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Fundamental Idea: Theorems about existence of roots
are close to the P vs. NP Problem. Theorems about the
deeper structure of polynomials are close to derandomization,
i.e., the P vs. BPP Problem [Koiran, ’11; Dutta, Saxena, Thierauf, ’20].
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Descartes’ Rule, Biochemistry, and Learning Theory...
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chemical reaction
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serious use of exact
counting of real roots

for sparse systems [Bihan, Dickenstein, Giaroli, Shiu, 2019–2020].

•[Ren, Zhang, 2020] applies tropical fewnomials to neural
networks...

[Bihan, Dickenstein, Forsg̊ard, 2020] Multivariate version
of Descartes’ Rule for (n+ 2)-nomial n× n systems...

But what about exact counting?
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[Bihan, Rojas, Stella, 2009] Fix any ε>0 and suppose there
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with at most n+ nε terms, decides if f has a real root,
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• We use the Turing (bit) model, and
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An O(n)-time algorithm (assuming affinely independent
exponents) is possible!
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∗)n, and Rn in time polynomial in n+ log(dH)...

• Smith Factorization helps,
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Counting Roots for (n+ 1)-nomial n× n Systems is
Easy, but...

Bonus Exercise. Given [ci,j ]∈{−H, . . . , H}n×(n+1), and
affinely independent a1, . . . , an+1∈{−d, . . . , d}n, count the
roots of

c1,1x
a1 + · · ·+ c1,n+1x

an+1 = 0

...

cn,1x
a1 + · · ·+ cn,n+1x

an+1 = 0

in Rn
+, (R

∗)n, and Rn in time polynomial in n+ log(dH)...

• Smith Factorization helps, and you’ll ultimately need
(polynomial-time!) Linear Programming for the case ∞!

• (n+ 2)-nomial n× n systems are the next step up, and
the last tractable case (for now)...
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[Rojas, 2020] For any fixed n, one can exactly count the
roots in Rn

+, (R
∗)n, and Rn of any generic (n+ 2)-nomial

n× n polynomial system over Q in deterministic
polynomial-time.

Example: In <1 second, we can see that the 7-nomial
5× 5 system defined by

(

2x36
1 x194

2 x50
3 x82

4 x60
5 + x76

1 x240
2 x41

4 x5 + x74
1 x179

2 x25
3 x57

5 + x25
1 x203

2 x44
3 x4 + x20

1 x167
2 x64

3 x12
4 x68

5 − 37137cx58
1 x194

2 x24
3 x36

4 x25
5 − 9

2
x166
3 x68

4 x343
5 ,

x36
1 x194

2 x50
3 x82

4 x60
5 + 2x76

1 x240
2 x41

4 x5 + x74
1 x179

2 x25
3 x57

5 + x25
1 x203

2 x44
3 x4 + x20

1 x167
2 x64

3 x12
4 x68

5 − 24849cx58
1 x194

2 x24
3 x36

4 x25
5 − 21

4
x166
3 x68

4 x343
5 ,

x36
1 x194

2 x50
3 x82

4 x60
5 + x76

1 x240
2 x41

4 x5 + 2x74
1 x179

2 x25
3 x57

5 + x25
1 x203

2 x44
3 x4 + x20

1 x167
2 x64

3 x12
4 x68

5 − 21009cx58
1 x194

2 x24
3 x36

4 x25
5 − 21

4
x166
3 x68

4 x343
5 ,

x36
1 x194

2 x50
3 x82

4 x60
5 + x76

1 x240
2 x41

4 x5 + x74
1 x179

2 x25
3 x57

5 + 2x25
1 x203

2 x44
3 x4 + x20

1 x167
2 x64

3 x12
4 x68

5 − 20769cx58
1 x194

2 x24
3 x36

4 x25
5 − 21

4
x166
3 x68

4 x343
5 ,

x36
1 x194

2 x50
3 x82

4 x60
5 + x76

1 x240
2 x41

4 x5 + x74
1 x179

2 x25
3 x57

5 + x25
1 x203

2 x44
3 x4 + 2x20

1 x167
2 x64

3 x12
4 x68

5 − 20754cx58
1 x194

2 x24
3 x36

4 x25
5 − 21

4
x166
3 x68

4 x343
5

)
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has exactly 2, 6, 6, 2, 2, or 0 positive roots, respectively
when c is 1

20731
, 1
20730

, 1
14392

, 1
14391

, 1
13059

, 1
13058

.
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[Bihan, Sottile, 2007] Let ci,j∈R for all
i, j, let a1, . . . , an+k∈Rn be any points
not all lying in an affine hyperplane, and
write xai =x

a1,i
1 · · · xan,i

n .
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Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ci,j∈R for all
i, j, let a1, . . . , an+k∈Rn be any points
not all lying in an affine hyperplane, and
write xai =x

a1,i
1 · · · xan,i

n .

Real Fewnomial Theorem+. Any real (n+ k)-nomial
n× n polynomial system of the form...

F := (f1, . . . , fn) =







c1,1x
a1 + · · ·+ c1,n+kx

an+k

...
cn,1x

a1 + · · ·+ cn,n+kx
an+k
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Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ci,j∈R for all
i, j, let a1, . . . , an+k∈Rn be any points
not all lying in an affine hyperplane, and
write xai =x

a1,i
1 · · · xan,i

n .

Real Fewnomial Theorem+. Any real (n+ k)-nomial
n× n polynomial system of the form...

F := (f1, . . . , fn) =







c1,1x
a1 + · · ·+ c1,n+kx

an+k

...
cn,1x

a1 + · · ·+ cn,n+kx
an+k

has no more than e2+3
4

2(k−1)(k−2)/2nk−1 non-degenerate roots in Rn
+.
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Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ci,j∈R for all
i, j, let a1, . . . , an+k∈Rn be any points
not all lying in an affine hyperplane, and
write xai =x

a1,i
1 · · · xan,i

n .

Real Fewnomial Theorem+. Any real (n+ k)-nomial
n× n polynomial system of the form...

F := (f1, . . . , fn) =







c1,1x
a1 + · · ·+ c1,n+kx

an+k

...
cn,1x

a1 + · · ·+ cn,n+kx
an+k

has no more than e2+3
4

2(k−1)(k−2)/2nk−1 non-degenerate roots in Rn
+.

[Bihan, Rojas, Sottile ’07]: ∃ systems with
⌊

n+k−1
min{n,k−1}

⌋min{n,k−1}

positive roots.
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Fewnomials and the Quest for Tight Bounds: 2000s

[Bihan, Sottile, 2007] Let ci,j∈R for all
i, j, let a1, . . . , an+k∈Rn be any points
not all lying in an affine hyperplane, and
write xai =x

a1,i
1 · · · xan,i

n .

Real Fewnomial Theorem+. Any real (n+ k)-nomial
n× n polynomial system of the form...

F := (f1, . . . , fn) =







c1,1x
a1 + · · ·+ c1,n+kx

an+k

...
cn,1x

a1 + · · ·+ cn,n+kx
an+k

has no more than e2+3
4

2(k−1)(k−2)/2nk−1 non-degenerate roots in Rn
+.

[Bertrand, Bihan, Sottile ’06]: Tight bound for k = 2 of n+ 1 .
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Theorem. [Bürgisser, Ergür, Tonelli-Cueto, 2019] For an
(n+ k)-nomial n× n system with independent standard real
Gaussian coefficients
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Theorem. [Bürgisser, Ergür, Tonelli-Cueto, 2019] For an
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Fewnomials and the Quest for Tight Bounds: 2010s

Theorem. [Bürgisser, Ergür, Tonelli-Cueto, 2019] For an
(n+ k)-nomial n× n system with independent standard real
Gaussian coefficients and fixed support not lying in an affine
hyperplane, the average number of roots in (R∗)n is ≤ 1

2

(

n+k
k

)

.

Counting Real Roots in Polynomial-Time



Motivation & Background

Fewnomials and Number Theory

Faster Real Root Counting for Circuit Systems

Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c
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Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c for any

D∈N and c∈Q+. Counting bit operations, we get time
O
(

size(xD
1 − c)2+ε

)

.

Counting Real Roots in Polynomial-Time



Motivation & Background

Fewnomials and Number Theory

Faster Real Root Counting for Circuit Systems

Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c for any

D∈N and c∈Q+. Counting bit operations, we get time
O
(

size(xD
1 − c)2+ε

)

.

uD
?
>

=
<

cvD
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Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c for any

D∈N and c∈Q+. Counting bit operations, we get time
O
(

size(xD
1 − c)2+ε

)

.

Trouble?
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Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c for any

D∈N and c∈Q+. Counting bit operations, we get time
O
(

size(xD
1 − c)2+ε

)

.

D log |u|
?
>

=
<

log |c|+D log |v|
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Bisection −→ Diophantine Approximation

Lemma. (e.g., [Ye, 1995]) O(logD) steps of bisection are
enough to get you a succinct approximant to D

√
c for any

D∈N and c∈Q+. Counting bit operations, we get time
O
(

size(xD
1 − c)2+ε

)

.

D log |u|
?
>

=
<

log |c|+D log |v|

[Baker, 1966] If ai, bi∈Z with A :=maxi log |ai|,
B :=maxi log |bi|, and Λ:=

n
∑

i=1

bi log ai, then

Λ 6=0 =⇒ | log |Λ||=O(A)n logB.
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Real Univariate Trinomials?

•Deciding the sign of a trinomial f ∈Q[x1] at z∈Q in time
(size(f) + height(z))O(1) is an open problem!
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•Deciding the sign of a trinomial f ∈Q[x1] at z∈Q in time
(size(f) + height(z))O(1) is an open problem!

•So bisection is obstructed!

Counting Real Roots in Polynomial-Time



Motivation & Background

Fewnomials and Number Theory

Faster Real Root Counting for Circuit Systems

Real Univariate Trinomials?

•Deciding the sign of a trinomial f ∈Q[x1] at z∈Q in time
(size(f) + height(z))O(1) is an open problem!

•So bisection is obstructed!

•Despite nice progress by [Jindal, Sagraloff, 2017] on coarse
approximants,
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Real Univariate Trinomials?

•Deciding the sign of a trinomial f ∈Q[x1] at z∈Q in time
(size(f) + height(z))O(1) is an open problem!

•So bisection is obstructed!

•Despite nice progress by [Jindal, Sagraloff, 2017] on coarse
approximants, real root counting in time (t log(dH))O(1) is
still an open problem!
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q,
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n,
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n,
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn,
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn, in deterministic time

O(n log(nd) + n2 log(nH)))2n+4.
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn, in deterministic time

O(n log(nd) + n2 log(nH)))2n+4.

•Key new ingredients are a refined version of Liouville’s
Theorem,

Counting Real Roots in Polynomial-Time



Motivation & Background

Fewnomials and Number Theory

Faster Real Root Counting for Circuit Systems

Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn, in deterministic time

O(n log(nd) + n2 log(nH)))2n+4.

•Key new ingredients are a refined version of Liouville’s
Theorem, and a theorem of [Baker, Wustholtz, 1993]
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn, in deterministic time

O(n log(nd) + n2 log(nH)))2n+4.

•Key new ingredients are a refined version of Liouville’s
Theorem, and a theorem of [Baker, Wustholtz, 1993] on
linear combinations of logs in algebraic numbers...
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Exact Counting for (n+ 2)-nomial n× n Systems

Main Theorem. [Rojas, 2020] For any (n+ 2)-nomial
n× n system F over Q, with exponents not lying in a
common affine hyperplane, and coefficient matrix [ci,j ] of
rank∗ n, we can count exactly its number of roots in Rn

+,
(R∗)n, and Rn, in deterministic time

O(n log(nd) + n2 log(nH)))2n+4.

•Key new ingredients are a refined version of Liouville’s
Theorem, and a theorem of [Baker, Wustholtz, 1993] on
linear combinations of logs in algebraic numbers...

•Sufficiently refined versions of the abc-Conjecture can
reduce the complexity to polynomial in n...
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Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5× 5 example can
be reduced to

x36
1 x194

2 x−116
3 x14

4 x−283
5 = 16384cx58

1 x194
2 x−142

3 x−32
4 x−318

5 +
1

4
x76
1 x240

2 x−166
3 x−27

4 x−342
5 = 4096cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x74
1 x179

2 x−141
3 x−68

4 x−286
5 = 256cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x25
1 x203

2 x−122
3 x−67

4 x−343
5 = 16cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x20
1 x167

2 x−102
3 x−56

4 x−275
5 = cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1
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Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5× 5 example can
be reduced to

x36
1 x194

2 x−116
3 x14

4 x−283
5 = 16384cx58

1 x194
2 x−142

3 x−32
4 x−318

5 +
1

4
x76
1 x240

2 x−166
3 x−27

4 x−342
5 = 4096cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x74
1 x179

2 x−141
3 x−68

4 x−286
5 = 256cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x25
1 x203

2 x−122
3 x−67

4 x−343
5 = 16cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x20
1 x167

2 x−102
3 x−56

4 x−275
5 = cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

Next: Observe that the set of exponent vectors is a circuit
in the sense of combinatorics:
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Key Idea #1: Gaussian Elimination

By Gauss-Jordan Elimination applied to the linear
combinations of monomials, our original 5× 5 example can
be reduced to

x36
1 x194

2 x−116
3 x14

4 x−283
5 = 16384cx58

1 x194
2 x−142

3 x−32
4 x−318

5 +
1

4
x76
1 x240

2 x−166
3 x−27

4 x−342
5 = 4096cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x74
1 x179

2 x−141
3 x−68

4 x−286
5 = 256cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x25
1 x203

2 x−122
3 x−67

4 x−343
5 = 16cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

x20
1 x167

2 x−102
3 x−56

4 x−275
5 = cx58

1 x194
2 x−142

3 x−32
4 x−318

5 + 1

Next: Observe that the set of exponent vectors is a circuit
in the sense of combinatorics: It is the union of a point and
the vertex set of a simplex...
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:

−2a1 + 2a2 − 2a3 + 2a4 − 2a5 + a6 + a7=O.
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:

−2a1 + 2a2 − 2a3 + 2a4 − 2a5 + a6 + a7=O.
So then, ζ∈R5

+ a root =⇒ u :=ζ581 ζ1942 ζ−32
4 ζ−318

5 must be a
root
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:

−2a1 + 2a2 − 2a3 + 2a4 − 2a5 + a6 + a7=O.
So then, ζ∈R5

+ a root =⇒ u :=ζ581 ζ1942 ζ−32
4 ζ−318

5 must be a
root of the Gale Dual rational function
(16384cu+ 1)−2(4096cu+ 1)2(256cu+ 1)−2(16cu+ 1)2(cu+ 1)−2u− 1.

Equivalently, u must be a real root of the linear
combination of logarithms
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:

−2a1 + 2a2 − 2a3 + 2a4 − 2a5 + a6 + a7=O.
So then, ζ∈R5

+ a root =⇒ u :=ζ581 ζ1942 ζ−32
4 ζ−318

5 must be a
root of the Gale Dual rational function
(16384cu+ 1)−2(4096cu+ 1)2(256cu+ 1)−2(16cu+ 1)2(cu+ 1)−2u− 1.

Equivalently, u must be a real root of the linear
combination of logarithms
−2 log |16384cu+ 1|+ 2 log |4096cu+ 1| − 2 log |256cu+ 1|+ 2 log |16cu+ 1| − 2 log |cu+ 1|+ log |u|,
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Key Idea #2: Gale Dual Form

The exponent vectors a1, . . . , a7 in our example have a
unique affine relation:

−2a1 + 2a2 − 2a3 + 2a4 − 2a5 + a6 + a7=O.
So then, ζ∈R5

+ a root =⇒ u :=ζ581 ζ1942 ζ−32
4 ζ−318

5 must be a
root of the Gale Dual rational function
(16384cu+ 1)−2(4096cu+ 1)2(256cu+ 1)−2(16cu+ 1)2(cu+ 1)−2u− 1.

Equivalently, u must be a real root of the linear
combination of logarithms
−2 log |16384cu+ 1|+ 2 log |4096cu+ 1| − 2 log |256cu+ 1|+ 2 log |16cu+ 1| − 2 log |cu+ 1|+ log |u|,
provided some additional sign conditions are met...

Note: The exponents are usually much larger!
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7

Baker-Wustholtz gives height of peaks...
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7

Baker-Wustholtz gives height of peaks... Bounds of
Liouville and Markov control ∆ and η...
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7

Baker-Wustholtz gives height of peaks... Bounds of
Liouville and Markov control ∆ and η... Then use
Rolle’s Theorem,
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7

Baker-Wustholtz gives height of peaks... Bounds of
Liouville and Markov control ∆ and η... Then use
Rolle’s Theorem, AGM Iteration for accurate logs,
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Key Idea #3: Critical Points and Diophantine
Approximation

Examine the graph of the linear combination of logarithms...

u0

∆

u1

η

ε

u2

u5
u7

Baker-Wustholtz gives height of peaks... Bounds of
Liouville and Markov control ∆ and η... Then use
Rolle’s Theorem, AGM Iteration for accurate logs,
and Sturm-Habicht sequences to isolate critical points!...
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Upshot: Randomize!

Even though there are (n+ 1)-nomial n× n systems,
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Even though there are (n+ 1)-nomial n× n systems, and
univariate tetranomials with exponentially close real roots,
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Upshot: Randomize!

Even though there are (n+ 1)-nomial n× n systems, and
univariate tetranomials with exponentially close real roots,
these appear to be rare in practice [Mignotte, 1995; Paouris,
Phillipson, Rojas, 2019; Rojas, Zhu, 2021].
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Upshot: Randomize!

Even though there are (n+ 1)-nomial n× n systems, and
univariate tetranomials with exponentially close real roots,
these appear to be rare in practice [Mignotte, 1995; Paouris,
Phillipson, Rojas, 2019; Rojas, Zhu, 2021].

While we can now count real roots in time (log(dH))O(n), there
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Upshot: Randomize!

Even though there are (n+ 1)-nomial n× n systems, and
univariate tetranomials with exponentially close real roots,
these appear to be rare in practice [Mignotte, 1995; Paouris,
Phillipson, Rojas, 2019; Rojas, Zhu, 2021].

While we can now count real roots in time (log(dH))O(n), there
is growing evidence that we can attain complexity (n log(DH))O(1)
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Upshot: Randomize!

Even though there are (n+ 1)-nomial n× n systems, and
univariate tetranomials with exponentially close real roots,
these appear to be rare in practice [Mignotte, 1995; Paouris,
Phillipson, Rojas, 2019; Rojas, Zhu, 2021].

While we can now count real roots in time (log(dH))O(n), there
is growing evidence that we can attain complexity (n log(DH))O(1)

on average [Deng, Ergür, Paouris, Rojas, 2021]...
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♥♥♥ Thank you for your attention!

See www.math.tamu.edu/~rojas for preprints and further
info...
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