
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

John Keyser, J. Maurice Rojas, and Koji Ouchi

Abstract. We describe a method, based on the rational univariate reduc-
tion (RUR), for computing roots of systems of multivariate polynomials with
rational coefficients. Our method enables exact algebraic computations with
the root coordinates and works even if the underlying set of roots is positive
dimensional. We describe several applications, with special emphasis on geo-
metric modeling. In particular, we describe a new implementation that has
been used successfully on certain degenerate boundary evaluation problems.

1. Introduction

We propose a new development of exact arithmetic over the coordinates of the
points in the zero set of a system of polynomial equations with rational coefficients.

Fix a square system of polynomials, i.e., a system of n polynomials in n vari-
ables. Assume temporarily the zero set of the system is of dimension zero, i.e., the
system has only finitely many common roots. Then, there exist univariate polyno-
mials h and h1, . . . , hn with rational coefficients s.t. the finite zero set of the system
is represented as [BPR03]

{(h1 (θ) , . . . , hn (θ)) | θ ∈ C with h (θ) = 0} .

This representation for the zero set of the system is called the Rational Univariate
Representation (RUR).

We implement an algorithm for computing the exact RUR for the zero set of a
square system of polynomial equations, meaning that we compute all the rational
coefficients of univariate polynomials in the RUR in full digits. Then, we develop
exact arithmetic over numbers of the form e (θ1, . . . , θm) where e is a polynomial
with rational coefficients and θi is an algebraic number. Putting these together, we
can compute the exact RUR for the zero set of a (not necessarily square) system
and 2) have exact arithmetic over the coordinates of the points in the zero set of
a system of polynomial equations with rational coefficients. Furthermore, we can
make our method succeed even if the zero set of the system has some positive
dimensional component. In fact, we can detect whether or not a system has some
positive dimensional components.

The first author was supported in part by NSF Grants DMS-0138446 and CCR-0220047.
The second author was supported in part by NSF Grants DMS-0138446 and CCR-0220047.
The third author was supported in part by NSF Grants DMS-0138446 and CCR-0220047.

c©0000 (copyright holder)

1

2 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

The resultant for a system of n+1 polynomials in n variables is a polynomial in
the coefficients of the input polynomials that vanishes iff the system has a common
root. There are different types of resultants depending on the place where the
common roots of the system lie. We implement the algorithm for computing the
exact RUR based on the toric resultant. The toric resultant based method computes
the common roots of a square system in (C∗)n.

It is shown that some modifications of the method allow us to compute a super
set of the zero set of a not necessarily square system in Cn. If we could perform
exact arithmetic over the points expressed in the exact RUR then we could extract
the common roots of the system from this super set.

A resultant based method fails when the resultant for a system becomes zero.
The latter happens, for instance, when the zero set of the system has some positive
dimensional components. To handle these cases, we use the resultant perturbation
technique[DE03]. Different points on positive dimensional components of the zero
set of the system are picked up when different perturbation is applied. Thus, if
we can perform exact comparison over the points expressed in the exact RUR then
we could develop a generic algorithm to detect whether or not the zero set of the
system has some positive dimensional components.

There exist implementations of both numerical and exact algorithms for com-
puting the RUR for the zero set of a system of polynomial equations. The exact
algorithm requires some normal form computation, typically, Gröbner basis com-
putation. The toric resultant based method is presumably more efficient than the
method based on Gröbner basis. Both have complexity exponential in n, but,
Gröbner basis based method may cost quadratic exponents in the worst case. Fur-
thermore, unlike the toric resultant, Gröbner basis is discontinuous w.r.t. pertur-
bations in the coefficients of the input polynomials.

We develop exact arithmetic over the points in the zero set of a system of
polynomial equations expressed in the RUR via a root-bound approach. The root-
bound approach has been successfully used for the exact sign determination of real
algebraic numbers of the form E (θ1, . . . , θn) where θi is a rational number or a
real root of a univariate polynomial with rational coefficients and E is an algebraic
expression involving ±, ∗, / and k

√ . The sign of such a number can be obtained
from the location (on the real line) of some approximation of the number to a
certain precision that is controlled by the root-bound for the number. We apply
this method to the exact sign determination of the real and imaginary parts of the
coordinates of the points expressed in the exact RUR. In fact, our implementation
will use LEDA or CORE, the libraries that support the root-bound approach to
the exact sign determination of real algebraic numbers. The non-trivial part of the
development is computing approximations for the real and imaginary parts of all
the roots of a univariate polynomial with rational coefficients to any given precision.
There does not exist an algebraic method. We must try some numerical method.

In order to show the ability of our method, we develop an exact geometric solid
modeler that handles degenerate configurations.

Solving a system of polynomial equations is a key operation in geometric al-
gorithms. In geometric algorithms, polynomials are used to describe the shape of
objects and their relations. Points are described as intersections of curves and/or

3

surfaces, or the common roots of a system of polynomial equations. Implementa-
tion of robust geometric algorithms requires exact computation over coordinates of
the common roots of a system of polynomials.

There exist only few exact geometric modelers that handle non-linear surfaces
and almost none can remove degeneracies. Thus, designing an exact geometric
modeler is one of the most appropriate applications to demonstrate the power of
the proposed method.

The rest of this paper is organized as follows:
Section 2 gives a brief summary of related work.
Section 3 gives a detailed description of the RUR and how it is implemented.
Section 4 describes ways in which the RUR approach can be applied to various

geometric problems.
Section 5 gives examples and experimental results from our implementation of

the RUR method.
Section 6 concludes with a discussion of useful avenues for future work.

2. Related Work

RUR. Representing roots of a system of polynomial equations in the RUR first
appeared in [Kro31] but was started to be used in computer algebra only recently
[GV97] [Roj99a] [Rou99].

If a system is zero-dimensional, i.e., if a system has only finitely many roots,
then the RUR for the zero set of the system can be computed via multiplication
table method [Rou99] [GVRR99a] [BPR03]. The method has been extended
s.t. it finds all the isolated roots as well as at least one point from each real positive
dimensional component [ARD02]. A standard implementation of the multiplica-
tion table method requires some normal form computation, usually Gröbner basis
computation.

A Gröbner-free algorithm to compute the RUR for a zero dimensional system
has been proposed [GLS01]. The most recent work even handles some systems
with multiple roots [Lec02]. Because of their iterative nature, it is hard to apply
these algorithms to exact computation.

Resultants. The toric resultant (or the sparse resultant) for a system of n + 1
polynomial equations with indeterminate coefficients in n variables is a polyno-
mial with integer coefficients in these indeterminates (as variables) that vanishes iff
the system has a solution on some toric variety containing (C∗)n [CE93] [Stu94]
[CLO98] [CE00] [Stu02] [Emi03]. The toric resultant is expressed as some divisor
of the determinant of some square matrix, called Newton matrix [CE93] [Stu94]
[Emi96] [CE00] [Stu02] [Emi03] [Roj03]. Several efforts have been made to con-
struct smaller Newton matrices [EC95] [D’A02] [Emi02] [Khe03]. Considering
the solutions of a system of polynomial equations on the associated toric variety
gives a sharper bound, known as BKK bound [Ber75] [Kus76] [Kho78] [Roj94]
[Roj04], on the number of the isolated roots of the system than traditional ones
(e.g. Bezout’s bound), and thus, lower degree resultants.

The u-resultant method fails if the zero set of the system has some positive
dimensional component since the u-resultant for such a system is identically zero. In
this case, some term of the Generalized Characteristic Polynomial (GCP), which is

4 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

defined as the resultant of the perturbed system, can be used to read the coordinates
of points in some finite subset of the zero set of the system.

The homogeneous Generalized Characteristic Polynomial (GCP) [Can90] works
for homogeneous systems that have some positive dimensional components unless
there are some multiple roots at the point at infinity.

The toric perturbation [Roj99a] [Roj00] that is defined as some term of the
toric GCP [Roj97] [Roj99a] [Roj00] works even if the system has some multiple
roots at the point at infinity.

A potentially more efficient version of GCP is proposed in [DE01] [DE03].
The method uses more general lifting of Newton polytopes of the polynomials in
the system and find expectedly fewer monomials to be perturbed.

The toric resultant based method can be modified s.t. it finds some set con-
taining all the affine roots [Roj96] [Roj99b] [Roj99a] [Roj00].

Polynomial System Solving. Often, in geometric applications, we are interested
only in finding/counting real solutions of a system of polynomial equations. Al-
though the set of real numbers is a subset of the set of complex numbers, in gen-
eral, real solving (finding real solutions) is not easier than complex solving (finding
complex solutions) [Roy96] [GVRR99b].

The multiplication table method can be modified for real solving of zero-
dimensional systems [GVRR99b] [BPR03]. We saw that the method has been
extended s.t. the method finds all the isolated real roots of a system as well as at
least one point from each real positive dimensional component [ARD02].

The toric perturbation technique can be modified for real counting/solving of
zero-dimensional systems [Roj98].

Solving a positive dimensional system means constructing an irreducible decom-
position of the zero set of a system of polynomial equations [SW96]. For bivariate
systems, irreducible decomposition via computing gcd of polynomials is practical.
For general cases, numerical irreducible decomposition has been developed [SV00]
[SVW01] [SVW03]. The algorithm obtains much geometric information by nu-
merically computing homotopies to generic points lying on positive dimensional
components. Thus, the algorithm is hard to implement exactly.

Root Bound. The root-bound approach to exact sign determination for real
algebraic numbers has been implemented in the libraries LEDA [BMS96] [MN99]
and CORE [KLY99]. These libraries support exact arithmetic and comparison over
real algebraic numbers of the form e (ξ1, . . . , ξm) where e is an expression involving
+,−, / and k

√ , and each of ξ1, . . . , ξm is a real root of some univariate polynomial
with integer coefficients. Several improvements on root-bounds are reported in
[BFMS97] [BFMS00] [LY01] [PY03].

We determine whether or not an algebraic number (given in the exact RUR) is
0 by applying a root bound approach to the real and imaginary parts of the number.
We must determine the sign of a number of the form e (ξ1, . . . , ξm) where ξ1, . . . , ξm

are the real or imaginary parts of some algebraic numbers. When ξ1, . . . , ξm are
rational numbers or real algebraic numbers (given as roots of a univariate poly-
nomial with rational coefficients), their signs can be exactly determined algorith-
mically (e.g. Sturm’s method). In our case, there is no such way. Instead, we
use some numerical method that computes all the roots of a univariate polynomial
with rational coefficients to any given precision. Research on numerical methods

5

for computing all the roots of a univariate polynomial has a long history [Abe73]
[Bin96] [BCSS97] [BF00], but none fits our purpose.

Robust Geometric Computation. The need for robustness in geometric algo-
rithms has been addressed for years. See, for instance, [HHK89] [DY95] [Yap97].

Exact computation as a way to eliminate numerical errors appearing in solid
modeling has been discussed for years [Hof89]. Much of earlier work deals with
polyhedral solids but few with curved solids [SI89] [Yu91] [MOBP94] [For97].
Exact Geometric Computation (EGC) project tries to develop a large set of exact
geometric algorithms using LEDA or CORE [BFMS99].

Perturbation Methods. Perturbation methods are general approaches to remove
degeneracies. There are two types of perturbations; symbolic and numerical.

Symbolic perturbations move the input by an infinitesimal amount and the
result is obtained by taking the limit when the infinitesimal amount goes toward
zero. The works on symbolic perturbations are seen in [EM90] [Yap90] [EC91]
[EC92] [Sei94] [ECS97] [For97]. Symbolic perturbations usually cost too much.

MAPC and ESOLID. MAPC [KCMK99] [Key00] [KCMK00] is the library
that manipulates exact computation for two-dimensional real algebraic points and
curves. ESOLID [KKM99a] [KKM99b] [Key00] [KCF+02] [KCF+04] is a
robust geometric modeler built on top of MAPC. ESOLID is currently the only
system that supports exact boundary evaluation for solids with curved surface.
For efficiency, MAPC assumes curves are non-singular and ignores some singular
intersections such as tangential intersections. Thus, ESOLID works provided when
solids are in general positions.

2.1. Speed Up. Although the main concern of this work is guaranteeing the
exactness, the performance is always also taken into account. Specifically, 1) we
will try several proposed methods [EC95] [DE02] [Emi02] [CK03] [Khe03] even
if they work only for particular type of inputs, 2) take advantages of the sparseness
of matrices and 3) use fixed-precision arithmetic to guide results.

3. Exact Rational Univariate Representation

Consider a system of m polynomials f1, . . . , fm in n variables with rational
coefficients. Let Z be the set of all the common roots of the system. Fix a finite
subset Z ′ of Z. Every coordinate of the points in Z ′ is represented as a univariate
polynomial with rational coefficients, called a coordinate polynomial, evaluated at
some root of the other univariate polynomial with rational coefficients, called the
minimal polynomial [Rou99]. That is, there exist h, h1, . . . , hn ∈ Q [T] s.t.

Z ′ = {(h1 (θ) , . . . , hn (θ)) ∈ Cn | θ ∈ C with h (θ) = 0} .

This representation for Z ′ is called the Rational Univariate Representation (RUR)
for Z ′.

We describe a method to find the RUR for some finite subset Z ′ of Z which
contains at least one point from every irreducible component of Z. In particular,
if Z is zero-dimensional then Z ′ = Z.

In section 3.1, we discuss how the RUR for Z ′ ∩ (C∗)n is computed exactly
when a system is square. In section 3.2, we present our method for determining
the sign of an algebraic expression over the coordinates of points in Z ′ exactly. In
section 3.3, we combine two results to establish our exact algorithm for computing
the affine roots of any system using the RUR.

6 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

3.1. The Exact RUR for Square Systems. In this section, we describe a
strictly exact implementation of the toric resultant based algorithm for computing
the exact RUR for the roots of a square system having non-zero coordinates. The
minimal polynomial in the RUR is derived from the toric perturbation [Roj99a]
which is a generalization of the “toric” u-resultant.

3.1.1. Toric Resultants. Let f be a polynomial in n variables X1, . . . , Xn with
rational coefficients. Define the support of f to be the finite set A of exponents of
all the monomials appearing in f corresponding to non-zero coefficients. Thus, A
is some finite set of integer points in n-dimensional space Rn. Then

f =
∑

a∈A

caXa, ca ∈ Q∗

where Xa = Xa1
1 · · ·Xan

n for a = (a1, . . . , an).
A system of n+1 polynomials f0, f1, . . . , fn ∈ Q [X1, . . . , Xn] with correspond-

ing supports A0, A1, . . . , An can be fixed by coefficient vectors c0, c1, . . . , cn where

ci = (cia ∈ Q∗ | a ∈ Ai) s.t. fi =
∑

a∈Ai

ciaXa.

For such a system, there exists a unique (up to sign) irreducible polynomial

TResA0,A1,...,An (c0, c1, . . . , cn) ∈ Z [c0, c1, . . . , cn] ,

called the toric resultant or the sparse resultant, s.t.

the system (f0, f1, . . . , fn) has a common root in (C∗)n

=⇒ TResA0,A1,...,An (c0, c1, . . . , cn) = 0.

We also write TResA0,A1,...,An (f0, f1, . . . , fn) for the toric resultant.
We implement the subdivision based algorithm [CE93, CE00, Emi03], sum-

marized here. The algorithm constructs a square matrix N , called the toric resultant
matrix or Newton matrix, whose determinant is some multiple of the toric resultant.
The elements of N are the coefficients of the input polynomials f0, f1, . . . , fn. The
rows and columns of N are labeled by monomials, or equivalently, integer points
belonging to the supports A0, A1, . . . , An of the input polynomials. The row la-
beled by ar ∈ Ai contains the coefficients of Xarfi s.t. the column labeled by ac

contains the coefficient of the monomial term Xac . Thus, the determinant of N is
a homogeneous polynomial in each coefficient vector ci. It follows that the total
degree of the determinant of N , degci

detN , with respect to the coefficient vector
ci is well-defined [CE93, CE00, Emi03].

The lattice points used to label the rows and columns of N are chosen according
to the mixed-subdivision [Stu94, Stu02] of the Minkowski sum of the convex hulls
Q0, Q1, . . . , Qn of A0, A1, . . . , An. The number of integer points (and the degree of
detN) is predicted in terms of the mixed-volume [CE93, CE00, Emi03] of the
Minkowski sum of Q0, Q1, . . . , Qn. More precisely, writing MV−i for the mixed-
volume for the Minkowski sum Q0 + Q1 + · · ·+ Qi−1 + Qi+1 + · · ·+ Qn, it is shown
[CE93, CE00] that

(3.1)
{

degc0
detN = MV−0,

degci
detN ≥ MV−i, i = 1, . . . , n.

The equalities hold if detN is the sparse resultant [PS93].
We develop a strictly exact implementation of the subdivision based algorithm

for computing the toric resultant matrix N . Computation of Q0, Q1, . . . , Qn and

7

the mixed subdivision of their Minkowski sum both reduce to linear programming
problems [CE93, CE00] which are solved by using a standard 2-phase simplex
method implemented with multi-precision rational arithmetic.

3.1.2. Toric Perturbations. Consider a square system of n polynomials f1, . . . , fn ∈
Q [X1, . . . , Xn] with supports A1, . . . , An.

Let A0 = {o,b1, . . . ,bn} where o is the origin and bi is the i-th standard basis
vector in Rn. Also, let f0 = u0 + u1X1 + · · · + unXn where u = (u0, u1, . . . , un)
is a vector of indeterminates. Choose n polynomials f∗1 , . . . , f∗n ∈ Q [X1, . . . , Xn]
with supports contained in A1, . . . , An that have only finitely many common roots
in (C∗)n. The toric Generalized Characteristic Polynomial TGCP (s,u) for the
system (f1, . . . , fn) is defined to be the toric resultant for the perturbed system
(f0, f1 − sf∗1 , . . . , fn − sf∗n):

TGCP (s,u) = TResA0,A1,...,An
(f0, f1 − sf∗1 , . . . , fn − sf∗n) ∈ Q [s] [u] .

Furthermore, define a toric perturbation TPertA0,f∗1 ,...,f∗n (u) for the system (f1, . . . , fn)
to be the non-zero coefficient of the lowest degree term in TGCP (s,u) regarded
as a polynomial in variable s. We also write TPertA0 (u) for TPertA0,f∗1 ,...,f∗n (u).
when f∗1 , . . . , f∗n are fixed.

The following theorem (the Main Theorem 2.4 in [Roj99a]) guarantees that
the RUR for a system is obtained from the toric perturbation.

Theorem 3.1. [Roj99a]
TPertA0 (u) is well-defined, i.e. with a suitable choice of f∗1 , . . . , f∗n, for any

system, there exist rational numbers u0, u1, . . . , un s.t. TGCP (s,u) always has
a non-zero coefficient. TPertA0 (u) is a homogeneous polynomial in parameters
u0, u1, . . . , un with rational coefficients, and has the following properties:

(1) If (ζ1, . . . , ζn) ∈ (C∗)n is an isolated root of the system (f1, . . . , fn) then
u0 + u1ζ1 + · · ·+ unζn is a linear factor of TPertA0 (u).

(2) TPertA0 (u) completely splits into linear factors over C. For every irre-
ducible component W of Z∩(C∗)n, there is at least one factor of TPertA0 (u)
corresponding to a root (ζ1, . . . , ζn) ∈ W ⊆ Z.

Thus, with a suitable choice of f∗1 , . . . , f∗n, there exists a finite subset Z ′ of
Z s.t. a univariate polynomial h = h (T) in the RUR for Z ′ ∩ (C∗)n is obtained
from TPertA0 (u) by setting u0 to a variable T and specializing u1, . . . , un to some
values. Immediately from (3.1)

Corollary 3.2.

degu0
TPertA0 (u) = MV−0,(3.2)

degs TGCP (s,u) =
n∑

i=1

MV−i ≤ dim N −MV−0.(3.3)

3.1.3. The Exact RUR Computation. We give our algorithm to compute the
exact RUR for the roots having non-zero coordinates of a square system. More
details will be given below.

Algorithm RUR square:
Input: f1, . . . , fn ∈ Q [X1, . . . , Xn] with supports A0, A1, . . . , An ⊆ Zn.
Output: h, h1, . . . , hn ∈ Q [T], forming the RUR for some finite subset of

the roots of the system in (C∗)n.

8 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

1: Compute the toric resultant matrix N and MV−0 for the system of poly-
nomials with supports A0, A1, . . . , An.

2:
2-1: Choose generic u0, u1, . . . , un ∈ Q and f∗1 , . . . , f∗n ∈ Q [X1, . . . , Xn].
2-2: Compute some multiple of TGCP (s,u).
2-3: If TGCP (s,u) ≡ 0 then go to 2-1.

3: Compute h (T) := TPertA0 (T, u1, . . . , un) where TPertA0 (u) is the non-
zero coefficient of the lowest degree term in (the multiple of) TGCP (s,u).

4: For i := 1, . . . , n do:
4-1: Compute p±i (t) := TPertA0 (t, u1, . . . , ui−1, ui ± 1, ui+1, . . . , un).
4-2: Compute the square-free parts q±i (t) of p±i (t).
4-3: Compute a linear (as a polynomial in t) gcd g (t) of q−i (t) and

q+
i (2T − t).

4-4: Set hi (T) := −T − g0(T)
g1(T) mod h (T) where g0 (T) and g1 (T) are

the constant term and the linear coefficient of g (t).

All the steps can be computed exactly.
Step 1 determines the toric resultant matrix by using the subdivision based

algorithm. Some entries still undetermined. Note step 1 needs to be performed
once and only once.

Step 2-1 is performed by choosing random values for ui and coefficients of f∗i .
From (3.3), we know a bound on the degree of TGCP (s,u) (as a polynomial

in s) at step 2-2, and can therefore compute some multiple of it via interpolation.
More precisely, choose dim N −MV−0 many values for s, specialize the entries of
N with those values for s, and interpolate det N to obtain the non-zero coefficient
of the lowest degree term sl in TGCP (s,u).

Step 2-3 checks to make sure the generic choice made in step 2-1 was acceptable
to define. It can be shown that step 2 must be performed only once with probability
1. We could give only some of u1, . . . , un and the coefficients of f∗1 , . . . , f∗n non-zero
values (and the rest zero) but necessarily precomputation bocomes costly [Roj99a].

Step 3 determines the univariate polynomial h in the RUR, introducing the vari-
able T . From (3.2), we know the degree of TPertA0 (T, u1, . . . , un) (as a polynomial
in T), and can compute it via interpolation. More precisely, we choose MV−0 − 1
many values for u0 along with the one we chose at step 2-2, specialize the elements
of N with those values, and interpolate to compute TPertA0 (T, u1, . . . , un).

Similar to steps 2-2 and 3, p±i (t) are determined via interpolation at step 4-1.
At step 4-3, we compute the gcd g (t) of q−i (t) and q+

i (2T − t) (as a polynomial
in t). We use the fact that g (t) will be linear with probability 1 (dependent on
the choices of ui in step 2-1). In this case, the coefficients of g (t) are the first
subresultants for q−i (t) and q+

i (2T − t) [Can90] [GV91] which are defined to be
Sylvester resultants for some submatrices of the Sylvester matrix for q±i .

The rest of the above involve only basic operations over the ring of polynomials
with rational coefficients.

Hence, it is possible to implement the algorithm RUR Square exactly by the
use of multi-precision rational arithmetic in order to obtain the exact RUR.

3.2. Root Bound Approach to Exact Computation. In this section, we
describe our method to support exact computation for the coordinates of the roots
of a system, expressed in the exact RUR. Note that in general these numbers are

9

complex. We begin by summarizing the method for finding root bounds for real
algebraic numbers proposed in [BFMS99] and [KLY99]. We then extend this
method to find bounds for complex algebraic numbers. Finally, we describe our
method to determine the sign of numbers expressed in the exact RUR.

In this section, we assume for simplicity that all the polynomials have integer
coefficients. The results are still valid for polynomials with rational coefficients.

3.2.1. Root Bounds. Let α be an algebraic number. There exists a positive real
number ρ, called a root bound ρ for α, which has the following property: α 6= 0 ⇔
|α| ≥ ρ. Having a root bound for α, we can determine the sign of α by computing
an approximation α̃ for α s.t.|α̃− α| < ρ

2 , namely, α = 0 iff |α̃| < ρ
2 .

The root bound for an algebraic number started to be used in computer algebra
systems and drastic improvements have been made. In order to make our discus-
sion flexible, we use a conservative root bound introduced by Mignotte [MŞ99]:
define the Mahler measure (or simply the measure) M (e) of a polynomial e (T) =
en

∏n
i=1 (T − ζi) ∈ Z [T] with en 6= 0 as

M (e) = |en|
n∏

i=1

max {1, |ζi|} .

Moreover, define the degree deg α and measure M (α) of an algebraic number α to
be the degree and measure of a minimal polynomial for α over Z. Since, over Z, a
minimal polynomial for an algebraic number is uniquely determined up to a sign,
the degree and measure of α are well-defined. Then, 1

M(α) ≤ |α| ≤ M (α).
3.2.2. Exact Computation for Real Algebraic Numbers. The root bound ap-

proach to exact sign determination for real algebraic numbers has been implemented
in the libraries LEDA [MN99] and Core [KLY99]. These libraries support exact
arithmetic and comparison over real algebraic numbers of the form e (ξ1, . . . , ξm)
where e is an expression involving +,−, / and k

√ , and each of ξ1, . . . , ξm is a real
root of some univariate polynomial with integer coefficients. To determine whether
or not e = 0, we compute an approximation ẽ for e to enough precision s.t. the
root bound guarantees the sign.

The root bounds implemented in LEDA and Core are “constructive”, i.e., they
are efficiently calculated without actually computing minimal polynomials for num-
bers, typically using some norms for minimal polynomials. They established recur-
sive rules to bound the degree and measure of the minimal polynomial for a real
algebraic number f (ξ1, . . . , ξm) ◦ g (ξ1, . . . , ξm) from those for f (ξ1, . . . , ξm) and
g (ξ1, . . . , ξm) where f and g are some expressions and ◦ is some operator.

LEDA and Core use precision-driven computation [DY95] [BFMS99] to com-
pute an approximation ẽ for e to prescribed precision p. Suppose e is a number of
the form e1 ◦ e2. Precision computation is applied to e as follows; First, calculate
precisions p1 and p2 to which e1 and e2 will be approximated. Then, compute
approximations ẽ1 and ẽ2 for e1 and e2 to precision p1 and p2, respectively. Finally,
compute ẽ1 ◦ ẽ2 to obtain ẽ.

3.2.3. Exact Computation for Complex Algebraic Numbers. We want to deter-
mine the exact sign of the coordinates of points expressed in terms of polynomials
hi’s evaluated at roots of the polynomial h. In general, roots of h are not real. Thus,
the root bounds approach to exact sign determination for real algebraic numbers
must adapt to an exact zero-test for complex algebraic numbers.

10 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

Let e (ζ1, . . . , ζm) be a complex algebraic number where e is given as an ex-
pression involving +,−, · and /, and ζ1, . . . , ζm are complex algebraic numbers. In
order to test whether or not e = 0, we apply recursive rules to the real algebraic
numbers

eR (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm) and eI (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm)

where eR and eI are expressions satisfying

e (ζ1, . . . , ζm) = eR (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm)

+
√−1eI (<ζ1, . . . ,<ζm,=ζ1, . . . ,=ζm) .

For example, if e (ζ) = ζ2 then eR (<ζ,=ζ) = (<ζ)2 − (=ζ)2 and eI (<ζ,=ζ) =
2<ζ=ζ.

In order to complete the adaption, the base cases for recursion must be treated.
Thus, our remaining task is stated as follows:

Let ζ be an algebraic number specified as a root of a univariate polynomial
e with integer coefficients. For real numbers <ζ and =ζ, we would like to com-
pute 1) “constructive” bounds for the degrees and measures of <ζ and =ζ and 2)
approximations to any prescribed precision.

For 2), Aberth’s method [Abe73] is used to compute approximations for the
(real and imaginary parts of) roots of univariate polynomials. The method is
implemented with floating point numbers with multi-precision mantissa in order to
obtain an approximation to any given precision.

For 1), we first find univariate polynomials (with integer coefficients) Re and
Ie such that Re (<ζ) = Ie (=ζ) = 0. We then calculate bounds on the degrees and
measures of <ζ and =ζ from the degrees and coefficients of Re and Ie.

Proposition 3.3. Let ζ be an algebraic number specified as a root of a poly-
nomial e (T) ∈ Z [T]. Write SylResU (f, g) for the Sylvester resultant of univariate
polynomials f and g w.r.t. variable U . Then

(1) <ζ is a real algebraic number and a root of

Re (T) =
m∑

i=0

2isiT
i ∈ Z [T]

where
∑m

i=0 siT
i = SylResU (e (T − U) , e (U)).

(2) =ζ is a real algebraic number and a root of

Ie (T) =
bm

2 c∑

j=0

22j (−1)j
s2jT

2j ∈ Z [T]

where
∑m

i=0 siT
i = SylResU (e (T + U) , e (U)).

Proof. If ζ is a root of e then its complex conjugate ζ is also a root of e. Thus,
the sum ζ + ζ = 2<ζ of two roots of e is a root of SylResU (e (T − U) , e (U)). Simi-
larly, the difference ζ−ζ = 2

√−1=ζ of two roots of e is a root of SylResU (e (T + U) , e (U)).
If 2ξ is a root of

∑m
i=0 siT

i then ξ is a root of
∑m

i=0 2isiT
i.

If, for ξ ∈ R,
√−1ξ is a root of

∑m
i=0 siT

i then ξ is a root of
∑bm

2 c
j=0 (−1)j

s2jT
2j .
¤

11

By Gauß’s lemma, if α is a root of a polynomial e (T) =
∑n

i=0 eiT
i ∈ Z [T] with

ene0 6= 0 then deg α ≤ deg e and M (α) ≤ M (e). By Landau’s theorem [MŞ99],

for e (T) ∈ Z [T], M (e) ≤ ||e||2 =
√∑n

i=0 |ei|2. Thus, we could use deg e and ||e||2
as “constructive” upper bounds on deg α and M (α).

Proposition 3.4. Following the notation above
(1) deg<ζ ≤ deg Re ≤ deg2 e,

M (<ζ) ≤ M (Re) ≤ ||Re||2 ≤ 22n2+n ||e||2n
2 ,

(2) deg=ζ ≤ deg Ie ≤ deg2 e and
M (=ζ) ≤ M (Ie) ≤ ||Ie||2 ≤ 22n2+n ||e||2n

2 .

3.2.4. Exact Sign Determination for the Exact RUR. Let e be a rational func-
tion in n variables X1, . . . , Xn with rational coefficients. Also, let Z ′ be a finite
set of n-dimensional algebraic numbers. Assume we have univariate polynomi-
als h, h1, . . . , hn with integer coefficients s.t. for every point (ζ1, . . . , ζn) ∈ Z ′,
(ζ1, . . . , ζn) = (h1 (θ) , . . . , hn (θ)) for some root θ of h. We would like to determine
whether or not e (ζ1, . . . , ζn) = 0 exactly.

Algorithm Exact Sign:
Input: e ∈ Q (X1, . . . , Xn) and h, h1, . . . , hn ∈ Z [T].
Output: The exact signs of the real and imaginary parts of e (h1 (θ) , . . . , hn (θ))

for every root θ of h.
1: Set up bivariate rational functions rR and rI with integer coefficients s.t.

e (h1 (θ) , . . . , hn (θ)) = rR (<θ,=θ) +
√−1rI (<θ,=θ) .

2: Recursively compute the root bounds for rR and rI . The base cases are
given in Proposition 3.4.

3: Recursively compute approximations for rR (<θ,=θ) and rI (<θ,=θ) to a
certain precision such that the root bounds allow us to determine their
signs. The base case, i.e. computing approximations for <θ and =θ to a
certain precision, is done by Aberth’s method.

3.3. Exact Computation for the Exact RUR. In this section, we present
our exact algorithm to compute the exact RUR for the affine roots of a system.

3.3.1. Affine Roots. Recall that Theorem 3.1 describes only those roots having
non-zero coordinates. It can be shown [Roj99a, Roj00] that, if A1, . . . , An are
replaced by {o} ∪ A1, . . . , {o} ∪ An then the RUR for some finite superset Z ′′ of
Z ′ is found. Those extra points in Z ′′ \ Z can be removed simply by testing, for
each x ∈ Z ′′, whether or not x is a root of the original system, i.e., f1 (x) = · · · =
fn (x) = 0. The last test reduces to the exact sign determination problem: for every
root ζ of h in the exact RUR for Z ′′, test whether or not fi (h1 (ζ) , . . . , hn (ζ)) = 0
for i = 1, . . . , n.

3.3.2. Non-square Systems. Consider a system of m polynomials f1, . . . , fm in
n variables with rational coefficients. We would like to compute the exact RUR for
some finite subset Z ′ of the set Z of the roots of the system. If m 6= n then we
construct some square system s.t. the set of the roots of the square system is a
super set of the zero set of the original system.

If m < n then construct a square system by adding m− n copies of fm to the
input system.

12 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

Otherwise, m > n. Let

gi = ci1f1 + · · ·+ cimfm, i = 1, . . . , n,

where c11, . . . , cnm are generic rational numbers. It can be shown that there exist
c11, . . . , cnm ∈ Q s.t. every irreducible component of the set Z of all the common
roots of g1, . . . , gn is either an irreducible component of the set Z of all the common
roots of f1 . . . , fm or a point [Roj00]. We have already seen that we can compute
the exact RUR for points in some finite subset Z

′
of Z s.t. Z

′
contains at least

one point from every irreducible component of Z. Then, we can construct a finite
subset Z ′ of Z containing at least one point on every irreducible component of Z

by simply testing, for each x ∈ Z
′
, whether or not x is a root of the original system,

i.e., f1 (x) = · · · = fm (x) = 0. The last test reduces to the exact sign determination
problem.

3.3.3. The Exact RUR. Our exact algorithm to compute the RUR is thus as
follows:

Algorithm: RUR:
Input: f1, . . . , fm ∈ Q [X1, . . . , Xn].
Output: h, h1, . . . , hn ∈ Q [T], forming the RUR for some finite subset of

the roots of the system.
1: Form a square system (g1, . . . , gn).

1-1: If m < n then form a square system

g1 = f1, . . . , gm = fm, gm+1 = · · · = gn = fm.

1-2: If m = n then gi = fi, i = 1, . . . , n.
1-3: If m > n then form a square system

gi = ci1f1 + · · ·+ cimfm, i = 1, . . . , n

where c11, . . . , cnm are generic rational numbers.
2: For i := 1, . . . , n do:

2-1: Set Ai to be the support of gi. If gi does not have a constant term
then Ai = {o} ∪Ai.

3: Use Algorithm RUR square to compute h, h1, . . . , hn ∈ Q [T] forming
the RUR for some finite subset Z

′
of the set Z of the affine roots of

g1, . . . , gn.
4: If steps 1-3 and/or 2-1 are executed then use Algorithm Exact Sign to

test whether or not

fi (h1 (θ) , . . . , hn (θ)) = 0, i = 1, . . . , n

for every root θ of h.
Exactness immediately follows from the fact that both RUR square and Ex-

act Sign are implemented exactly.

4. Applications

In this section, we describe some applications of the RUR to various geometric
problems. A number of geometric problems involve solving systems of polynomials,
and thus algebraic number computations. We first present some algorithms to
support exact computation over algebraic numbers, and then focus on how those
can be used in specific situations that arise during boundary evaluation in CAD
applications.

13

4.1. Exact Computation for Algebraic Numbers.
4.1.1. Positive Dimensional Components. We present a generic algorithm to

determine whether or not the set of roots of a given system of polynomials with
rational coefficients has positive dimensional components.

Recall that Algorithm RUR finds the exact RUR for some finite subset Z ′

of Z which contains at least one point from every irreducible component of Z. If
Z is infinite (i.e., has positive-dimensional components) then Z ′ depends on the
polynomials f∗1 , . . . , f∗n used to perturb the input system.

Suppose two distinct executions of Algorithm RUR find two finite subsets Z ′1
and Z ′2 of Z and their exact RUR’s:

Z ′k =
{(

h
(k)
1 (θk) , . . . , h(k)

n (θk)
)
| h(k) (θk) = 0

}
, k = 1, 2.

If ζ is an isolated point in Z then ζ ∈ Z ′1 ∩ Z ′2, and thus ∃θ1 and θ2 ∈ C s.t.

ζ =
(
h

(1)
1 (θ1) , . . . , h(1)

n (θ1)
)

=
(
h

(2)
1 (θ2) , . . . , h(2)

n (θ2)
)

.

Hence, Z ′1 \ Z ′2 6= ∅ implies that Z has some positive dimensional components. We
can compare Z ′1 and Z ′2 pointwise using Algorithm Exact Sign.

Algorithm Positive Dimensional Components:
Input: f1, . . . , fm ∈ Q [X1, . . . , Xn] and a (small) positive integer Max Counts.
Output: True if the set Z of the roots of the system (f1, . . . , fm) has some

positive dimensional components.
1: Count := 0, Has Pos Dim Compo := Probably False.
2: While Count < Max Counts and Has Pos Dim Compo = Probably False

do:
2-1: Use Algorithm RUR to compute the exact RUR for some finite

subsets Z ′1 and Z ′2 of Z. Increment Count.
2-2: Use Algorithm Exact Sign to compare Z ′1 and Z ′2 pointwise. If

they are not the same then Has Pos Dim Compo := True.
If Z has a positive dimensional component and polynomials f∗i in Algorithm

RUR are chosen generically, then almost always Z ′1 \Z ′2 6= ∅. Thus, Max Counts is
usually set to be 2.

4.1.2. Root Counting. We present an algorithm to count the number of the
common roots of a given system of polynomials with rational coefficients.

Algorithm Positive Dimensional Components detects whether or not the
set of the roots has positive-dimensional components. If the system has only finitely
many roots then the number of roots of the system is the same as the number of
the roots of the univariate polynomial h in the RUR.

Algorithm: Root Counting:
Input: f1, . . . , fm ∈ Q [X1, . . . , Xn].
Output: The number of the roots of the system (f1, . . . , fm).
1: Use Algorithm Positive Dimensional Components to test whether or

not the set Z of the roots of the system (f1, . . . , fm) has some positive
dimensional components. If so then return ∞.

2: Otherwise, we may assume Z is finite. At step 1 of Algorithm Positive
Dimensional Components, we computed the exact RUR for Z. Return
the number of roots of the minimal polynomial h in the RUR for Z,
namely, deg h.

14 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

4.1.3. Real Roots. We present an algorithm to compute the real roots of a given
system of polynomials with rational coefficients.

Assume that the system has only finitely many roots. We first compute the
exact RUR for the roots of the system, and then use Algorithm Exact Sign to
determine the sign of the imaginary parts of the roots.

Algorithm Real Roots:
Input: f1, . . . , fm ∈ Q [X1, . . . , Xn].
Output: The set R of the real roots of the system (f1, . . . , fm).
1: Use Algorithm RUR to compute the exact RUR for the set Z of the roots

of the system:

Z = {(h1 (θ) , . . . , hn (θ)) | h (θ) = 0} .

2: Set R := ∅.
3: For i := 1, . . . , n do:

3-1: Set up expressions hRi and hI i satisfying

hi (θ) = hRi (<θ,=θ) +
√−1hI i (<θ,=θ) .

3-2: Use Algorithm Exact Sign to determine the sign of hI i (<θ,=θ)
at every root θ of h.

3-3: If hI1 (<θ,=θ) = · · · = hIn (<θ,=θ) = 0 then

R := R ∪ {(hR1 (<θ,=θ) , . . . , hRn (<θ,=θ))} .

It is important to note the algorithm Real Roots works correctly only if the
system has finitely many common roots. In particular, the algorithm may not be
able to find real points lying on some (complex) positive dimensional components.

4.2. Application to Boundary Evaluation. We now give a brief descrip-
tion of how the exact RUR can be applied to a specific geometric computation—
boundary evaluation.

4.2.1. Overview of Exact Boundary Evaluation. Boundary evaluation is a key
operation in computer aided design. It refers to the process of determining the
boundary of a solid object produced as the result of an operation - usually a Boolean
combination (union, intersection, or difference) of two input solids. It is the key
element for conversion from a Constructive Solid Geometry (CSG) format to a
Boundary Representation (B-rep) format. Achieving accuracy and robustness with
reasonable efficiency remains a challenge in boundary evaluation.

Boundary evaluation involves several stages, but the key fundamental opera-
tions involve finding solutions to polynomial systems. The input objects are usually
described by a series of rational parametric surfaces described as polynomials with
rational coefficients. Implicit forms for these surfaces are often known, or else can be
determined. Intersections of these surfaces form the edges of the solids, sometimes
represented inside the parametric domain as algebraic plane curves. These curves
represented in the patch domain and defined by the intersections of two surfaces are
known as either trimming curves if they are specified in the input, or intersection
curves if they arise during boundary evaluation. Intersection curves that are output
become trimming curves when input to the next boundary evaluation operation.

Intersections of three or more surfaces form vertices of the solids. Such ver-
tices may be represented in 3D space (as the common solution to three or more
trivariate equations), within the parametric domain of the patches (as the common

15

solution of two or more bivariate equations), or a combination of these. The coor-
dinates of these vertices are thus tuples of real algebraic numbers. The accuracy,
efficiency, and robustness of the entire boundary evaluation operation is usually a
direct result of the accuracy, efficiency, and robustness of the computations used
to find and work with these algebraic numbers. Determining the signs of algebraic
expressions evaluated at algebraic numbers thus becomes key to performing the
entire computation.

4.2.2. ESOLID and Exact Boundary Evaluation. The ESOLID system was cre-
ated in order to perform exact boundary evaluation [KCF+02, KCF+04]. ES-
OLID uses exact representations and computations throughout to guarantee ac-
curacy and eliminate robustness problems due to numerical error (e.g. roundoff
error and its propagation). ESOLID finds and represents points in the 2D domain
only, using the MAPC library [KCMK00]. This 2D representation is sufficient for
performing all of boundary evaluation. Though significantly less efficient than an
equivalent floating-point routine, it runs at “reasonable” speed—at most 1-2 orders
of magnitude slower than an inexact approach on real-world data. Unfortunately,
ESOLID is designed to work only for objects in general position. Overcoming this
limitation has been a major motivator of the work presented here.

The 2D vertex representation (coupled with techniques that produce bounding
intervals in 3D) is sufficient for performing the entire boundary evaluation compu-
tation. MAPC represents points (with real algebraic coordinates) using a set of
bounding intervals, guaranteed to contain a unique root of the defining polynomi-
als. These intervals are found by using the Sylvester resultant and Sturm sequences
to determine potential x and y values of curve intersections. Then, a series of tests
are performed to find which x coordinates belong with which other y coordinates,
thus forming an isolating interval. These isolating intervals can be reduced in size
on demand as necessary. One nice aspect of this approach is that only roots in a
particular region of interest are found, eliminating work that might be performed
for roots outside of that region. Generally, a lazy evaluation approach is used;
intervals are reduced only as necessary to guarantee sign operations. Often they
need to be reduced far less than worst-case root bounds would indicate.

4.2.3. Incorporating the Exact RUR. The exact RUR could be incorporated
directly into a boundary evaluation approach by following the ESOLID framework,
but replacing the MAPC point representations with RUR representations. Only 2D
point representations would be necessary. The following information would then be
kept at each point:

(1) The exact RUR: the univariate polynomials h, h1 and h2 with rational
coefficients.

(2) A bound on a unique (complex) root of h.
(3) A bounding interval determined by evaluating the root of h within h1 and

h2.
(4) The two original polynomials used to compute the exact RUR.

While only the first two items are necessary to exactly specify the root, the
other information allows faster computation in typical operations.

Points are isolated using Real Roots. Whenever we need to use the points,
the computation is phrased as an algebraic expression in which that point must
be evaluated. From this, we can obtain root bounds for the algebraic numbers,

16 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

and thus the precision to which we must determine the root of h. In doing so, we
guarantee accurate sign evaluation at any point in the boundary evaluation process.

Note that in practice, due to the relatively slower performance of the RUR
method compared to the MAPC method, it is likely that a hybrid representation
should be used instead. In particular, one would like to use the MAPC approach
where it is most applicable, and the RUR where it is most applicable. Specifically,
the RUR seems better suited for degenerate situations.

4.3. Degeneracy Detection in Boundary Evaluation. As stated previ-
ously, degeneracies are a major remaining obstacle in our exact boundary evalua-
tion implementation. The exact RUR is able to cope with degenerate situations,
however, and thus is more well-suited for detecting when a degenerate situation is
occurring.

We outline here how the exact RUR method can be applied to detect each of
the common degenerate situations that arise in boundary evaluation. Space does
not permit a detailed review of how these cases fit within the larger boundary eval-
uation framework. See [Key00] for a more thorough discussion of the ways that
each of these degeneracies arise and manifest themselves. We focus here on degen-
eracies that can be easily detected using the exact RUR method. Certain other
degenerate situations are easily detected by simpler, more direct tests. For exam-
ple, overlapping surfaces are immediately found in the vanishing of an intersection
curve.

We focus here only on degeneracy detection, as there is more than one way
one might want to handle the degeneracy (e.g. numerical perturbation, symbolic
perturbation, special-case treatment).

4.3.1. General Degeneracy Consideration. The exact RUR method is particu-
larly well-suited for problems that arise in degenerate situations. Unlike methods
created under genericity assumptions (e.g. [KCMK00]), the exact RUR will find
roots for systems of equations, even when they are in highly degenerate configura-
tions. This makes it highly useful for treating degeneracies, beyond just detecting
them.

An example from boundary evaluation is when intersection curves contain sin-
gularities (e.g. self-intersections, isolated point components, cusps). Methods such
as that in [KCMK00] fail in such situations, while the exact RUR approach is
perfectly capable of finding, e.g. the intersection between two curves at a self-
intersection of one of the curves.

Note that in a practical sense, the exact RUR might not have been used to
represent all points to begin with, due to its relatively poorer performance for
generic cases (see section 5.2). Instead, the exact RUR might be used to check for
coincidence only when it seems likely that a degenerate situation is occurring. The
best approach for pursuing such a combination is a subject for future study, but a
common operation that would be necessary in such cases would be the conversion
of a point given in the existing system to one expressed as the exact RUR. We
will limit our discussion to the 2D case, as this is what is necessary for boundary
evaluation.

Degeneracies are detected during the boundary evaluation process by checking
for irregular interactions. They occur when one of the following happens in 2D:

17

(1) Three or more curves intersect at a single point. This includes the cases
of singularities (where the curve and its two derivative curves intersect at
a common point).

(2) Two curves intersect tangentially.
(3) Two curves share a positive-dimensional component.

All of these cause problems for a generic system solver (potentially resulting in
crashes), and ESOLID in particular.

The exact RUR will find roots for systems of equations, even when they are
in highly irregular configurations. The exact RUR can be used to detect these
situations:

(1) Three or more curves meeting at a point. Algorithm Real Roots can
be used to compute intersections of the system of curves. Recall that
the exact RUR method works for curves having singularities. Algorithm
Exact Sign can also be used if several of the curves have already been
intersected (generically). In that case, the test is for whether that point
lies on another curve.

(2) Tangential intersections. Algorithm Real Roots will again be able find
these intersections.

(3) Positive-dimensional components. Algorithm Positive Dimensional
Components will be able to determine whether there is a positive di-
mensional component. In general, though, other methods may be more
efficient for detecting this degeneracy, in particular, in 2D.

Thus, the exact RUR provides a mechanism for detecting any of the (non-
trivial) degenerate object intersections.

5. Experimental Results

We have implemented the exact RUR method in GNU C++. We use the Gnu
Multiple Precision (GMP) arithmetic library. All the experiments shown in this
section are performed on a 3 GHz Intel Pentium CPU with 6 GB memory.

We present here examples in order to indicate the time requirements of var-
ious parts of the exact RUR implementation, as well as to understand the time
requirement in comparison to competing methods. These are not meant to provide
a comprehensive survey of all potential cases, but rather to give greater intuitive
insight into the exact RUR procedure.

5.1. Solving Systems in the Exact RUR. In this section, we show timing
breakdowns for the application of the exact RUR to a few sample systems. We
give a brief discussion of each case (a detailed description in one instance), and
summarize the results.

5.1.1. Details of Examples. F1: Positive Dimensional Components
Consider a system F1 of two polynomials

f1 = 1 + 2X − 2X2Y − 5XY + X2 + 3X2Y,

f2 = 2 + 6X − 6X2Y − 11XY + 4X2 + 5X3Y

The roots of the system F1 are the points
{
(1, 1) ,

(
1
7 , 7

4

)}
and the line X = −1.

We give a detailed description of Algorithm Positive Dimensional Compo-
nents here as illustration.

18 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

Input System F1 F2 F3 F4 F5 F6 F7 F8

polynomial 2 2 2 3 2 2 2 2

variable 2 2 2 3 2 2 2 2

max deg of monomials 5 3 3 2 2 2 2 2

max len of coeff 4 2 2 2 309 402 54 97

roots of system ∞ 2 2 ∞ 2 2 2 4

roots of h 4 2 2 4 2 4 2 2

real roots of system 2 2 2 - 2 2 0 4

max len of coeff of hi 111 5 6 19 364 311 103 451

total time (sec) 2.59 0.0865 0.103 269.0 0.0926 0.104 0.183 0.687

% res matrix 0.8 19.7 18.8 0.1 14.1 12.5 11.8 3.1

% compute h 26.4 15.3 16.2 15.1 14.6 15.3 17.4 5.5

% compute q±i 70.4 60.7 64.4 84.8 58.0 59.6 67.5 22.5

% compute hi 2.2 2.0 0.0 0 10.0 9.8 1.8 67.9

% approx roots of h 0.1 0.5 0.3 0 0.9 0.8 0.3 0.4

% evaluate hi 0.1 1.8 0.3 0 2.4 2.0 1.2 0.6

Table 1. Timing breakdown for several examples.

–2

–1

1

2

Y

–2 –1 1 2

X

Figure 1. F1

Since F1 is a square system, Algorithm RUR immediately calls Algorithm
RUR square.

If we choose u1 = 9
2 , u2 = 17

2 ,

f∗1 = 17X3Y + 74X2Y + 94, and f∗2 = 105X3Y + 93X2 + 98XY,

19

at step 2-1, then we obtain the exact RUR for some finite subset Z ′1 of the roots of
F1 as

h(1) (T) = −284032T 4 − 4928704T 3 + 26141910T 2 + 440186393T − 1411684417,

h
(1)
1 (T) =

7689907930880
5870227699098039

T 3 +
1037528584832

124898461682937
T 2

−1313640082212220
5870227699098039

T − 851151731612679
1956742566366013

h
(1)
2 (T) = − 23069723792640

33264623628222221
T 3 − 3112585754496

707757949536643
T 2

+
27435113904634

33264623628222221
T +

7660365584514111
33264623628222221

.

If we choose u1 = 9
2 , u2 = 17

2 ,

f∗1 = 17X3Y + 110 + 112X2Y, and f∗2 = 58X3Y + 50X2 + 63XY,

at step 2-1, then we obtain the exact RUR for some finite subset Z ′2 of the roots of
F1 as

h(2) (T) = −278656T 4 − 4324928T 3 + 38195682T 2 + 477531215T − 1790337263

h
(2)
1 (T) =

23827150611712
20005826573410785

T 3 +
21652317350528

4001165314682157
T 2

− 4673278548948724
20005826573410785

T − 6694752830187523
20005826573410785

h
(2)
2 (T) = − 23827150611712

37788783527553705
T 3 − 21652317350528

7557756705510741
T 2

+
227539310412994

37788783527553705
T +

6694752830187523
37788783527553705

We test whether or not the system Z ′1 ∩ Z ′2 = ∅ using Algorithm Exact Sign.
For i = 1, 2, construct expressions rRi and rI i s.t.

h
(1)
i (θ)− h

(2)
i (θ) = rRi (<θ,=θ) + rI i (<θ,=θ) .

The root bounds for rR1, rI1, rR2 and rI2 are all smaller than 64 bits. Now, we
apply precision-driven computation to approximate the coordinates of the roots to
the (absolute) precision 128 bits. We list the values of the real and imaginary parts
of h

(1)
i (θ) for i = 1, 2:

((<h
(1)
1 (θ) , =h

(1)
1 (θ)), (<h

(1)
2 (θ) , =h

(1)
2 (θ)))

((−1, −7.329 ∗ 10−54), (−0.428, 8.903 ∗ 10−54))
((1, 4.222 ∗ 10−52), (1, −4.449 ∗ 10−52))
((0.1429, 5.432 ∗ 10−52), (1.75, −4.250 ∗ 10−52))
((−1, 3.770 ∗ 10−54), (0.173, 1.231 ∗ 10−54))

and the values of the real and imaginary parts of h
(2)
i (θ) for i = 1, 2:

((<h
(2)
1 (θ) , =h

(2)
1 (θ)), (<h

(2)
2 (θ) , =h

(2)
2 (θ)))

((−1, −1.299 ∗ 10−51), (−0.614, 1.418 ∗ 10−51))
((1, 1.022 ∗ 10−49), (1, −1.065 ∗ 10−49))
((0.1429, −4.076 ∗ 10−50), (1.75, 3.203 ∗ 10−50))
((−1, 2.030 ∗ 10−51), (0.144, 4.200 ∗ 10−52))

20 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

For each of these, the imaginary component is small enough to indicate that the
root is real. Furthermore, points

((
1, 4.222 ∗ 10−52

)
,
(
1,−4.449 ∗ 10−52

))

and ((
1, 1.429 ∗ 10−49

)
,
(
1,−1.065 ∗ 10−49

))

are identical because their difference is smaller than the root bounds for rR1 and
rI1 (and we know (1, 1) is a root). Similary, points

((
0.1429, 5.432 ∗ 10−52

)
,
(
1.75,−4.250 ∗ 10−52

))

and ((
0.1429,−4.076 ∗ 10−50

)
,
(
1.75, 3.203 ∗ 10−50

))

are identical because their difference is smaller than the root bounds for rR2 and rI2.
On the other hand, the other pairs are distinct. Note also the other roots found in
the two iterations, while different from iteration to iteration, are consistent with the
positive dimensional component, X = −1 (although we cannot actually determine
this component). Thus, we conclude that the zero set of F1 consists of 2 isolated
points and some positive dimensional components.

F2 and F3: Singularities
Consider the system F2 of two polynomials

f21 = X3 − 3X2 + 3X − Y 2 + 2Y − 2,

f22 = 2X + Y − 3

An elliptic curve f21 = 0 has a cusp at (1, 1) and intersects with the line f22 = 0
at this point.

We obtain the exact RUR for the zero set of F2 as

h (T) = −T 2 − 5424051198T − 6426597229148218232,

h1 (T) = − 2
963579587

T − 2533312437
963579587

,

h2 (T) =
4

963579587
T +

7957363635
963579587

which immediately implies that F2 has 2 real roots including (1, 1).
Consider the system F3 of two polynomials

f31 = X3 − 3X2 − 3XY + 6X + Y 3 − 3Y 2 + 6Y − 5,

f32 = X + Y − 2

Folium of Descartes f31 = 0 has a self-intersection at (1, 1) and intersects with
the line f32 = 0 at this point.

We obtain the exact RUR for the zero set of F2 as

h (T) = T + 3284000871,

h1 (T) = −T − 3284000870,
h2 (T) = −T − 3284000870

which immediately implies that F3 has only 1 real roots including (1, 1).
Because the intersections of both systems are at singular points, we cannot

apply methods, such as MAPC, that depend on general position.

21

–8

–6

–4

–2

0

2

Y

1 2 3 4 5 6
X

Figure 2. F2

–2

–1

1

2

3

4

Y

–2 –1 1 2 3 4

X

Figure 3. F3

F4: Complex Positive Dimensional Components
Consider the system F4 of three polynomials

f41 = Z − 1,

f42 = X2 + Y 2 + Z2 − 4Z + 3,

f43 = X2 + Y 2 + Z2 − 1

It is easy to see that the only real point on the zero set of F4 is (0, 0, 1). However,
the exact RUR for the zero set of F4 consists of 4 complex points each of which lies
on some complex positive dimensional component (satisfying X2 +Y 2 = 0, Z = 1).
In general, there is no clear way to extract finitely many real points that lie on
these complex positive dimensional components.

F5 through F8

Cases F5 through F8 are all drawn from cases encountered in an actual bound-
ary evaluation computation. The source data is real-world data provided from the
BRL-CAD [DM89] solid modeling system.

F5 and F6

Both F5 and F6 consist of an intersection of a line with an ellipse. Both have
2 roots and all roots are real.

22 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

Input System F5 F6 F7 F8

real roots by RUR 2 2 0 4
roots of h 2 2 2 4

real roots by MAPC 2 1 0 2
total time by RUR (sec) 0.0926 0.104 0.183 0.687

total time by MAPC (sec) 0.017 0.015 0.024 0.017
Table 2. Timings to Solve Systems F5, F6, F7, F8 by RUR
and ESOLID/MAPC in seconds

F7: No Real Roots
The system F7 consists of two ellipses. Rather than real intersections, these

ellipses have 2 complex intersections. Real Roots is used to distinguish real roots
from the other roots.

F8: Burst of Coefficients of RUR
The system F8 consists of two ellipses. F8 has 4 roots and all of them are real.
For this example, we spent the most time computing coordinate polynomials.

This was because the coefficients of the minimal polynomial and the coordinate
polynomials become huge. This also slows down the following step which iteratively
approximates the roots of the minimal polynomial.

5.1.2. Summary of Timing Breakdowns. While the examples shown above are
not comprehensive, from these and other cases we have examined, we can draw the
following conclusions:

• The performance of the method is reasonable for lower dimension/degree
systems. However, for higher dimension/degree systems (e.g. F4), the
method is not practical.

• For lower dimension/degree systems, the most time consuming part of
the algorithm is repeated computation of the determinant of the sparse
resultant matrix. In fact, the size of the toric resultant matrix grows quite
rapidly w.r.t. dimension/degree of the system in its current implementa-
tion.

• For higher dimension/degree systems, the most time consuming part is
computing univariate polynomials forming the exact RUR, mainly because
of their huge coefficients.

• Constructing the toric resultant matrix, and finding and evaluating over
the roots of the minimal polynomial takes up an insignificant portion of
the time.

5.2. RUR vs. MAPC. In this section, we show the timings for comparison
of the exact RUR method with that used in the MAPC library within the ESOLID
system. Note that the exact RUR method is able to find solutions in several cases
where MAPC/ESOLID would fail (e.g. case F1, F2, and F3), and thus we can only
compare a limited subset of cases.

It is important to note that the RUR implementation is a relatively straight-
forward implementation of the algorithm. For instance, no effort is made to control
intermediate coefficient growth in several stages. The MAPC/ESOLID code, on
the other hand, has been significantly optimized through the use of various speedup

23

techniques, such as floating-point filters and lazy evaluation approaches. It is likely
that by aggressively applying such speedups to the RUR implementation, its per-
formance can also be improved markedly. However, it is unlikely that even such
improvements would change the overall conclusions.

One of the basic routines in ESOLID / MAPC is finding real intersections of 2
monotone pieces of curves.

A real algebraic number ξ is specified by a pair polynomials (f1, f2) and the
region R s.t. ξ is the only intersection of f1 and f2 in R. We could naively use the
exact RUR here to specify algebraic numbers.

We compare only the last steps of root isolation in ESOLID / MAPC with the
exact RUR method. Because ESOLID / MAPC only finds roots over a particular
region, it does not necessarily find all the roots of the system. This is in contrast
to the exact RUR, which finds all roots (and would then select only those in the
region). This describes the difference in the number of roots found in F6 and F8.

In addition, the exact RUR loses efficiency by finding all the complex roots
while ESOLID / MAPC finds only real roots. This phenomenon can be observed
in the example of F7. The size of the coefficients of polynomials in the exact RUR
grow independent of the location of the roots.

From these cases, the clear conclusion is that for generic cases that a method
such as those MAPC/ESOLID can handle, the RUR has an unacceptably high
performance cost. For this reason, it will be best to use the RUR in implementations
only in a hybrid fashion, when the other methods will fail. An important caveat
should be considered, in that our RUR implementation has not been fully optimized.
Such optimizations should increase RUR performance significantly, though we still
believe that fundamental limitations (such as finding all roots, including complex
ones) will make the RUR less efficient in most generic cases encountered in practice.

6. Conclusion

We have presented the Rational Univariate Reduction as a method for achiev-
ing exact geometric computation in situations that require solutions to systems of
polynomials. We compute the RUR

exactly. In addition, we have presented an approach for exact sign determi-
nation with root bounds for complex algebraic numbers, extending previous ap-
proaches that apply only to real numbers. This allows us to use the RUR for
geometric operations, including determining whether or not there are positive di-
mensional components, and distinguishing real roots.

Our method is significant in the following sense:

• The method and generated answers are readily adapted to exact compu-
tation.

• The method finds complex roots and identifies real roots if necessarily.
• The method works even if the set of roots has some positive dimensional

component,
• The method is entirely factorization-free and Sturm-free.

Finally, we have implemented the RUR approach described and presented the
timing breakdown for various stages for a selected set of problems. These timings
highlight the computational bottlenecks and give indications of useful avenues for
future work.

24 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

6.1. Future Work. A primary avenue of future development will be in finding
ways to optimize the computation and use of the RUR, particularly in reference
to problems from specific domains. Experience has shown that by aggressively
applying filtering and other speedup techniques, many exact implementations can
be made far more efficient [KCF+02]. There are numerous potential avenues for
such speedups, and we describe a couple of them below.

Our experiments show that for low-dimensional cases, most of the computation
time is dedicated to evaluating the determinant of the sparse resultant matrix.
There are thus two immediately obvious issues to tackle:

• Use some algorithm which produces sparse resultant matrices of smaller
size [EC95] [DE02]. Although the matrix constuction is not time-consuming,
the size of the sparse resultant matrices directly affects the performance
of the next step, namely, repeated computations of the determinant of the
matrix.

• Computing the determinant of a sparse resultant matrix is the most
time consuming step. Currently, we use a standard Gaussian elimina-
tion method implemented in multi-precision arithmetic. Improvements
might include taking advantage of the sparse structure of the matrix it-
self, or finding the determinant using a filtered approach, resulting in only
partially determined, but still exact, polynomial coefficients. Such coef-
ficients would allow faster computation in most cases, and could still be
later refined to greater or complete accuracy in the few cases where it is
needed.

• We would like to put some controls over the size of coefficients of univari-
ate polynomials forming the RUR. Experiments showed that, for higher
dimensional cases, univariate polynomial ring operations tends to be the
most expensive, because of the growth of coefficients. First, we should
choose generic values more carefully based on the shaper estimate for
bit-complexity of the subroutines. Next, we should make better choices
for subroutines, e.g., subresultant method instead of Euclidean algorithm,
etc., as this tends to dominate running time for higher degrees.

Finally, we are in the process of integrating the RUR completely into a solid
modeling system [?] to support fully exact and robust geometric computation. We
have shown that (with the current implementation) the naive use of the exact RUR
is not attractive in terms of performance. However, we have also shown that the
exact RUR is able to handle degeneracies. A practical solution would be to develop
a hybrid system, incorporating both the RUR and a general-position system solver.
Determining precisely how to put together such a hybrid system is a challenge for
future work.

References

[Abe73] O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously,
Mathematics of Computation 27 (1973), no. 122, 339 – 344.

[ARD02] P. Aubry, F. Rouillier, and M. Safey El Din, Real solving for positive dimensional
systems, Journal of Symbolic Computation 34 (2002), no. 6, 543 – 560.

[BCSS97] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation,
Springer, 1997.

[Ber75] D. N. Bernstein, The number of roots of a system of equations, Functional Analysis
and its Applications 9 (1975), no. 2, 183 – 185.

25

[BF00] D. A. Bini and G. Fiorentino, Design, analysis, and implementation of a multipreci-
sion polynomial rootfinder, Numerical Algorithms 23 (2000), no. 2, 127 – 173.

[BFMS97] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra, A strong and easily com-
putable separation bound for arithmetic expressions involving square roots, Proc. of
8th ACM-SIAM Symposium on Discrete Algorithms, ACM, 1997, pp. 702 – 709.

[BFMS99] , Exact efficient computational geometry made easy, Proc. of 15th Annual
Symposium on Computational Geometry, ACM, 1999, pp. 341 – 350.

[BFMS00] , A strong and easily computable separation bound for arithmetic expressions
involving radicals, Algorithmica 27 (2000), no. 1, 87 – 99.

[Bin96] D. A. Bini, Numerical computation of polynomial zeros by means of Aberth’s method,
Numerical Algorithms 13 (1996), no. 3/4, 179 – 200.

[BMS96] C. Burnikel, K. Mehlhorn, and S. Schirra, The LEDA class real number, Tech.
Report MPI-I-96-1-001, Max-Planck-Institut fur Informatik, Im Stadtwald, D-66123
Saarbrücken, Germany, 1996.

[BPR03] S. Basu, R. Pollack, and Marie-FranÇoise Roy, Algorithms in real algebraic geometry,
Springer, 2003.

[Can90] J. F. Canny, Generalized characteristic polynomials, Journal of Symbolic Computa-
tion 9 (1990), no. 3, 241 – 250.

[CE93] J. F. Canny and I. Z. Emiris, An efficient algorithm for the sparse mixed resultant,
Proc. of 10th AAECC, LNCS 673, Springer, 1993, pp. 89 – 104.

[CE00] , A subdivision-based algorithm for the sparse resultant, Journal of ACM 47
(2000), no. 3, 417 – 451.

[CK03] A. D. Chtcherba and D. Kapur, Exact resultants for corner-cut unmixed multivariate
polynomial systems using the dixon formulation, Journal of Symbolic Computation
36 (2003), no. 3/4, 289 – 315.

[CLO98] D. Cox, J. Little, and D. O’Shea, Using algebraic geometry, Springer, 1998.
[D’A02] C. D’Andrea, Macaulay style formulas for sparse resultants, Transactions of the AMS

354 (2002), no. 7, 2595 – 2629.
[DE01] C. D’Andrea and I. Z. Emiris, Computing sparse projection operators, Symbolic

Computation: Solving equations in Algebra, Geometry and Engineering (E. L. Green
et al., ed.), Contemporary Mathematics, Vol. 286, AMS, 2001, pp. 121 – 139.

[DE02] , Hybrid sparse resultant matrices for bivariate polynomials, Journal of Sym-
bolic Computation 33 (2002), no. 5, 587 – 608.

[DE03] , Sparse resultant perturbation, Algebra, Geometry, and Software (M. Joswing
and N. Takayama, eds.), Springer, 2003, pp. 93 – 107.

[DM89] P. C. Dykstra and M. J. Muuss, The BRL-CAD package an overview, Tech. report,
Advanced Computer Systesms Team, Ballistics Research Laboratory, Aberdeen Prov-
ing Ground, MD, 1989, http://ftp.arl.mil/brlcad/.

[DY95] T. Dubé and C. Yap, The exact computation paradigm, Computing in Euclidean Ge-
ometry (D. Du and F. Hwang, eds.), Lecture Notes on Computing, World Scientific,
2nd ed., 1995, pp. 452 – 492.

[EC91] I. Z. Emiris and J. F. Canny, A general approach to removing degeneracies, Proc.
of 32nd IEEE Symposium on the Foundations of Computer Science, IEEE, 1991,
pp. 405 – 413.

[EC92] , An efficient approach to removing geometric degeneracies, Proc. of 8th An-
nual Symposium on Computational Geometry, ACM, 1992, pp. 74 – 82.

[EC95] , Efficient incremental algorithm for the sparse resultant and the mixed vol-
ume, Journal of Symbolic Computation 20 (1995), no. 2, 117 – 149.

[ECS97] I. Z. Emiris, J. F. Canny, and R. Seidel, Efficient perturbations for handling geometric
degeneracies, Algorithmica 19 (1997), no. 1/2, 219 – 242.

[EM90] H. Edelsbrunner and E. Mücke, Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms, ACM Transactions on Graphics 9 (1990),
no. 1, 66 – 104.

[Emi96] I. Z. Emiris, On the complexity of sparse elimination, Journal of Complexity 12
(1996), no. 2, 134 – 166.

[Emi02] , Enumerating a subset of the integer points inside a Minkowski sum, Com-
putational Geometry 22 (2002), no. 1-3, 143 – 166.

26 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

[Emi03] , Discrete geometry for algebraic elimination, Algebra, Geometry, and Soft-
ware (M. Joswing and N. Takayama, eds.), Springer, 2003, pp. 77 – 91.

[For97] S. Fortune, Polyhedral modeling with multiprecision integer arithmetic, Computer-
Aided Design 29 (1997), no. 2, 123 – 133.

[GLS01] M. Giusti, G. Lecerf, and B. Salvy, A Gröbner free alternative for polynomial system
solving, Journal of Complexity 17 (2001), no. 1, 154 – 211.

[GV91] L. Gonzáez-Vega, A subresultant theory for multivariate polynomials, Proc. of ISSAC
’91, ACM, 1991, pp. 79 – 85.

[GV97] L. Gonzalez-Vega, Implicitization of parametric curves and surfaces by using multi-
dimensional newton formulae, Journal of Symbolic Computation 23 (1997), no. 2/3,
137 – 151.

[GVRR99a] L. Gonzalez-Vega, F. Rouillier, and M-F. Roy, Symbolic recipes for polynomial system
solving, Some tapas of computer algebra (A. M. Cohen, H. Cuypers, and H. Sterk,
eds.), Algorithms and computation in mathematics, Vol. 4, Springer, 1999, pp. 34 –
65.

[GVRR99b] , Symbolic recipes for real solutions, Some tapas of computer algebra (A. M.
Cohen, H. Cuypers, and H. Sterk, eds.), Algorithms and computation in mathematics,
Vol. 4, Springer, 1999, pp. 121 – 167.

[HHK89] C. M. Hoffman, J. E. Hopcroft, and M. S. Karasick, Robust set operations on poly-
hedral solids, IEEE Computer Graphics and Applications 9 (1989), no. 6, 50 – 59.

[Hof89] C. M. Hoffman, The problems of accuracy and robustness in geometric computation,
IEEE Computer 22 (1989), no. 3, 31 – 41.

[KCF+02] J. Keyser, T. Culver, M. Foskey, S. Krishnan, and D. Manocha, ESOLID: A system
for exact boundary evaluation, Proc. of 7th ACM Symposium on Solid Modeling and
Applications, ACM, 2002, pp. 23 – 34.

[KCF+04] , ESOLID - a system for exact boundary evaluation, Computer-Aided Design
36 (2004), no. 2, 175 – 193.

[KCMK99] J. Keyser, T. Culver, D. Manocha, and S. Krishnan, MAPC: A library for efficient
and exact manipulation of algebraic points, Proc. of 15th Annual Symposium on
Computational Geometry, ACM, 1999, pp. 360 – 369.

[KCMK00] , Efficient and exact manipulation of algebraic points and curves, Computer-
Aided Design 32 (2000), no. 11, 649 – 662.

[Key00] John C. Keyser, Exact boundary evaluation for curved solids, Ph.D. thesis, Depart-
ment of Computer Science, University of North Carolina, Chapel Hill, NC, 2000.

[Khe03] A. Khetan, The resultant of an unmixed bivariate system, Journal of Symbolic Com-
putation 36 (2003), no. 3/4, 425 – 442.

[Kho78] A. G. Khovanskii, Newton polyhedra and the genus of complete intersections, Func-
tional Analysis and its Applications 12 (1978), no. 1, 51 – 61.

[KKM99a] J. Keyser, S. Krishnan, and D. Manocha, Efficient and accurate B-rep generation of
low degree sculptured solids using exact arithmetic: I - representations, Computer
Aided Geometric Design 16 (1999), no. 9, 841 – 859.

[KKM99b] , Efficient and accurate B-rep generation of low degree sculptured solids using
exact arithmetic: II - computation, Computer Aided Geometric Design 16 (1999),
no. 9, 861 – 882.

[KLY99] V. Karamcheti, C. Li, and C. Yap, A Core library for robust numerical and geometric
computation, Proc. of 15th Annual Symposium on Computational Geometry, ACM,
1999, pp. 351 – 359.

[Kro31] L. Kronecker, Leopold kronecker’s werke, Teubner, 1895 - 1931.
[Kus76] D. N. Kushnirenko, Newton polytopes and the Bezout theorem, Functional Analysis

and its Applications 10 (1976), no. 3, 82 – 83.
[Lec02] G. Lecerf, Quadratic newton iteration for systems with multiplicity, Journal of Foun-

dations of Computational Mathematics 2 (2002), no. 3, 247 – 293.
[LY01] C. Li and C. Yap, A new constructive root bound for algebraic expressions, Proc. of

12th ACM-SIAM Symposium on Discrete Algorithms ’01, ACM, 2001, pp. 476 – 505.
[MN99] S. Mehlhorn and M. Näher, Leda - a platform for combinatorial and geometric com-

puting, Cambridge University Press, 1999.

27

[MOBP94] D. Michelucci M. O. Benouamer and B. Peroche, Error-free boundary evaluation
based on a lazy rational arithmetic: a detailed implementation, Computer-Aided
Design 26 (1994), no. 6, 403 – 416.

[MŞ99] N. Mignotte and D. Ştefănescu, Polynomials: An algebraic approach, Springer, 1999.
[PS93] P. Pedersen and B. Sturmfels, Product formulas for resultants and chow forms, Math-

ematische Zeitschrift 214 (1993), no. 3, 377 – 396.
[PY03] S. Pion and C. Yap, Constructive root bound for k-ary rational input numbers, Proc.

of 19th Annual Symposium on Computational Geometry, ACM, 2003, pp. 256 – 263.
[Roj94] J. M. Rojas, A convex geometric approach to counting the roots of a polynomial

system, Theoretical Computer Science 133 (1994), no. 1, 105 – 140.
[Roj96] , Counting affine roots of polynomial systems via pointed Newton polytopes,

Journal of Complexity 12 (1996), no. 2, 116 – 133.
[Roj97] , Toric laminations, sparse generalized characteristic polynomials, and a re-

finement of Hilbert’s tenth problem, Foundations of Computational Mathematics
(F. Cucker and M. Shub, eds.), Springer, 1997, pp. 369 – 381.

[Roj98] , Intrinsic near quadratic complexity bounds for real multivariate root count-
ing, Proc. of 6th Annual European Symposium on Algorithms, LNCS 1461, Springer,
1998, pp. 127 – 138.

[Roj99a] , Solving degenerate sparse polynomial systems faster, Journal of Symbolic
Computation 28 (1999), no. 1/2, 155 – 186.

[Roj99b] , Toric intersection theory for affine root counting, Journal of Pure and Ap-
plied Algebra 136 (1999), no. 1, 67 – 100.

[Roj00] , Algebraic geometry over four rings and the frontier to tractability, Hilbert’s
tenth problem : relations with arithmetic and algebraic geometry (J. Denef et al.,
ed.), Contemporary Mathematics, Vol. 270, AMS, 2000, pp. 275 – 321.

[Roj03] , Why polyhedra matter in non-linear equation solving, Topics in Algebraic
Geometry and Geometric Modeling (R. Goldman and R. Krasauskas, eds.), Contem-
porary Mathematics, Vol. 334, AMS, 2003, pp. 293 – 320.

[Roj04] , Arithmetic multivariate Descartes’ rule, American Journal of Mathematics
126 (2004), no. 1, 1 – 30.

[Rou99] F. Rouillier, Solving zero-dimensional systems through the rational univariate rep-
resentation, Applicable Algebra in Engineering, Communication and Computing 9
(1999), no. 5, 433 – 461.

[Roy96] M-F. Roy, Computation in real algebraic geometry, The Mathematics of Numerical
Analysis (J. Renegar et al., ed.), Lectures in Applied Mathematics, Vol. 32, AMS,
1996, pp. 701 – 714.

[Sei94] R. Seidel, The nature and meaning of perturbations in geometric computing, Proc.
of 11th Annual Symposium on Theoretical Aspects of Computer Science ’94, LNCS
775, Springer, 1994, pp. 3 – 17.

[SI89] K. Sugihara and M. Iri, A solid modelling system free from topological inconsistency,
Journal of Information Processing 12 (1989), no. 4, 380 – 393.

[Stu94] B. Sturmfels, On the Newton polytope of the resultant, Journal of Algebraic Combi-
natorics 3 (1994), no. 2, 207 – 236.

[Stu02] , Solving systems of polynomial equations, AMS, 2002.
[SV00] A. J. Sommese and J. Verschelde, Numerical homotopies to compute generic points

on positive dimensional components, Journal of Complexity 16 (2000), no. 3, 572 –
602.

[SVW01] A. J. Sommese, J. Verschelde, and C. W. Wampler, Numerical decomposition of the
solution sets of polynomial systems into irreducible components, SIAM Journal of
Numerical Analysis 38 (2001), no. 6, 2022 – 2046.

[SVW03] , Numerical irreducible decomposition using phcpack, Algebra, Geometry, and
Software (M. Joswing and N. Takayama, eds.), Springer, 2003, pp. 109 – 129.

[SW96] A. J. Sommse and C. W. Wampler, Numerical algebraic geometry, The Mathematics
of Numerical Analysis (J. Renegar et al., ed.), Lectures in Applied Mathematics, Vol.
32, AMS, 1996, pp. 749 – 763.

[Yap90] C. Yap, Symbolic treatment of geometric degeneracies, Journal of Symbolic Compu-
tation 10 (1990), no. 3/4, 349 – 370.

28 JOHN KEYSER, J. MAURICE ROJAS, AND KOJI OUCHI

[Yap97] , Towards exact geometric computation, Computational Geometry 7 (1997),
no. 1, 3 – 23.

[Yu91] J. Yu, Exact arithmetic solid modeling, Ph.D. thesis, Department of Computer Sci-
ence, Purdue University, West Lafayette, IN, 1991.

Department of Computer Science, Texas A&M University, College Station, TX
77843-3112

Current address: Department of Computer Science, Texas A&M University, College Station,
TX 77843-3112

E-mail address: keyser@cs.tamu.edu

Department of Mathematics, Texas A&M University, College Station, TX 77843-
3368

Current address: Department of Mathematics, Texas A&M University, College Station, TX
77843-3368

E-mail address: rojas@math.tamu.edu

Department of Computer Science, Texas A&M University, College Station, TX
77843-3112

Current address: Department of Computer Science, Texas A&M University, College Station,
TX 77843-3112

E-mail address: kouchi@cs.tamu.edu

