignotte, 1995; Paourls
Phillipson, Rojas, 2019; Rojas, Zhu, 2021]. |
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems, and
uniwariate tetranomials with exponentially close real roots,
these appear to be rare in practice [Mignotte, 1995; Paourls
Phillipson, Rojas, 2019; Rojas, Zhu, 2021]. |

While we can now count real roots in time (log(dH))°™, there
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems, and
uniwariate tetranomials with exponentially close real roots,

these appear to be rare in practice [Mignotte, 1995; Paourls
Phillipson, Rojas, 2019; Rojas, Zhu, 2021]. |

While we can now count real roots in time (log(dH))°™, there
is growing evidence that we can attain complexity (nlog(DH))°®
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Upshot: Randomize!

Even though there are (n + 1)-nomial n x n systems, and
uniwariate tetranomials with exponentially close real roots,

these appear to be rare in practice [Mignotte, 1995; Paouris,
Phillipson, Rojas, 2019; Rojas, Zhu, 2021]. n

While we can now count real roots in time (log(dH))°™, there
is growing evidence that we can attain complexity (nlog(DH))°®
on average [Deng, Ergiir, Paouris, Rojas, 2021]...
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Q Thank you for your attention!

See www.math.tamu.edu/"rojas for preprints and further
info...
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