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Abstract. A subsidiary result (Theorem 1.1, on the undecidability of determining mem-
bership in the amoeba of 1 − x − y) from our paper [EPR20] had an erroneous proof. We
give a correct proof. The statement of Theorem 1.1 remains correct. We thank Alexander
Rashkovskii for pointing out the error in our original proof. We also correct a small typo in
our main theorem on univariate exponential sums (Theorem 1.5).

Let g(z) :=
∑t

j=1 e
aj ·z+βj where z = (z1, . . . , zn) ∈ Cn, aj ∈ Rn, the aj are pair-wise

distinct, βj ∈ C, and aj · z denotes the usual Euclidean inner product in Cn. Let Z(g)
denote the zero set of g in Cn, Re(w) the real part of any complex number w, and let
Re(W ) := {(Re(w1), . . . ,Re(wn)) | (w1, . . . , wn) ∈ W} denote the real part of any subset
W ⊆Cn. Our main results from [EPR20] (Theorems 1.5, 1.9, and 1.10) revealed a kind of
tropical variety that approximates, within an explicit distance bound, the real part of the
complex zero set of such a g. Such approximations are of considerable interest because zero
sets of exponential sums appear in many applications. In particular, determining whether
a given point p ∈ Rn lies in Re(Z(g)) is hard in a complexity theoretic sense: Restricted
versions of this problem, even with n=1, are already NP-hard in the classical Turing model
of computation (see, e.g., [Pla84]). On the other hand, checking membership in our tropical
approximations is doable in polynomial-time for any fixed n: See [EPR20, Thm. 1.9] and
[AKNR18, Sec. 4].

Theorem 1.1 of our paper [EPR20] stated that determining p
?
∈ Z(Re(g)) is undecidable in the

BSS model of computation over R [BCSS98], already in the very special case g(z)=1− ez1 − ez2 .
This means that even if we allow unit-time exact field operations and comparisons over
R (something beyond the capability of a classical Turing machine), it is impossible to
decide whether an arbitrary (p1, p2)∈R2 lies in Re(Z(1 − ez1 − ez2)) within time bounded
by a real-valued function of (p1, p2). Determining membership for certain particular values
of (p1, p2)∈R2 can, of course, be quite simple, e.g.,

(
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. Similarly,
the famous Lindemann-Weierstrass Theorem tells us that ep1 + ep2 is transcendental when

p1, p2 ∈R are distinct and algebraic. However, checking ep1 + ep2
?
∈ Q(p1, p2) for arbitrary

distinct transcendental p1, p2 ∈ R — using only finitely many rational operations and
inequality checks in Q(p1, p2) — is already an open question.
For convenience, we quote Theorem 1.1 below:

Theorem 1.1. Determining, for arbitrary input p1, p2∈R, whether (p1, p2) lies in
Re(Z(1− ez1 − ez2)) is undecidable in the BSS model over R.

The second sentence of the proof from [EPR20, Sec. 3.1] states falsely that the boundary of a
countable union of semi-algebraic sets is contained in the union of their boundaries: A simple
counter-example, pointed out by Alexander Raskhovskii, is the union of the segments [1/n, 1]
for n∈N, with boundary point 0 not contained in the union of boundaries {1, 1/2, 1/3, . . .}.
We give a corrected proof of Theorem 1.1 below, and include some basic facts (missing from
[EPR20]) about semi-algebraic subsets of the plane.
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Remark 1.2. We also point out a small typo in Theorem 1.5 of [EPR20], which concerned an
explicit Hausdorff distance estimate between Re(Z(g)) and a certain kind of tropical variety
associated to g, in the univariate case: The second inequality should be a soft “≤” instead
of a strict “<”. So the inequality in question should instead read

(log 9)s−log 9

2

δ(g)
≤

(log 9)t−log 81

2

δ(g)
.

The proof of Theorem 1.5 in Section 2.2 of [EPR20] requires no change. ⋄

Proving Theorem 1.1

We recall here some basic facts about halting sets, i.e., sets of inputs on which a BSS
machine over R terminates.

Theorem 1.3. [BCSS98, Sec. 2.3, Thm. 1, Pg. 52] The halting set of a BSS machine over
R is a countable union of semi-algebraic sets. �

The converse of Theorem 1.3 fails in general: For instance, if S is any countably infinite
subset of a transcendence basis for R over Q, then S can not be the halting set of any BSS
machine over R. (One can even write such subsets in terms of infinite series, via an explicit
basis found by von Neumann [vNeu28] around 1928.) This follows immediately from the
following consequence of the development in [BCSS98, Sec. 2.3]:

Proposition 1.4. Any countable subset of R that is the halting set for a BSS machine over
R must be a subset of the algebraic closure of a real extension of Q of finite transcendence
degree. �

We thank Lenore Blum, Felipe Cucker, and Mike Shub for pointing out Proposition 1.4. We
included Proposition 1.4 to clarify the failure of the converse of Theorem 1.3, but we will
not need it henceforth.
Let us also recall the following basic facts about semi-algebraic sets, i.e., the solution sets

of finite collections of polynomial inequalities and polynomial equalities in Rn: First, semi-
algebraic sets are closed under all Boolean operations (intersection, union, and complement).
Also, semi-algebraic sets admit a natural notion of dimension, via the largest d permitting a
semi-algebraic embedding of a real d-ball (see, e.g., [BPR06, Ch. 5, Sec. 5.3, pp. 170–172]).
Some additional qualitative facts we’ll also need can be summarized as follows:

Theorem 1.5. Suppose S ⊂ R2 is semi-algebraic, and S̄ and S◦ respectively denote the
closure and interior of S. Then:
1. S̄, S◦, and ∂S := S̄ \ S◦ are semi-algebraic.
2. S has only finitely many connected components, each of which is semi-algebraic.
3. If, in addition, S is a connected curve, then S has only finitely many singularities.
4. Let ρ : R2 −→ R denote the projection defined by ρ(x, y)=x. Then, continuing Assertion

(3), there is an nS∈N such that all fibers of ρ have cardinality at most nS.

Proof: The first two assertions of (1) are exactly the content of [BPR06, Ch. 3, Prop. 3.1,
pg. 84]. The final assertion of (1) is then immediate since semi-algebraic sets are closed
under Boolean operations by definition.
Assertion (2) is immediate from the notion of cylindrical decomposition. The latter is a

refined decomposition of a semi-algebraic set into finitely many (semi-algebraic) connected
components, and the existence of such a decomposition is a classical fact: See, e.g., [BPR06,
Ch. 5, Thm. 5.6, pg. 163]. In particular, the tameness of fibers from Assertion (4) is also an
immediate consequence of cylindrical decomposition.
Assertion (3) is a direct consequence of the notion of semi-algebraic cell stratification of R2

adapted to S. The latter is a partition S into finitely many semi-algebraic smooth manifolds
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(here, each diffeomorphic to an open interval or a point) called strata, such that the closure
of any stratum is a union of strata. That such stratifications exist (and in much greater
generality) is also a classical fact: See, e.g., [BPR06, Ch. 5, Thm. 5.38, pg. 177]. �

1.1. The Corrected Proof of Theorem 1.1. Let C∗ :=C \ {0} and let
R :=Re(Z(1− ez1 − ez2)) and S :={(log |x|, log |y|) | 1− x− y = 0; x, y∈C∗}.

Via the equality log
∣

∣

∣
eα+

√
−1β

∣

∣

∣
=α (valid for any α, β∈R) we see that

(x, y)∈Re(Z(1− ez1 − ez2)) ⇐⇒ (x, y)=(log |ez1|, log |ez2|) for some (z1, z2)∈C2 with 1− ez1 − ez2 =0.
Since the exponential function defines a surjection from C onto C∗ we then clearly have
R=S.
Now note that J := {(|w1|, |w2|) | 1 − w1 − w2 = 0; w1, w2 ∈C∗} is exactly the following

semi-infinite strip with corners deleted: I :={(x, y)∈R2 | − 1≤y − x≤1, x+ y≥1, and xy 6=0}.
This is because w1 + w2 = 1 =⇒ |w1 + w2| = 1, |w1| = |1 − w2| = |w2 − 1|, and |w2| =
|1−w1|= |w1 − 1|. So by the Triangle Inequality we obtain |w1|+ |w2|≥1, |w1| ≥||w2| − 1|,
and |w2| ≥ ||w1| − 1|, and thus (setting x= |w1| and y= |w2|) we obtain J ⊆ I. To see that

I ⊆ J , assume (x, y)∈ I and consider yθ := 1 + xeθ
√
−1 for θ ∈ [0, π]. Clearly x> 0. So then

|yθ|
2=(1+(cos θ)x)2+(sin θ)2x2=1+2(cos θ)x+x2 is a decreasing differentiable function of

θ, with |y0|=x+ 1 and |yπ|= |x− 1|. Since |x− 1|≤y≤x+ 1 there must then be a θ∈ [0, π]

with y= |yθ|. Letting w1 :=−xeθ
√
−1 and w2 :=yθ, we then obtain w1 + w2=1, |w1|= |x|=x,

and |w2|=y. So we have obtained I⊆J and thus I=J .
Clearly then, R is simply the image of I under the (differentiable) coordinate-wise loga-

rithm map. In particular, we see that the curve Y defined by y= log(1 + ex), as x ranges
over all of R, is a connected component of the boundary ∂R.
By Theorem 1.3, if membership in R is decidable, then R must be a countable union

⋃

i∈N Si of semi-algebraic sets Si. Let W := Y ∩ ([0, 1] × R), abusing notation slightly by
identifying C with R2. Then W is compact and infinite, and thus some Si must have W ∩Si

infinite. Note in particular that W ∩ S◦
i = ∅ (since S◦

i is in the interior of R) and thus (by
Theorem 1.5) Si \ S

◦
i must be a finite union of isolated points and smooth connected semi-

algebraic curves. In particular, Si must contain a smooth connected semi-algebraic curve
C such that W ∩ C is infinite. Recalling that ρ : R2 −→ R is the projection defined by
ρ(x, y)=x, we may assume further that C is the graph of a smooth algebraic function f on a
non-empty open sub-interval of (0, 1), via the Implicit Function Theorem and Assertion (4)
of Theorem 1.5. (In particular, this might entail replacing C with a non-empty, connected
(and semi-algebraic), open subset of C.)
Now observe that W ∩ C (resp. ρ(W ∩ C)) must have at least one accumulation point

since W (resp. [0, 1]) is compact, and thus the graphs of the smooth functions log(1 + ex)
and f agree on an infinite sequence of points with a limit point. But this is impossible,
since log(1 + ex) is a transcendental function. In particular, since log(1 + ex) is analytic on
the domain R× (−π, π), the function f must have an analytic continuation to an algebraic
function with an essential singularity at ∞ [Ahl79, Pg. 127]. Since algebraic functions can
only have zeroes or poles of finite fractional order at ∞, we obtain a contradiction. �
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