
PROBABILISTIC CONDITION NUMBER ESTIMATES FOR REAL

POLYNOMIAL SYSTEMS I: A BROADER FAMILY OF DISTRIBUTIONS
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Abstract. We consider the sensitivity of real roots of polynomial systems with respect to
perturbations of the coefficients. In particular — for a version of the condition number de-
fined by Cucker and used later by Cucker, Krick, Malajovich, and Wschebor — we establish
new probabilistic estimates that allow a much broader family of measures than considered
earlier. We also generalize further by allowing over-determined systems.

In Part II, we study smoothed complexity and how sparsity (in the sense of restricting
which terms can appear) can help further improve earlier condition number estimates.

Communicated by Felipe Cucker

1. Introduction

When designing algorithms for polynomial system solving, it quickly becomes clear that
complexity is governed by more than simply the number of variables and degrees of the
equations. Numerical solutions are meaningless without further information on the spacing
of the roots, not to mention their sensitivity to perturbation. A mathematically elegant
means of capturing this sensitivity is the notion of condition number (see, e.g., [3, 6] and our
discussion below).
A subtlety behind complexity bounds incorporating the condition number is that

computing the condition number, even within a large multiplicative error, is provably as
hard as computing the numerical solution one seeks in the first place (see, e.g., [17] for a
precise statement in the linear case). However, it is now known that the condition number
admits probabilistic bounds, thus enabling its use in average-case analysis, high probability
analysis, and smoothed analysis of the complexity of numerical algorithms. This probabilis-
tic approach has revealed (see, e.g., [2, 5, 23]) that, in certain settings, numerical solving
can be done in polynomial-time on average, even though numerical solving has exponential
worst-case complexity. More recently, the condition number has also proved to be a central
quantity in the algorithmic complexity of deeper geometric problems such as the computation
of the homology groups of semi-algebraic sets (see, e.g., [14, 8]).
The numerical approximation of complex roots provides an instructive example of how

one can profit from randomization.
First, there are classical reductions showing that deciding the existence of complex roots

for systems of polynomials in
⋃

m,n∈N(Z[x1, . . . , xn])
m is already NP-hard. However, classical

algebraic geometry (e.g., Bertini’s Theorem and Bézout’s Theorem [32]) tells us that, with
probability 1, the number of complex roots of a random system of homogeneous polynomials,
P :=(p1, . . . , pm)∈C[x1, . . . , xn] (with each pi having fixed positive degree di), is 0,

∏n
i=1 di,

or infinite, according as m>n − 1, m=n − 1, or m<n − 1. (Any probability measure on
the coefficient space, absolutely continuous with respect to Lebesgue measure, will do in the
preceding statement.)
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Secondly, examples like P := (x1 − x2
2, x2 − x2

3, . . . , xn−1 − x2
n, (2xn − 1)(3xn − 1)), which

has affine roots
(

2−2n−1
, . . . , 2−20

)

and
(

3−2n−1
, . . . , 3−20

)

, reveal that the number of digits

of accuracy necessary to distinguish the coordinates of roots of P may be exponential in
n (among other parameters). However, it is now known via earlier work on discriminants
and random polynomial systems (see, e.g., [9, Thm. 5]) that the number of digits needed
to separate roots of P is polynomial in n with high probability, assuming the coefficients are
rational, and the polynomial degrees and coefficient heights are bounded. More simply, a
classical observation from the theory of resultants (see, e.g., [7]) is that, for any positive
continuous probability measure on the coefficients, P having a root with Jacobian matrix
possessing small determinant is a rare event. So, with high probability, small perturbations
of a P with no degenerate roots should still have no degenerate roots. More precisely, we
review below a version of the condition number used in [33, 2, 23]. Recall that the singular
values of a matrix T ∈R

k×(n−1) are the (nonnegative) square roots of the eigenvalues of T⊤T ,
where T⊤ denotes the transpose of T .

Definition 1.1. Given n, d1, . . . , dm∈N and i∈{1, . . . ,m}, let pi∈R[x1, . . . , xn] be homoge-
nous polynomials with deg pi=di, and let P := (p1, . . . , pm) be the corresponding polynomial
system. We set xα :=xα1

1 · · · xαn
n where α :=(α1, . . . , αn), and let ci,α denote the coefficient of

xα in pi. We define the Weyl-Bombieri norms of pi and P to be, respectively,

‖pi‖W :=
√

∑

α1+···+αn=di

|ci,α|2
(diα)

and ‖P‖W :=

√

m
∑

i=1

‖pi‖2W .

Let ∆m ∈ R
m×m be the diagonal matrix with diagonal entries

√
d1, . . . ,

√
dm and let

DP (x)|TxSn−1 : TxS
n−1 −→ R

m denote the linear map between tangent spaces induced by the
Jacobian matrix of the polynomial system P evaluated at the point x. Finally, when m=n−1,
we define the (normalized) local condition number (for solving P =O) to be µ̃norm(P, x) :=
‖P‖Wσmax

(

DP (x)|−1
TxSn−1∆n−1

)

or µ̃norm(P, x) :=∞, according as DP (x)|TxSn−1 is full rank
or not, where σmax(A) is the largest singular value of a matrix A. ⋄
Clearly, µ̃norm(P, x) → ∞ as P approaches a system possessing a degenerate root ζ ∈ P

n−1
C

and x approaches ζ. The intermediate normalizations in the definition are useful for geomet-
ric interpretations of µ̃norm: There is in fact a simple and elegant algebraic relation between
‖P‖W , supx∈Sn−1 µ̃norm(P, x), and the distance of P to a certain discriminant variety (re-
viewed in Section 2 and Theorem 2.1 below, see also [12]). But even more importantly, the
preceding condition number (in the special case m=n − 1) was a central ingredient in the
recent positive solution to Smale’s 17th Problem [2, 23]: For the problem of numerically
approximating a single complex root of a polynomial system, a particular randomization
model (independent complex Gaussian coefficients with specially chosen variances) enables
polynomial-time average-case complexity, in the face of exponential deterministic complex-
ity.1

1.1. From Complex Roots to Real Roots. It is natural to seek similar average-case
speed-ups for the harder problem of numerically approximating real roots of real polynomial
systems. However, an important subtlety one must consider is that the number of real roots
of n− 1 homogeneous polynomials in n variables (of fixed degree) is no longer constant with

1Here, “complexity” simply means the total number of field operations over C needed to find a start point
x0 for Newton iteration, such that the sequence of Newton iterates (xn)n∈N converges to a true root ζ of P

(see, e.g., [3, Ch. 8]) at the rate of |xn − ζ|≤(1/2)2
n−1 |x0 − ζ| or faster.
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probability 1, even if the probability measure for the coefficients is continuous and positive.
Also, small perturbations can make the number of real roots of a polynomial system go from
positive to zero or even infinity. A condition number for real solving that takes all these
subtleties into account was developed in [10] and applied in the series of papers [11, 12, 13].
In these papers, the authors performed a probabilistic analysis assuming the coefficients were
independent real Gaussians with mean 0 and very specially chosen variances.

Definition 1.2. [10] Let κ̃(P, x) :=
‖P‖W√

‖P‖2W µ̃norm(P,x)−2+‖P (x)‖22
and κ̃(P ) := sup

x∈Sn−1

κ̃(P, x). We

respectively call κ̃(P, x) and κ̃(P ) the local and global condition numbers for real solving. ⋄
Note that a large condition number for real solving can be caused not only by a root with
small Jacobian determinant, but also by the existence of a critical point for P with small
corresponding critical value. So a large κ̃ is meant to detect the spontaneous creation of real
roots, as well as the bifurcation of a single degenerate root into multiple distinct real roots,
arising from small perturbations of the coefficients.
Our main results, Theorems 3.9 and 3.10 in Section 3.4 below, show that useful condition

number estimates can be derived for a much broader class of probability measures than
considered earlier: Our theorems allow non-Gaussian distributions, dependence between
certain coefficients, and, unlike the existing literature, our methods do not use any additional
algebraic structure, e.g., invariance under the unitary group acting linearly on the variables
(as in [33, 11, 12, 13]). This aspect also allows us to begin to address sparse polynomials
(in the sequel to this paper), where linear changes of variables would destroy sparsity. Our
framework also allows over-determined systems (m > n−1). We leave the under-determined
case (m < n− 1) for future work.
To compare our results with earlier estimates, let us first recall a central estimate from

[13].

Theorem 1.3. [13, Thm. 1.2] Let P := (p1, . . . , pn−1) be a random system of homogenous

n-variate polynomials where n ≥ 3 and pi(x) :=
∑

α1+···+αn=di

√

(

di
α

)

ci,αx
α where the ci,α are

independent real Gaussian random variables having mean 0 and variance 1. Then, letting

N :=
∑n−1

i=1

(

n+di−1
di

)

, d := maxi di, M
′ := 1 + 8d2

√

(n− 1)5N
∏n−1

i=1 di, and t≥
√

n−1
4
∏n−1

i=1 di
,

we have:

1. Prob(κ̃(P ) ≥ tM ′) ≤
√

1+log(tM ′)

t

2. E(log(κ̃(P ))) ≤ log(M ′) +
√
logM ′ + 1√

logM ′ .

The expanded class of distributions we allow for the coefficients of P satisfy the following
more flexible hypotheses:

Notation 1.4. For any d1, . . . , dm ∈N and i∈{1, . . . ,m}, let d :=maxi di, Ni :=
(

n+di−1
di

)

,

and assume Ci = (ci,α)α1+···+αn=di are independent random vectors in R
Ni with probability

distributions satisfying:
1. (Centering) For any θ ∈ SNi−1 we have E〈Ci, θ〉 = 0.
2. (Subgaussian) There is a K > 0 such that for every θ ∈ SNi−1 we have

Prob (|〈Ci, θ〉| ≥ t) ≤ 2e−t2/K2
for all t > 0.

3. (Small Ball) There is a c0 > 0 such that for every vector a ∈ R
Ni we have

Prob (|〈a, Ci〉| ≤ ε‖a‖2) ≤ c0ε for all ε > 0. ⋄
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By the vectors Ci being independent we simply mean that the probability density function for
the longer vector C1×· · ·×Cm can be expressed as a product of the form

∏m
i=1 fi(. . . , ci,α, . . .).

This is a much weaker assumption than having all the ci,α be independent, as is usually done
in the literature on random polynomial systems.
The standard Gaussian distribution is a typical example of a collection of random vectors

satisfying our assumptions with universal constants. This easily follows from the fact that
for a standard Gaussian random vector C ∈ R

Ni , and for any θ ∈ SNi−1, the one dimensional
marginal 〈θ, C〉 is a standard Gaussian random variable.
Another example of a collection of random vectors satisfying the 3 assumptions above can

be obtained by letting p > 2 and letting Ci have the uniform distribution on

BNi
p :=

{

x ∈ R
Ni | ∑Ni

j=1 x
p
j ≤ 1

}

for all i: In this case the subgaussian assumption fol-

lows from [1, Sec. 6] and the small-ball assumption is a direct consequence of the fact that
BNi

p satisfies Bourgain’s Hyperplane Conjecture (see, e.g., [21]). Yet another important ex-
ample (easier to verify) is to let the Ci have the uniform distribution on ℓ2 unit-spheres of
varying dimension.
The subgaussian and small-ball assumptions are standard assumptions in modern non-

asymptotic theory of random matrices and in general in the applications of high-dimensional
probability to Data Sciences (See [30], [31]). One of the reasons that these assumptions
are so popular is that these properties “tensorize nicely”: In particular a standard appli-
cation of Bernstein’s inequality shows that if Xi, i ∈ {1, 2, . . . , Ni} are independent cen-
tered random variables that are all subgaussian with constant K then the random vector
X = (X1, · · · , XNi

) is also subgaussian with constant CK, where C is an absolute universal
constant. Also a recent result of Rudelson and Vershynin ([29]) states that if all the Xi

have the small ball property with constant c0 then the random vector X = (X1, · · · , XNi
)

has the small ball property with constant C1c0, where C1 is a universal constant. The best
possible constant in this case is known (see [24] or [25]). This “tensorization property” also
shows that there are numerous examples of random vectors that satisfy our assumptions.
Examples of subgaussian random variables that satisfy the small ball assumption are the
random variables Xp, p ≥ 2 that have densities f(t) := cpe

−|t|p , t ∈ R, where cp is a constant
depending on p such that

∫

f = 1. (In this case the subgaussian constant and the small ball
constants are universal constants, independent of p).
Other examples of random variables that have the two properties are the random variables

that has a bounded density f with a bounded support. (In these cases the subgaussian
constant depends on the size of the support of the density and the small ball constant
depends on the “infinity norm” of the density).
A simplified summary of our main results (Theorems 3.9 and 3.10 from Section 3.4), in

the special case of square dense systems, is the following:

Corollary 1.5. There is an absolute constant A> 0 with the following property. Let P :=
(p1, . . . , pn−1) be a random system of homogenous n-variate polynomials where

pi(x) :=
∑

α1+···+αn=di

√

(

di
α

)

ci,αx
α and Ci = (ci,α)α1+···+αn=di are independent random vec-

tors satisfying the centering, subgaussian and small-ball assumptions, with underlying con-
stants c0 and K. Then, for n ≥ 3, d := maxi di, d ≥ 2, N :=

∑n−1
i=1

(

n+di−1
di

)

, and

M := A
√
N(Kc0)

2(n−1)(3d2 log(ed))2n−3
√
n the following bounds hold:
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1. Prob(κ̃(P ) ≥ tM) ≤







3t−
1
2 ; if 1 ≤ t ≤ (ed)2(n−1)

3t−
1
2

(

t
(ed)2(n−1)

)
1

4 log(ed)
; if t ≥ (ed)2(n−1)

2. E(log κ̃(P )) ≤ 1 + logM .

Corollary 1.5 is proved in Section 3.4. Theorems 3.9 and 3.10 in Section 3.4 below in fact
state much stronger estimates than our simplified summary above.
Note that, for fixed d and n, the bound from Assertion (1) of Corollary 1.5 shows a

somewhat slower rate of decay for the probability of a large condition number than the
older bound from Assertion (1) of Theorem 1.3: O(1/t0.3523) vs. O(

√
log t/t). However,

the older O(
√
log t/t) bound was restricted to a special family of Gaussian distributions

(satisfying invariance with respect to a natural O(n)-action on the root space P
n−1
R

) and
assumes m = n − 1. Our techniques come from geometric functional analysis, work for a
broader family of distributions, and we make no group-invariance assumptions.
Furthermore, our techniques allow condition number bounds in a new setting: over-

determined systems, i.e., m × n systems with m > n − 1. See the next section for the
definition of a condition number enabling m> n − 1, and the statements of Theorems 3.9
and 3.10 for our most general condition number bounds. The over-determined case occurs
in many important applications involving large data, where one may make multiple redun-
dant measurements of some physical phenomenon, e.g., image reconstruction from multiple
projections. There appear to have been no probabilistic condition number estimates for the
case m>n − 1 until now. In particular, for m proportional to n, we will see at the end of
this paper how our condition number estimates are close to optimal.
To the best of our knowledge, the only other result toward estimating condition numbers

of non-Gaussian random polynomial systems is due to Nguyen [26]. However, in [26] the
degrees of the polynomials are assumed to be bounded by a small fraction of the number of
variables, m=n−1, and the quantity analyzed in [26] is not the condition number considered
in [33] or [11, 12, 13].
The precise asymptotics of the decay rate for the probability of having a large condition

number remain unknown, even in the restricted Gaussian case considered by Cucker, Krick,
Malajovich and Wschebor. So we also prove lower bounds for the condition number of a
random polynomial system. To establish these bounds, we will need one more assumption
on the randomness.

Notation 1.6. For any d1, . . . , dm ∈N and i∈{1, . . . ,m}, let d :=maxi di, Ni :=
(

n+di−1
di

)

,

and assume Ci = (ci,α)α1+···+αn=di is an independent random vector in R
Ni with probability

distribution satisfying:
4. (Euclidean Small Ball) There is a constant c̃0 > 0 such that for every ε>0 we have

Prob
(

‖Ci‖2 ≤ ε
√
Ni

)

≤ (c̃0ε)
Ni. ⋄

Remark 1.7. If the vectors Ci have independent coordinates satisfying the centering and
small-ball Assumptions, then Lemma 3.4 from Section 3.3 implies that the Euclidean small
ball assumption holds as well. Moreover, if the Ci are each uniformly distributed on a con-
vex body X and satisfy our Centering and Subgaussian assumptions, then a result of Jean
Bourgain [4] (see also [15] or [20] for alternative proofs) implies that both the small ball
and Euclidean small ball assumptions hold, and with c̃0 depending only on the subgaussian
constant K (not the convex body X). ⋄
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Corollary 1.8. Suppose n, d ≥ 3, m = n − 1, and dj = d for all j ∈ {1, . . . , n − 1}. Also
let P := (p1, . . . , pm) be a random polynomial system satisfying our centering, subgaussian,
small ball, and Euclidean small ball assumptions, with respective underlying constants K and
c̃0. Then, there are constants A2≥A1>0 depending only on c0 and K (i.e., independent of
n and d), such that

A1(n log(d) + d log(n)) ≤ E(log κ̃(P )) ≤ A2(n log(d) + d log(n)). �

Corollary 1.8 follows immediately from a more general estimate: Lemma 3.13 from Section
3.3. It would certainly be more desirable to know bounds within a constant multiple of κ̃(P )
instead. We discuss more refined estimates of the latter kind in Section 3.5, after the proof
of Lemma 3.13.
As we close our introduction, we point out that one of the tools we developed to prove our

main theorems may be of independent interest: Theorem 2.4 of the next section extends,
to polynomial systems, an earlier estimate of Kellog [19] on the norm of the derivative of a
single multivariate polynomial.

2. Technical Background

We start by defining an inner product structure on spaces of polynomial systems. For
n-variate degree d homogenous polynomials f(x) :=

∑

|α|=d bαx
α, g(x) :=

∑

|α|=d cαx
α ∈

R[x1, . . . , xn], their Weyl-Bombieri inner product is defined as

〈f, g〉W :=
∑

|α|=d

bαcα
(

d
α

) .

It is known (see, e.g., [22, Thm. 4.1]) that for any U ∈ O(n) we have

〈f ◦ U, g ◦ U〉W = 〈f, g〉W .

Let D := (d1, . . . , dm) and let HD denote the space of (real) m × n systems of homogenous
n-variate polynomials with respective degrees d1, . . . , dm. Then for F := (f1, . . . , fm) ∈ HD

and G := (g1, . . . , gm) ∈ HD we define the Weyl-Bombieri inner product for two polynomial

systems to be 〈F,G〉W :=
∑m

i=1〈fi, gi〉W . We also let ‖F‖W :=
√

〈F, F 〉.
A geometric justification for the definition of the condition number κ̃ can then be derived

as follows: First, for x ∈ Sn−1, we abuse notation slightly by also letting DP (x) denote the
m× n Jacobian matrix of P , evaluated at the point x. For m = n− 1 we denote the set of
polynomial systems with singularity at x by

ΣR(x) := {P ∈ HD | x is a multiple root of P}
and we then define ΣR (the real part of the disciminant variety for HD) to be:

ΣR := {P ∈ HD |P has a multiple root in Sn−1} =
⋃

x∈Sn−1 ΣR(x).
Using the Weyl-Bombieri inner-product to define the underlying distance, we point out the
following important geometric characterization of κ̃:

Theorem 2.1. [12, Prop. 3.1] When m=n− 1 we have κ̃(P ) =
‖P‖W

Dist(P,ΣR)
for all P ∈HD. �

We call a polynomial system P =(p1, . . . , pm) with m=n − 1 (resp. m≥n) square (resp.
over-determined). Newton’s method for over-determined systems was studied in [16]. So
now that we have a geometric characterization of the condition number for square systems
it will be useful to also have one for over-determined systems.
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Definition 2.2. Let σmin(A) denote the smallest singular value of a matrix A. For any
system of homogeneous polynomials P ∈(R[x1, . . . , xn])

m set

L(P, x) :=
√

σmin (∆−1
m DP (x)|TxSn−1)2 + ‖P (x)‖22

For notational convenience, we also set

L(P ) = min
x∈Sn−1

L(P, x)

we then define

κ̃(P, x) =
‖P‖W
L(P, x)

and

κ̃(P ) = sup
x∈Sn−1

κ(P, x) =
‖P‖W
L(P )

The quantity min
x∈Sn−1

L(P, x) thus plays the role of Dist(P,ΣR) in the more general setting of

m ≥ n − 1. We now recall an important observation from [12, Sec. 2]:

Setting Dx(P ) := DP (x)|TxSn−1 we have σmin(∆
−1
n−1Dx(P )) = σmax (Dx(P )−1∆n−1)

−1
, when

m=n− 1 and Dx(P ) is invertible. So by the definition of µ̃norm(P, x) we have

L(P, x) =

√

σmax (Dx(P )−1∆n−1)
−2 + ‖P (x)‖22 =

√

‖P‖2W µ̃norm(P, x)−2 + ‖P (x)‖22
and thus our more general definition agrees with the classical definition in the square case.
Since the Bombeiri-Weyl norm of a random polynomial system has strong concentration

properties for a broad variety of distributions (see, e.g., [34]), we will be interested in the
behavior of L(P, x). So let us define the related quantity

L(x, y) :=
√

‖∆−1
m D(1)P (x)(y)‖22 + ‖P (x)‖22

For m ≥ n− 1, it follows directly that L(P, x) = inf
y⊥x

y∈Sn−1

L(x, y).

We now recall a classical result of O. D. Kellog. The theorem below is a summary of [19,
Thms. 4–6].

Theorem 2.3. [19] Let p∈R[x1, . . . , xn] have degree d and set ‖p‖∞ := supx∈Sn−1|p(x)| and
‖D(1)p‖∞ := maxx,u∈Sn−1|D(1)p(x)(u)|. Then:

(1) We have ‖D(1)p‖∞ ≤ d2‖p‖∞ and, for any mutually orthogonal x, y∈Sn−1, we also
have |D(1)p(x)(y)| ≤ d‖p‖∞.

(2) If p is homogenous then we also have ‖D(1)p‖∞ ≤ d‖p‖∞. �

For any system of homogeneous polynomials P := (p1, . . . , pm) ∈ (R[x1, . . . , xn])
m define

‖P‖∞ := supx∈Sn−1

√
∑m

i=1 pi(x)
2. Let DP (x)(u) denote the image of the vector u under

the linear operator DP (x), and set

∥

∥D(1)P
∥

∥

∞ := sup
x,u∈Sn−1

‖DP (x)(u)‖2 = sup
x,u∈Sn−1

√

√

√

√

m
∑

i=1

〈∇pi(x), u〉2.

Theorem 2.4. Let P := (p1, . . . , pm) ∈ (R[x1, . . . , xn])
m be a polynomial system with pi

homogeneous of degree di for each i and set d :=maxi di. Then:



8 ALPEREN ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

(1) We have ‖D(1)P‖∞ ≤ d2‖P‖∞ and, for any mutually orthogonal x, y∈Sn−1, we also
have ‖DP (x)(y)‖2 ≤ d‖P‖∞.

(2) If deg(pi) = d for all i ∈ {1, . . . ,m} then we also have ‖D(1)P‖∞ ≤ d‖P‖∞.

Proof. Let (x0, u0) be such that ‖D(1)P‖∞ = ‖DP (x0)(u0)‖2 and let α := (α1, . . . , αm) where

αi :=
〈∇pi(x0),u0〉
‖D(1)P‖∞

. Note that ‖α‖2 = 1. Now define a polynomial q∈R[x1, . . . , xn] of degree d

via q(x) := α1p1(x) + · · ·+ αmpm(x) and observe that

∇q(x) =

(

α1
∂p1
∂x1

+ · · ·+ αm
∂pm
∂x1

, . . . , α1
∂p1
∂xn

+ · · ·+ αm
∂pm
∂xn

)

,

〈∇q, u〉 = u1

(

α1
∂p1
∂x1

+ · · ·+ αm
∂pm
∂x1

)

+ · · ·+ un

(

α1
∂p1
∂xn

+ · · ·+ αm
∂pm
∂xn

)

,

and 〈∇q(x), u〉 =∑m
i=1 αi〈∇pi(x), u〉. In particular, for our chosen x0 and u0, we have

〈∇q(x0), u0〉 =
m
∑

i=1

αi〈∇pi(x0), u0〉 =
m
∑

i=1

〈∇pi(x0), u0〉2
‖D(1)P‖∞

=
∥

∥D(1)P∞
∥

∥ .

Using the first part of Kellog’s Theorem we have

‖D(1)P‖∞ ≤ sup
x,u∈Sn−1

|〈∇q(x), u〉| ≤ d2‖q‖∞.

Now we observe by the Cauchy-Schwarz Inequality that

‖q‖∞ = sup
x∈Sn−1

∣

∣

∣

∣

∣

m
∑

i=1

αipi(x)

∣

∣

∣

∣

∣

≤ sup
x∈Sn−1

√

√

√

√

m
∑

i=1

pi(x)2.

So we conclude that ‖D(1)P‖∞ ≤ d2‖q‖∞ ≤ d2 supx∈Sn−1

√
∑m

i=1 pi(x)
2 = d2‖P‖∞. We also

note that when deg(pi) = d for all i, the polynomial q is homogenous of degree d. So for this
special case, the second part of Kellog’s Theorem directly implies ‖D(1)P‖∞ ≤ d‖P‖∞.

For the proof of the first part of Assertion (1) we define αi = 〈∇pi(x),y〉
‖DP (x)(y)‖2

and

q(x) = α1p1 + · · ·+ αnpn. Then 〈∇q(x), y〉 =∑i αi〈∇pi(x), y〉 = ‖DP (x)(y)‖2.
By applying Kellog’s Theorem on the orthogonal direction y we then obtain

‖DP (x)(y)‖2 = 〈∇q(x), y〉 ≤ d‖q‖∞ ≤ d‖P‖∞. �

Using our extension of Kellog’s Theorem to polynomial systems, we develop useful esti-
mates for ‖P‖∞ and ‖D(i)P‖∞. In what follows, we call a subset N of a metric space X a
δ-net on X if and only if the every point of X is within distance δ of some point of N . A
basic fact we’ll use repeatedly is that, for any δ > 0 and compact X, one can always find a
finite δ-net for X.

Lemma 2.5. Let P := (p1, . . . , pm) ∈ (C[x1, . . . , xn])
m be a system of homogenous poly-

nomials, N a δ-net on Sn−1, and set d := maxi di. Let maxN (P ) := supy∈N‖P (y)‖2.
Similarly let us define maxN k+1(D(k)P ) := supx,u1,...,uk∈N‖D(k)P (x)(u1, . . . , uk)‖2, and set
∥

∥D(k)P
∥

∥

∞ := supx,u1,...,uk∈Sn−1

∥

∥D(k)P (x)(u1, . . . , uk)
∥

∥

2
. Then:

(1) ‖P‖∞ ≤ maxN (P )
1−δd2

and ‖D(k)P‖∞ ≤ max
Nk+1 (D

(k)P )

1−δd2
√
k+1

.
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(2) If deg(pi) = d for each i ∈ {1, . . . ,m} then we have

‖P‖∞ ≤ maxN (P )

1− δd
and ‖D(k)P‖∞ ≤ maxN k+1(D(k)P )

1− δd
√
k + 1

.

Proof. We first prove Assertion (2). Observe that the Lipschitz constant of P on Sn−1 is
bounded from above by ‖D(1)p‖∞: This can be seen by taking x, y ∈ Sn−1 and considering

the integral P (x)− P (y) =
∫ 1

0
DP (y + t(x− y))(x− y) dt.

Since ‖y + t · (x− y)‖2 ≤ 1 for all t ∈ [0, 1], the homogeneity of the system P implies

‖DP (y + t(x− y))(x− y)‖2 ≤ ‖D(1)P‖∞‖x− y‖2
Using our earlier integral formula, we conclude that ‖P (x)−P (y)‖2 ≤ ‖D(1)P‖∞‖x−y‖2.
Now, when the degrees of the pi are identical, let the Lipschitz constant of P be M . By

Assertion (2) of Theorem 2.4 we have M ≤ ‖D(1)P‖∞ ≤ d‖P‖∞. Let x0 ∈ Sn−1 be such
that ‖P (x0)‖2 = ‖P‖∞ and let y ∈ N satisfy |x0 − y| ≤ δ. Then ‖P‖∞ = ‖P (x0)‖2 ≤
‖P (y)‖2 + ‖x0 − y‖2M ≤ maxN (P ) + δd‖P‖∞, and thus

(⋆) ‖P‖∞(1− dδ) ≤ max
x∈N

P (x).

To bound the norm of D(k)P (x)(u1, . . . , uk) let us consider the net defined by
N × · · · ×N = N k+1 on Sn−1 × · · · ×Sn−1. Let x := (x1, . . . , xk+1) ∈ Sn−1 × · · · ×Sn−1 and
y := (y1, . . . , yk+1) ∈ N k+1 be such that ‖xi−yi‖2 ≤ δ for all i. Clearly, ‖x−y‖2 ≤ δ

√
k + 1.

Since x was arbitrary, this argument proves that N k+1 is a δ
√
k + 1-net. Note also that

D(k)P (x)(u1, . . . , uk) is a homogenous polynomial system with (k+1)n variables and degree
d. The desired bound then follows from Inequality (⋆) obtained above.
To prove Assertion (1) of our current lemma, the preceding proof carries over verbatim,

simply employing Assertion (1), instead of Assertion (2), from Theorem 2.4. �

3. Condition Number of Random Polynomial Systems

3.1. Introducing Randomness. Now let P := (p1, . . . , pm) be a random polynomial sys-

tem where pj(x) :=
∑

|α|=dj
cj,α

√

(

dj
α

)

xα. In particular, recall that Nj =
(

n+dj−1
dj

)

and we

let Cj = (cj,α)|α|=dj
be a random vector in R

Nj satisfying the centering, subgaussian, and

small ball assumptions from the introduction. Letting Xj :=

(

√

(

dj
α

)

xα

)

|α|=dj

we then have

pj(x) = 〈Cj,Xj〉. In particular, recall that the subgaussian assumption is that there is a

K>0 such that for each θ ∈ SNj−1 and t>0 we have Prob (|〈Cj, θ〉| ≥ t) ≤ 2e−t2/K2
. Recall

also that the small ball assumption is that there is a c0 > 0 such that for every vector a ∈ R
Ni

and ε>0 we have Prob (|〈a, Cj〉| ≤ ε‖a‖2) ≤ c0ε. In what follows, several of our bounds will
depend on the parameters K and c0 underlying the random variable being subgaussian and
having the small ball property.
For any random variable ξ on R we denote its median by Med(ξ). Now, if ξ := |〈Cj, θ〉|,

then setting t := 2K in the subgaussian assumption for Cj yields Prob(ξ ≥ 2K) ≤ 1
2
, i.e.,

Med(ξ) ≤ 2K. On the other hand, setting ε := 1
2c0

in the small ball assumption for Cj yields

Prob(ξ ≤ 1
2c0

) ≤ 1
2
, i.e., Med(ξ) ≥ 1

2c0
. Writing 1=Med(ξ) · 1

Med(ξ)
we then easily obtain

Kc0 ≥ 1

4
.(1)
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In what follows we will use Inequality (1) several times.

3.2. The Subgaussian Assumption and Bounds Related to Operator Norms. . We
will need the following inequality, reminiscent of Hoeffding’s classical inequality [18].

Theorem 3.1. [34, Prop. 5.10] There is an absolute constant c>0 with the following prop-
erty: If X1, . . . , Xn are subgaussian random variables with mean zero and underlying constant
K, and a = (a1, . . . , an) ∈ R

n and t ≥ 0, then

Prob

(∣

∣

∣

∣

∣

∑

i

aiXi

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−ct2

K2‖a‖22

)

. �

Lemma 3.2. Let P := (p1, . . . , pm) be a random polynomial system where, as before,

pj(x) =
∑

|α|=dj
cj,α

√

(

dj
α

)

xα and the the coefficient vectors Cj are independent random vec-

tors satisfying the centering, subgaussian, and small ball assumptions from the introduction,
with underlying constants K and c0, and m ≥ n − 1. Then, for N a δ-net over Sn−1 and
t ≥ 2, we have the following inequalities:

(1) If deg(pj) = d for all j ∈ {1, . . . ,m} then

Prob

(

‖P‖∞ ≤ 2tK
√
m

1− dδ

)

≥ 1− 2|N |e−O(t2m)

In particular, there is a constant c1 ≥ 1 such that for δ = 1
3d

and t = s log(ed) with

s ≥ 1 we have Prob (‖P‖∞ ≤ 3sK
√
m log(ed)) ≥ 1− e−c1s2m log(ed).

(2) If d := maxj deg pj then

Prob

(

‖P‖∞ ≤ 2tK
√
m

1− d2δ

)

≥ 1− 2|N |e−O(tm)

In particular, there is a constant c2 ≥ 1 such that for δ = 1
3d2

, t = s log(ed) with

s ≥ 1, we have Prob (‖P‖∞ ≤ 3sK
√
m log(ed)) ≥ 1− e−c2s2m log(ed).

Proof. We prove Assertion (2) since the proofs of the two assertions are virtually identical.
First observe that the identity (x2

1 + · · · + x2
n)

d =
∑

|α|=d

(

d
α

)

x2α implies ‖Xj‖2 = 1 for all
j ≤ m. Using our subgaussian assumption on the random vectors Cj, and the fact that

pj(x) = 〈Cj,Xj〉, we obtain that Prob (|pj(x)| ≥ t) ≤ 2e−t2/K for every x ∈ Sn−1.
Now we need to tensorize the preceding inequality. By Theorem 3.1, we have for all

a ∈ Sm−1 that Prob (|〈a, P (x)〉| ≥ t) ≤ 2e−ct2/K2
. Letting M be a δ-net on Sm−1 we

then have Prob (maxa∈M|〈a, P (x)〉| ≥ t) ≤ 2|M|e−ct2/K2
, where we have used the classical

union bound for the multiple events defined by the (finite) δ-net M. Since
‖P (x)‖2 = maxθ∈Sm−1|〈θ, P (x)〉|, an application of Lemma 2.5 for the linear polynomial

〈 · , P (x)〉 gives us Prob
(

‖P (x)‖2 ≥ t
√
mK

1−δ

)

≤ 2|M|e−ct2m.

It is known that for any δ > 0, Sm−1 admits a δ-net M such that |M| ≤
(

3
δ

)m
(see, e.g,

[34, Lemma 5.2]). So for t ≥ 1 and δ = 1
2
, using a union bound over the δ-net we have

Prob
(

‖P (x)‖2 ≥ 2t
√
mK

)

≤ 2e−c2t2m

for some suitable constant c2≤c. We have thus arrived at a point-wise estimate on ‖P (x)‖2.
Doing a union bound on a δ-net N now on Sn−1 we then obtain:
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Prob

(

max
x∈N

‖P (x)‖2 ≥ 2t
√
mK

)

≤ 2|N |e−c1t2m.

Using Lemma 2.5 once again completes our proof. �

Theorem 2.4 and Lemma 3.2 then directly imply the following:

Corollary 3.3. Let P be a random polynomial system as in Lemma 3.2. Then there are
constants c1, c2≥1 such that the following inequalities hold for s ≥ 1:

(1) If deg(pj) = d for all j ∈ {1, . . . ,m} then both Prob
(

‖D(1)P‖∞ ≤ 3sK
√
md log(ed)

)

and Prob
(

‖D(2)P‖∞ ≤ 3sK
√
md2 log(ed)

)

are bounded from below by 1− 2e−c1s2m log(ed).

(2) If d := maxj deg pj then both Prob
(

‖D(1)P‖∞ ≤ 3sK
√
md2 log(ed)

)

and

Prob
(

‖D(2)P‖∞ ≤ 3sK
√
md4 log(ed)

)

are bounded from below by 1− 2e−c2s2m log(ed). �

3.3. The Small Ball Assumption and Bounds for L(P ). We will need the following
standard lemma (see, e.g., [27, Lemma 2.2] or [35]).

Lemma 3.4. Let ξ1, . . . , ξm be independent random variables such that, for every ε > 0,
we have Prob (|ξi| ≤ ε) ≤ c0ε. Then there is a universal constant c̃ > 0 such that for every

ε > 0 we have Prob
(

√

ξ21 + · · ·+ ξ2m ≤ ε
√
m
)

≤ (c̃c0ε)
m. �

We can then derive the following result:

Lemma 3.5. Let P =(p1, . . . , pm) be a random polynomial system, satisfying the small ball
assumption with underlying constant c0. Then there is a universal constant c̃ > 0 such that
for every ε > 0 and x ∈ Sn−1 we have Prob(‖P (x)‖2 ≤ ε

√
m) ≤ (c̃c0ε)

m.

Proof. By the small ball assumption on the random vectors Ci, and observing that
pi(x) = 〈Ci,Xi〉 and ‖Xi‖2 = 1 for all x ∈ Sn−1, we have Prob(|pi(x)| ≤ ε) ≤ c0ε. By
Lemma 3.4 we are done. �

The next lemma is a variant of [26, Claim 2.4]. The motivation for the technical statement
below, which introduces new parameters α, β, γ, is that it is the crucial covering estimate
needed to prove a central probability bound we’ll need later: Theorem 3.7.

Lemma 3.6. Let n ≥ 2, let P := (p1, . . . , pm) be a system of n-variate homogenous polynomi-
als, and assume ‖P‖∞ ≤ γ. Let x, y ∈ Sn−1 be mutually orthogonal vectors with L(x, y) ≤ α,
and let r ∈ [−1, 1]. Then for every w with w = x + βry + β2z for some z ∈ Bn

2 , we have
the following inequalities:

(1) If d := maxi di and 0 < β ≤ d−4 then ‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2).

(2) If deg(pi) = d for all i ∈ [m], and 0 < β ≤ d−2 then ‖P (w)‖22 ≤ 8(α2 + (2 + e4)β4d4γ2).

Proof. We will prove just Assertion (1) since the proof of Assertion (2) is almost the same.
We start with some auxiliary observations on ‖P‖∞: First note that Theorem 2.4 tells us
that ‖P‖∞ ≤ γ implies ‖D(1)P‖∞ ≤ d2γ and, similarly, ‖D(k)P‖∞ ≤ d2kγ for every k ≥ 1.
Also, for any w and ui ∈ Sn−1 with i∈ {1, . . . , k}, ‖P‖∞ ≤ γ and the homogeneity of the

pi implies supu1,...,uk
‖D(k)P (w)(u1, . . . , uk)‖2 ≤ ‖w‖d−k

2 d2kγ. These observations then yield
the following inequality for w = x + βry + β2z with z ∈ Bn

2 , |r| ≤ 1, β ≤ d−1, k = 3, and
u1, u2, u3 ∈ Sn−1:

‖D(3)P (w)(u1, u2, u3)‖2 ≤ ‖w‖d−3
2 d6γ ≤ (1 + 2β)d−3d6γ

Now, by Taylor expansion, we have the following equality:



12 ALPEREN ERGÜR, GRIGORIS PAOURIS, AND J. MAURICE ROJAS

pj(w) = pj(x)+〈∇pj(x), βry+β2z〉+ 1

2
(βry+β2z)TD(2)pj(x)(βry+β2z)+(1 + β)3 β3Aj(x),

where Aj(x) :=
∫ 1

0
D(3)pj(x+ t‖v‖2v)(v, v, v)dt and v = βry+β2z

‖βry+β2z‖ .

Breaking the second and third order terms of the expansion of pj(w) into pieces, we then
have the following inequality:

|pj(w)| ≤ |pj(x)|+β|〈∇pj(x), y〉|+β2|〈∇pj(x), z〉|+
1

2
β2|D(2)pj(x)(y, y)|+

1

2
β3|D(2)pj(x)(y, z)|

+
1

2
β3|D(2)pj(x)(z, y)|+

1

2
β4|D(2)pj(x)(z, z)|+ (1 + β)3β3 |Aj(x)| .

Applying the Cauchy-Schwarz Inequality to the vectors (1, βd
1
2
j , 1, 1, 1, 1, 1, 1) and

(|pj(x)|, d−
1
2

j |〈∇pj(x), y〉|, . . . , (1 + β)3β3 |Aj(x)|) then implies the following inequality:

pj(w)
2 ≤ (7 + β2dj)(pj(x)

2 + d−1
j 〈∇pj(x), y〉2 + β4〈∇pj(x), z〉2 +

1

4
β4(D

(2)
j pj(x)(y, y))

2

+
1

4
β6|D(2)pj(x)(y, z)|2 +

1

4
β6|D(2)pj(x)(z, y)|2 +

1

4
β8|D(2)pj(x)(z, z)|2 + β6(1 + β)6Aj(x)

2)

We sum all these inequalities for j ∈ {1, . . . ,m}. On the left-hand side we have ‖P (w)‖22. On

the right-hand side, the summation of the terms pj(x)
2 + d−1

j 〈∇pj(x), y〉2 is

‖P (x)‖22 + ‖M−1D(1)P (x)(y)‖22, and its magnitude is controlled by the assumption
L(x, y) ≤ α. The summations of the other terms are controlled by the assumption ‖P‖∞ ≤ γ
and Theorem 2.4. Summing all the inequalities for j ∈ {1, . . . ,m}, we have

‖P (w)‖22 ≤ (7 + β2d)(‖P (x)‖22 + ‖M−1D(1)P (x)(y)‖22 + β4d4γ2 +
1

4
β4d4γ2

+
1

4
β6d6γ2 +

1

4
β6d6γ2 +

1

4
β8d8γ2 + β6(1 + β)6

∑

j

Aj(x)
2)

The assumption β ≤ d−4 implies that β8d8 ≤ β4d4 and β6d6 ≤ β4d4. Therefore,

‖P (w)‖22 ≤ (7+β2d)(‖P (x)‖22+‖M−1D(1)P (x)(y)‖22+β4d4γ2+β4d4γ2+β6(1+β)6
∑

j

Aj(x)
2).

Clearly
∑

j≤mAj(x)
2 ≤ maxw∈Vx,y‖D(3)P (w)(u1, u2, u3)‖22 ≤ (1 + 2β)2d−6d12γ2. Hence we

have ‖P (w)‖22 ≤ (7 + β2d)(α2 + β4d4γ2 + β4d4γ2 + (1 + 2β)2dβ6d12γ2). Since β ≤ d−4, we

finally get ‖P (w)‖22 ≤ (7 + β2d)(α2 + (2 + e4)β4d4γ2) ≤ 8(α2 + (2 + e4)β4d4γ2). �

Lemma 3.6 controls the growth of the norm of the polynomial system P = (p1, . . . , pm)
over the region {w ∈ R

n : w = x + βry + β2z, |r| ≤ 1, y ∈ Sn−1, y ⊥ x, z ∈ Bn
2 }. Note in

particular that we are using cylindrical neighborhoods instead of ball neighborhoods. This
is because we have found that (a) our approach truly requires us to go to order 3 in the
underlying Taylor expansion and (b) cylindrical neighborhoods allow us to properly take
contributions from tangential directions, and thus higher derivatives, into account.
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We already had a probabilistic estimate in Lemma 3.5 that said that for any w with
‖w‖2 ≥ 1, the probability of ‖P (w)‖2 being smaller than ε

√
m is less than εm up to some

universal constants. The controlled growth provided by Lemma 3.6 holds for a region with
a certain volume, which will ultimately contradict the probabilistic estimates provided by
Lemma 3.5. This will be the main trick behind the proof of the following theorem.

Theorem 3.7. Let m ≥ n − 1 ≥ 1 and let P := (p1, . . . , pm) be a system of random ho-

mogenous n-variate polynomials such that pj(x) =
∑

|a|=dj
cj,a

√

(

di
a

)

xa where Cj = (cj,a)|a|=dj

are random vectors satisfying the small ball assumption with underlying constant c0. Let
α, γ > 0, d := maxi di, and assume α ≤ γmin {d−6, d2/n}. Then

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + α
3
2
+m−n

√
n(γd2)n−

3
2

(

Cc0√
m

)m

where C is a universal constant.

Proof. We assume the hypotheses of Assertion (1): Let α, γ > 0 and β ≤ d−4. Let B : =
{P | ‖P‖∞ ≤ γ} and let

L := {P | L(P ) ≤ α} = {P | There exist x, y∈Sn−1 with x ⊥ y and L(x, y) ≤ α}.
Let Γ := 8(α2+(2+ e4)β4d4γ2) and let Bn

2 denote the unit ℓ2-ball in R
n. Lemma 3.6 implies

that if the event B ∩ L occurs then there exists a non-empty set

Vx,y := {w ∈ R
n : w = x+ βry + β2z, x ⊥ y, |r| ≤ 1, z ⊥ y, z ∈ Bn

2 } \Bn
2

such that ‖P (w)‖22 ≤ Γ for every w in this set. Let V := Vol(Vx,y). Note that for w ∈ Vx,y

we have ‖w‖22 = ‖x + β2z‖22 + ‖βy‖22 ≤ 1 + 4β2. Hence we have ‖w‖2 ≤ 1 + 2β2. Since
Vx,y ⊆ (1 + 2β2)Bn

2 \Bn
2 , we have showed that

B ∩ L ⊆ {P | Vol({x ∈ (1 + 2β2)Bn
2 \Bn

2 | ‖P (x)‖22 ≤ Γ}) ≥ V }.
Using Markov’s Inequality, Fubini’s Theorem, and Lemma 3.5, we can estimate the proba-
bility of this event. Indeed,
Prob (Vol({x ∈ (1 + 2β2)Bn

2 \Bn
2 : ‖P (x)‖22 ≤ Γ}) ≥ V )

≤ 1

V
EVol

(

{x ∈ (1 + 2β2)Bn
2 \Bn

2 : ‖P (x)‖22 ≤ Γ}
)

≤ 1

V

∫

(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

dx

≤ Vol((1 + 2β2)Bn
2 \Bn

2 )

V
max

x∈(1+2β2)Bn
2 \Bn

2

Prob
(

‖P (x)‖22 ≤ Γ
)

.

Now recall that Vol(Bn
2 ) =

πn/2

Γ(n
2
+1)

. Then
Vol(Bn

2 )

Vol(Bn−1
2 )

≤ c′√
n
for some constant c′ > 0. If we

assume that that β2 ≤ 1
n
, then we obtain (1 + 2β2)n ≤ 1 + 4nβ2, and we have that

Vol((1 + 2β2)Bn
2 \Bn

2 )

V
≤ Vol(Bn

2 ) ((1 + 2β2)n − 1)

β(β2)n−1Vol(Bn−1
2 )

≤ c
√
nββ2−2n,

for some absolute constant c > 0. Note that here, for a lower bound on V , we used the fact
that Vx,y contains more than half of a cylinder with base having radius β2 and height 2β.
Writing x̃ := x

‖x‖2 for any x 6= 0 we then obtain, for z /∈ Bn
2 , that

‖P (z)‖22 =
m
∑

j=1

|pj(z)|2 =
m
∑

j=1

|pj(z̃)|2‖z‖2dj2 ≥
m
∑

j=1

|pj(z̃)|2 = ‖P (z̃)‖22.
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This implies, via Lemma 3.5, that for every w∈(1 + 2β2)Bn
2 \Bn

2 we have

Prob
(

‖P (w)‖22 ≤ Γ
)

≤ Prob
(

‖P (w̃)‖22 ≤ Γ
)

≤
(

cc0

√

Γ

m

)m

.

So we conclude that

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + Prob (B ∩ L) ≤ Prob (‖P‖∞ ≥ γ) + c
√
nββ2−2n

(

cc0

√

Γ
m

)m

.

Recall that Γ = 8(α2+(5+e4)β4d4γ2). Setting β2 := α
γd2

, our assumption α ≤ γmin {d−6, d2/n}
and our choice of β then imply that Γ = Cα2 for some constant C. So we obtain

Prob(L(P ) ≤ α) ≤ Prob (‖P‖∞ ≥ γ) + c
√
n

(

α

γd2

)
3
2
−n(

Cc0α√
m

)m

and our proof is complete. �

3.4. The Condition Number Theorem and its Consequences. We will now need
bounds for the Weyl-Bombieri norms of polynomial systems. Note that, with

pj(x)=
∑

α1+···+αn=dj

√

(

dj
α

)

cj,αx
α,

we have ‖pj‖W := ‖(cj,α)α‖2 for j ∈ {1, . . . ,m}. The following lemma, providing large
deviation estimates for the Euclidean norm, is standard and follows, for instance, from
Theorem 3.1.

Lemma 3.8. There is a universal constant c′>0 such that for any random n-variate poly-
nomial system P =(p1, . . . , pm) satisfying the Centering and Subgaussian assumptions, with
underlying constant K, j ∈ {1, . . . ,m}, Nj :=

(

n+dj−1
dj

)

, N :=
∑m

j=1Nj, m ≥ n − 1, and

t ≥ 1, we have

(1) Prob
(

‖pj‖W ≥ c′tK
√

Nj

)

≤ e−t2Nj

(2) Prob
(

‖P‖W ≥ c′tK
√
N
)

≤ e−t2N .

We are now ready to prove our main theorem on the condition number of random poly-
nomial systems.

Theorem 3.9. There are universal constants A,C>0 such that the following hold: Assume
m ≥ n − 1 ≥ 1, let P = (p1, . . . , pm) be a system of homogenous random polynomials with

pj(x) =
∑

|α|=dj
cj,α

√

(

dj
α

)

xα where Cj = (cj,α)|α|=dj
∈ R

Ni are independent random vectors

satisfying the subgaussian and small ball assumptions, with respective underlying constants
K and c0. Let d := maxi deg(pi). Then, setting

M :=

√

N

m
(Kc0C)

m

m−n+3
2 (3d2 log(ed))

n− 3
2

m−n+3
2 n

1
2m−2n+3 max

{

d6,
n

d2

}

we have two cases:
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(1) If N ≥ m log(ed) then Prob(κ̃(P ) ≥ tM) is bounded from above by






























3

tm−n+3
2

if 1 ≤ t ≤ e
m log(ed)

m−n+3
2

3

tm−n+3
2

(

(m−n+ 3
2
) log t

m log(ed)

)

n− 3
2

2

if e
m log(ed)

m−n+3
2 ≤ t ≤ e

N

m−n+3
2

3

tm−n+3
2

(

(m−n+ 3
2
) log t

N

)
m
2
(

N
m log(ed)

)

n− 3
2

2
if e

N

m−n+3
2 ≤ t

(2) If N ≤ m log(ed) then Prob(κ̃(P ) ≥ tM) is bounded from above by










3

tm−n+3
2

if 1 ≤ t ≤ e
N

m−n+3
2

3

tm−n+3
2

(

(m−n+ 3
2
) log t

N

)
m
2

if e
N

m−n+3
2 ≤ t

Proof. Recall that κ̃(P ) = ‖P‖W
L(P )

. Note that if u > 0, and the inequalities ‖P‖W ≤ ucK
√
N

and L(P )≥ ucK
√
N

tM
hold, then we clearly have κ̃(P )≤ tM . In particular, u>0 implies that

Prob (κ̃(P ) ≥ tM) ≤ Prob
(

‖P‖W ≥ ucK
√
N
)

+ Prob

(

L(P ) ≤ ucK
√
N

tM

)

.

Our proof will then reduce to optimizing u over the various domains of t.
Toward this end, note that Lemma 3.8 provides a large deviation estimate for the Weyl

norm of our polynomial system. So, to bound Prob
(

‖P‖W ≥ ucK
√
N
)

from above, we need

to use Lemma 3.8 with the parameter u. As for the other summand in the upper bound for

Prob (κ̃(P ) ≥ tM), Theorem 3.7 provides an upper bound for Prob
(

L(P ) ≤ ucK
√
N

tM

)

.

However, the upper bound provided by Theorem 3.7 involves the quantity Prob (‖P‖∞ ≥ γ).

Therefore, in order to bound Prob
(

L(P ) ≤ ucK
√
N

tM

)

, we will need to use Theorem 3.7 to-

gether with Lemma 3.2. In particular, we will set α := ucK
√
N

tM
and γ := 3sK

√
m log(ed) in

Theorem 3.7 and Lemma 3.2, and then optimize the parameters u, s, and t at the final step
of the proof.
Now let us check if the assumptions of Theorem 3.7 are satisfied: We have that s ≥ 1,

u ≥ 1, and (since α ≤ min
{

d−6, d
2

n

}

γ) we have

ucK
√
N

tM
≤ 3sK

√
m log(ed)min

{

d−6,
d2

n

}

.

So uc
√
N√

m log(ed)
≤ 3stM min

{

d−6, d
2

n

}

and we thus obtain

(∗) uc

log(ed)

√

N

m
≤ 3st

√

N

m
(Kc0C)

m

m−n+3
2 (3d2 log(ed))

n− 3
2

m−n+3
2 n

1
2m−2n+3 .

Since Kco ≥ 1
4
, the inequality (∗) holds if u ≤ s, t ≥ 1, and we take the constant C from

Theorem 3.7 to be at least 4. Under the preceding restrictions we then have that Q :=
Prob(κ̃(p) ≥ tM) implies

Q ≤
(

ucK
√
N

tM

)
3
2
+m−n√

n(3sK
√
m log(ed)d2)n−

3
2

(

Cc0√
m

)m

+ e−c2s2m log(ed) + e−u2N
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Note that we set M :=
√

N
m
(Kc0C)

m

m−n+3
2 (3d2 log(ed))

n− 3
2

m−n+3
2 n

1
2m−2n+3 max

{

d6, n
d2

}

, therefore

we have

Q ≤ um−n+ 3
2 sn−

3
2

tm−n+ 3
2

+ e−c2s2m log(ed) + e−u2N

for some suitable c2>0.

We now consider the case where N ≥ m log(ed). If 1 ≤ t ≤ e
c1m log(ed)

m−n+3
2 then we set u=s=1,

noting that (∗) is satisfied. We then obtain

Q ≤ 1

tm−n+ 3
2

+ e−c2m log(ed) + e−N ≤ 3

tm−n+ 3
2

provided c2≥1.

In the case where e
m log(ed)

m−n+3
2 ≤ t ≤ e

N

m−n+3
2 , we choose u = 1 and s :=

√

(m−n+ 3
2
) log t

m log(ed)
≥ 1.

(Note that u ≤ s). These choices then yield

Q ≤ 1

tm−n+ 3
2

(

(m− n+ 3
2
) log t

m log(ed)

)n− 3
2

+
1

tc2(m−n+ 3
2
)
+e−N ≤ 3

tm−n+ 3
2

(

(m− n+ 3
2
) log t

m log(ed)

)

n− 3
2

2

.

In the case where e
N

m−n+3
2 ≤ t, we choose s :=

√

(log t)(m−n+ 3
2
)

m log(ed)
and u :=

√

(m−n+ 3
2
) log t

N
.

(Note that u ≤ s also in this case). So we get

Q ≤ 1

tm−n+ 3
2

(

(m− n+ 3
2
) log t

N

)

m
2
(

N

m log(ed)

)

n− 3
2

2

+
1

tc2(m−n+ 3
2
)
+

1

tm−n+ 3
2

≤ 3

tm−n+ 3
2

(

(m− n+ 3
2
) log t

N

)

m
2
(

N

m log(ed)

)

n− 3
2

2

.

We consider now the case where N ≤ m log(ed). When 1 ≤ t ≤ e
N

m−n+3
2 we choose s = 1

and u = 1 to obtain Q ≤ 1

tm−n+3
2
+ e−c2m log(ed) + e−N ≤ 3

tm−n+3
2
as before. In the case

t ≥ e
N

m−n+3
2 , we choose s = u :=

√

(m−n+ 3
2
) log t

N
. Note that again (∗) is satisfied and, with

these choices, we get

Q ≤ 1

tm−n+ 3
2

(

(m− n+ 3
2
) log t

N

)

m
2

+
1

tc2(m−n+ 3
2
)m log(ed)/N

+
1

tm−n+ 3
2

≤ 3

tm−n+ 3
2

(

(log t)(m− n+ 3
2
)

N

)

m
2

.

�

Theorem 3.10. Let P be a random polynomial system as in Theorem 3.9, let d :=maxj deg pj,
and let M be as defined in Theorem 3.9. Set

δ1 :=
q
√
πn

m− n+ 3
2

(

n− 3
2

2em log(ed)

)

n− 3
2

2 1
(

1− q

m−n+ 3
2

)
n
2

and
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δ2 :=
(m

N

)

m−n+3
2

2 q
√
πme−

m
2

(

m− n+ 3
2
− q
)

(

1− q

m−n+ 3
2

)
m
2
(log(ed))

n
2
−1

.

We then have the following estimates:

(1) If N ≥ m log(ed) and q∈(0,m− n+ 3
2
) then

(E(κ̃(P )q))
1
q ≤ M

(

1 +
q

m− n− q + 2
+ δ1 + δ2

)
1
q

.

In particular, q∈
(

0, (m− n+ 3
2
)
(

1− 1
2 log(ed)

)]

=⇒ (E(κ̃(P )q))
1
q ≤ M

(

3m log(ed)
n

)
1
q
,

and q∈
(

0,
m−n+ 3

2

2

]

=⇒ (E(κ̃(P )q))
1
q ≤ 41/qM .

Furthermore, E(log κ̃(P )) ≤ 1 + logM .

(2) If N ≤ m log(ed), then (E(κ̃(P )q))
1
q ≤ M

(

1 + q

m−n−q+ 3
2

+ δ2

)
1
q
.

In particular, q ∈
(

0, (m− n+ 3
2
)
(

1− m
eN

)]

=⇒ (E(κ̃(P )q))
1
q ≤ M

(

3m log(ed)
n

)
1
q
and

q ∈
(

0,
m−n+ 3

2

2

]

=⇒ (E(κ̃(P )q))
1
q ≤ 41/qM .

Furthermore, E(log κ̃(P )) ≤ 1 + logM .

Proof. Set Λ1 :=
(

m−n+ 3
2

m log ed

)

n− 3
2

2

, Λ2 :=
(

m−n+ 3
2

N

)
m
2
(

N
m log ed

)

n− 3
2

2
,

r := m− n− q +
5

2
, a1 :=

m log ed

m− n+ 3
2

, and a2 :=
N

m− n+ 3
2

.

Note that we have r ≥ 1 by construction. Using Theorem 3.9 and the formula

E((κ̃(P ))q) = q

∫ ∞

0

tq−1Prob (κ̃(p) ≥ t) dt

(which follows from the definition of expectation), we have that

E((κ̃(P ))q) ≤ M q

(

1 + q

∫ ∞

1

tq−1Prob (κ̃(p) ≥ tM) dt

)

,

or
E((κ̃(P ))q)

M q
≤ 1 + q

∫ ea1

1

1

tr
dt+ qΛ1

∫ ea2

ea1

(log t)
n− 3

2
2

tr
dt+ qΛ2

∫ ∞

ea2

(log t)
m
2

tr
dt. We will give

upper bounds for the last three integrals. First note that

q

∫ ea1

1

1

tr
dt =

q

r − 1

(

1− e(r−1)a1
)

≤ q

r − 1
.

Also, we have that

qΛ1

∫ ea2

ea1

(log t)
n− 3

2
2

tr
dt = qΛ1

∫ a2

a1

t
n− 3

2
2 e(r−1)tdt =

qΛ1

(r − 1)
n
2

∫ a2(r−1)

a1(r−1)

t
n− 3

2
2 e−tdt

≤ qΛ1

(r − 1)
n
2
− 1

4

Γ

(

n

2
− 1

4

)

≤ q
√
πn

m− n+ 3
2

(

n− 3
2

2em log(ed)

)

n
2
− 3

4 1
(

1− q

m−n+ 3
2

)
n
2
− 1

4

.
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Finally, we check that

qΛ2

∫ ∞

ea2

(log t)
m
2

tr
dt = qΛ2

∫ ∞

a2

t
m
2 e(r−1)tdt =

qΛ2

(r − 1)
m
2
+1

∫ ∞

a2(r−1)

t
m
2 e−tdt

≤ qΛ2

(r − 1)
m
2
+1

Γ
(m

2
+ 1
)

≤ q
√
πm

(m− n− q + 3
2
)
m
2
+1

(

m(m− n+ 3
2
)

eN

)

m
2
(

N

m log ed

)
n
2
− 3

4

=
(m

N

)
m
2
−n

2
+ 3

4 1
(

1− q

m−n+ 3
2

)
m
2

· qe−m/2
√
πm

m− n+ 3
2
− q

· 1

(log(ed))
n
2
− 3

4

.

Note that if q ≤ (m− n+ 3
2
)
(

1− 1
2 log(ed)

)

then δ1, δ2 ≤ 1.

For the case N ≤ m log(ed), working as before, we get that

E((κ̃(P ))q)

M q
≤ 1 + q

∫ ea2

1

1

tr
dt+ qΛ2

∫ ∞

ea2

(log t)
m
2

tr
dt ≤ 1 +

q

r − 1
+ δ2.

In the case N ≤ m log(ed) we have δ2 ≤
√
πmq

m−n+ 3
2

(

m
eN

)
m
2 1

(

1− q

m−n+3
2

)m
2 +1 . In particular, for this

case, it easily follows that q ≤ (m− n+ 3
2
)
(

1− m
N

)

implies δ2 ≤ 1. �

Note that if m=n − 1, n≥ 3, and d≥ 2, then N ≥m log(ed) and, in this case, it is easy
to check that (∗) still holds even if we reduce M by deleting its factor of max

{

d6, n
d2

}

. So
then, for the important case m = n− 1, our main theorems immediately admit the following
refined form:

Corollary 3.11. There are universal constants A, c>0 such that if P is any random poly-
nomial system as in Theorem 3.9, but with m = n− 1, n ≥ 3, d := maxj deg pj, d ≥ 2, and

M :=
√
N(Kc0C)2(n−1)(3d2 log(ed))2n−3

√
n instead, then we have:

Prob(κ̃(P ) ≥ tM) ≤























3t−
1
2 if 1 ≤ t ≤ e2(n−1) log (ed)

3t−
1
2

(

log t
2(n−1) log (ed)

)

n− 3
2

2
if e2(n−1) log (ed) ≤ t ≤ e2N

3t−
1
2

(

log t
2N

)

1
4

(

log t
2(n−1) log (ed)

)

n− 3
2

2
if e2N ≤ t

,

and, for all q∈
(

0, 1
2
− 1

4 log (ed)

]

, we have (E(κ̃(P )q))
1
q ≤ Me

1
q .

Furthermore, E(log κ̃(P )) ≤ 1 + logM . �

We are now ready to prove Corollary 1.5 from the introduction.

Proof of Corollary 1.5: From Corollary 3.11, Bound (2) follows immediately, and Bound (1)
is clearly true for the smaller domain of t. So let us now consider t = xe2(n−1) log(ed) with x ≥ 1.

Clearly,
(

log t
2(n−1) log(ed)

)
n
2
− 3

4
=
(

1 + log x
2(n−1) log(ed)

)
n
2
− 3

4
, and thus

(

log t
2(n−1) log(ed)

)
n
2
− 3

4
< e

log x
4 log(ed) = x

1
4 log(ed) .

Since x = t
e2(n−1) log(ed) we thus obtain 3t−

1
2

(

log t
2(n−1) log(ed)

)

n− 3
2

2 ≤ 3t−
1
2

(

t
e2(n−1) log(ed)

)
1

4 log(ed) .

Renormalizing the pair (M, t) (since the M from Corollary 3.11 is larger than the M from
Corollary 1.5 by a factor of A), we are done. �
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3.5. On the Optimality of Condition Number Estimates. As mentioned in the intro-
duction, to establish a lower bound we need one more assumption on the randomness. For
the convenience of the reader, we recall our earlier Euclidean small ball assumption.

(Euclidean Small Ball) There is a constant c̃0 > 0 such that for each j ∈{1, . . . ,m} and
ε>0 we have Prob

(

‖Cj‖2 ≤ ε
√

Nj

)

≤ (c̃0ε)
Nj .

We will need an extension of Lemma 3.4: Lemma 3.12 below (see also [29, Thm. 1.5 & Cor.
8.6]). Toward this end, for any matrix T := (ti,j)1≤i,j≤m, write ‖T‖HS for the Hilbert-Schmidt
norm of T and ‖T‖op for the operator norm of T , i.e.,

‖T‖HS :=

(

m
∑

i,j=1

t2i,j

)
1
2

and ‖T‖op := max
θ∈Sn−1

‖Tθ‖2.

Lemma 3.12. Let ξ1, . . . , ξm be independent random variables satisfying Prob (ξi ≤ ε) ≤ c0ε
for all i∈ {1, . . . ,m} and ε> 0. Let ξ := (ξ1, . . . , ξm). Then there is a constant c > 0 such

that for any m×m matrix T and ε>0 we have Prob (‖Tξ‖2 ≤ ε‖T‖HS) ≤ (cc0ε)
c
‖T‖2HS
‖T‖2op . �

Our main lower bound for the condition number is then the following:

Lemma 3.13. Let P = (p1, . . . , pm) be a homogeneous n-variate polynomial system with

dj =deg pj for all j. Then κ̃(P ) ≥ ‖P‖W
‖P‖∞

√
m+1

. Moreover, if P := (p1, . . . , pm) is a random

polynomial system satisfying our Subgaussian and Euclidean small ball assumptions, with
respective underlying constants K and c̃0, then we have

Prob

(

κ̃(P ) ≤ ε

√
N

Kmd log(ed)

)

≤ (cc̃0ε)
c′ min

{

N
minj Nj
maxj Nj

,md log(ed)

}

and

Prob

(

κ̃(P ) ≤ ε

√
N

Km log(ed)

)

≤ (cc̃0ε)
c′m log(ed), if dj=d for all j∈{1, . . . ,m},

where c, c′ > 0 are absolute constants. In particular when d = dj for all j ∈{1, . . . ,m}, we
have E(κ̃(P )) ≥ c

√
N

m log(ed)
.

Proof. First note that Theorem 2.3 implies that for every x, y ∈ Sn−1 we have

‖d−1
j D(1)pj(x)y‖22 ≤ ‖pj‖2∞.

So we have ‖M−1D(1)P (x)(y)‖22 ≤
∑m

j=1 ‖pj‖2∞ ≤ m‖P‖2∞. Now recall that

L2(x, y) := ‖M−1D(1)P (x)(y)‖22 + ‖p(x)‖22.
So we get L2(P ) := min

x⊥y
L2(x, y) ≤ (m+ 1)‖P‖2∞, which in turn implies that

κ̃(P ) ≥ ‖P‖W
L(P )

≥ ‖P‖W
‖P‖∞

√
m+ 1

.

The proof for the case where dj = d for all j∈{1, . . . ,m} is identical.
We now show that, under our Euclidean small ball Assumption, we have that

Prob
(

‖P‖W ≤ ε
√
N
)

≤ (cc̃0ε)
cN

minj Nj
maxj Nj for every ε∈(0, 1). Indeed, recall that ‖pj‖W = ‖Cj‖

ℓ
Nj
2

.

Then Prob
(

‖pj‖W ≤ ε
√

Nj

)

≤ (c̃0ε)
Nj ≤ (c̃0ε)

Nj0 for any fixed ε∈(0, 1), where j0∈{1, . . . ,m}
satisfies Nj0 := minj Nj. Let ξj :=

‖pj‖W√
Nj

for any j ∈ {1, . . . ,m}. Set ξ := (ξ1, · · · , ξm)
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and T := diag(
√
N1, · · · ,

√
Nm). Note that ‖P‖W = ‖Tξ‖2, ‖T‖HS =

√

∑m
j=1Nj =

√
N , and

‖T‖op := max1≤j≤m

√

Nj. Then Lemma 3.12 implies Prob
(

‖P‖W ≤ ε
√
N
)

≤ (cc̃0ε)
cN

minj Nj
maxj Nj .

Recall that Lemma 3.2 implies that for every t ≥ 1 we have

Prob
(

‖p‖∞ ≥ ctK
√
m log(ed)

)

≤ e−t2m log(ed).

So using our lower bound estimate for the condition number, we get

Prob

(

‖P‖W
‖P‖∞

≥ c′ε
√
N

tK
√
m log(ed)

)

≤ Prob

(

κ̃(P ) ≥ cε
√
N

tKmd log(ed)

)

,

Prob
(

{‖P‖W ≥ c′ε
√
N} ∩ {‖P‖∞ ≤ ctK

√
m log(ed)}

)

≤ Prob

(

κ̃(P ) ≥ cε
√
N

tKmd log(ed)

)

,

and

Prob
(

{‖P‖W ≥ c′ε
√
N} ∩ {‖P‖∞ ≤ ctK

√
m log(ed)}

)

≥ 1− (cc̃0ε)
cN

minj Nj
maxj Nj − e−t2m log(ed)

We may choose t :=
√

log 1
ε
and, by adjusting constants, we get our result. The case where

dj = d for all j∈{1, . . . ,m} is similar. The bounds for the expectation follow by integration.
�

Observe that the dominant factor in the very last estimate of Lemma 3.13 is
√
N , which

is the normalization coming from the Weyl-Bombieri norm of the polynomial system. So it

makes sense to seek the asymptotic behavior of κ̃(P )√
N
. When m = n−1, the upper bounds we

get are exponential with respect to n, while the lower bounds are not. But when m = 2n−3
and d = dj for all j∈{1, . . . ,m}, we have the following upper bound (by Theorem 3.10) and
lower bound (by Theorem 3.13):

A1

nd log(ed)
≤ E(κ̃(P ))√

N
≤ A2 log edmax{d8, n}√

n
,

where A1, A2 are constants depending on (K, c0). This suggests that our estimates are closer
to optimality when m is a constant multiple of n.

Remark 3.14. There are similarities between our probability tail estimates and the older
estimates in the linear case studied in [28]. In particular our estimates in the quadratic case
d = 2, when m is a constant multiple of n, are quite similar to the optimal result (for the
linear case) appearing in [28]. ⋄
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