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1. Introduction
Let

(1.1)
n=l

be an integral function with gaps, i.e. such that most of the an are zero, in
a certain sense. We shall prove in this case that f(z) assumes all finite
values in every angle with a density that is proportional to the size of the
angle.

Suppose that <p(n) is the number of non-zero terms among the
coefficients ax to an. Then P61ya ([12]) proved that if f(z) has Fabry
gaps, i.e. if

(1.2) £^-»0 as n^oo,
n

and if f(z) has infinite order, then every line is a line of Julia. Thus/(2)
assumes in every angle every value with at most one exception infinitely
often. This result has recently been extended by Anderson and Clunie
([1]) to functions of finite positive order. The case of zero order has
remained open.

Biernacki ([3]) has shown that if the indices nk, for which an # 0
satisfy the gap condition

(1.3) nk+1 -nk> nk+1*+s (k > kQ)

for some 8 > 0, then f(z) assumes all values in every angle. We shall
prove a more precise result under a weaker hypothesis than (1.3), which
reduces to (1.2) if the lower order of f(z) is finite. Thus in particular (1.2)
always implies that every line is a line of Julia.

2. Notation and statement of results
We shall assume that/(z) given by (1.1) is regular in \z\ < p0, where

0 < p0 ^oo, and write

Proc. London Math. Soc. (3) 24 (1972) 590-624



ANGULAR VALUE DISTRIBUTION OF POWER SERIES 591

which corresponds to the value N(r, 0) in Nevanlinna theory. We also put

|, 0 < r < Po.

Suppose that 0 < dx < 62 ^ 6X + 2n, and write n(r, 6V 62, a) for the
number of roots of the equation/(z) = a in the open sector

(2.1) S(r,dv62) = {z\0<\z\<r, BX < a rgz < 02}.

We also put

(2.2) N(r, 0v 02, a) = [nit, 0v 02, a) y .
Jo "

Then by Jensen's formula, N{r,f) = N{r, 0,2n, 0).
We recall briefly the definitions of density and logarithmic density for

a measurable set E on the positive real axis.
Let E{a,b) denote the part of E in the interval (a,b). Then the lower

density densE and upper density dens 2? are defined respectively by

1 r

(2.3) densff = lim- dt,
r-»oo r JE{0,r)

and similarly the upper logarithmic density log dens E and lower
logarithmic density log dens E are defined by

(2.4) = lim\— f —.

If upper and lower density (logarithmic density) are equal, their common
value is called the density (logarithmic density) of E.

2.1. Our results will be based on an extension of Jensen's formula.
We suppose that/(z) is meromorphic near the segment z = teie (0 < t < r),
that /(0) = 1 and that f(z) ^ 0, on the segment.

Then we can define a unique value of axgf(teie) which is continuous for
0 < t < r and reduces to zero when t = 0. We denote this value by
v(t, 6) and write

(2.5) F M ) =

We then have the following formula, which appears implicitly in
Pfluger's paper [11], pp. 50, 59 and more explicitly in Levin's book
[10], p. 188. We include the proof for completeness.

THEOREM 1. Suppose that f(z) is meromorphic in the closure of the sector
8(r,9v92), that /(0) = 1, and that f{z) ^ 0 on the arms argz = 0lt 02 of S.
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Then

(2.6) N(r,evd2)0)-N(r,evd2)oo)

M J - V(r,62).

Proof. We apply the argument principle to the sector S(p, 6V 92), where
0 < p < r and p is such that f(z) ^ 0, oo, for z = peie (61 < 6 < 62). This
gives

27r{n(p, $lt d2,0) - n(P) 6lt 62, oo)}

= »(/>, ^)-«(p,^a)+ p-r-
JOi VP

We integrate this equation from p = px to p2, where f(z) # 0, oo, for
Pi < \z\ ^ p2> #1 ̂  a r g / ( z ) ^ 2̂> having first divided by p. This gives

(2.7) jv(p2, ev e2, o) - N{Pv ev 02, o) - {iv(p2, ev e2, oo) - N(Pl, ev e2, oo)}

2J ^ ) - V(Pv 9X) + FCPX, 62) - V(P2,0a).

Since all terms are continuous in pv p2 this latter equation remains valid
if f(z) has a finite number of poles and zeros on \z\ = pv p2, but none for
px < | z | < p2. Also since an arbitrary interval [pv p2], for 0 < px < p2 < r,
may be split into a finite number of intervals of this latter type, we deduce
(2.7) for general pi,p2- Finally, we let px tend to zero, in which case all
the terms involving px tend to zero since /(0) = 1, and put p2 = r in (2.7).
This proves Theorem 1.

We now put

(2.8)

so that

and

(2.9)

We can now state our fundamental result.
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THEOREM 2. Suppose that f(z) is regular in \z\ < p0, and /(0) = 1.
Then we have, for 0 < r < pQ, dx < 02 < 2TT,

(2.10) N(r, M B . 0) - J- f log \f(re«>) \ dd

COROLLARY. Ifr-+p0 through a set of values E, such that

(2.11) log£(r , / )~ log Jf(r)

and

(2.12) I0(r) = o{iogM(r)},

then we have, uniformly for 6X< 62< 9X + 2TT,

(2.13) N(r,0lt0lt0) =

as r -» p0 on E.

If a is any complex number we put

(2.H) fa{z) ( a # i ) f

f1(z) = cz-P{f(z)-l},

where c,p are chosen so that /^O) = 1. Then evidently (2.11) will hold
simultaneously for/a(z) and/(z) and the same will apply to our estimates
for I0{r). Thus in effect we shall be able to apply the conclusions of
Theorem 2, Corollary, simultaneously to all the functions fa(z) as r -» p0

through suitable values. If p0 = oo and (2.11), (2.12) hold simultaneously,
we deduce in particular that every line is a line of Julia.

We shall prove that relatively weak conditions will suffice to yield the
conclusions of Theorem 2, Corollary. We have

THEOREM 3. Iff(z) is a transcendental integral function of finite (lower)
order, then (2.11) and (2.12) hold simultaneously for all the functions fa(z)
on a set E of (upper) logarithmic density 1, provided that f(z) satisfies the
Fabry gap condition (1.2).

For functions of infinite order the same conclusions hold on a set E of
logarithmic density 1 provided that

(2.15) <p(n) = o{w(logw)~1(loglogw)-a}, as n -> co,

for some a > 2.

We note that in all these cases every line is a line of Julia, and there are
no exceptional values. Thus Polya's theorem holds in this strengthened
form for all functions of finite lower order, including zero order.
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The fact that (2.11) holds under the hypotheses of Theorem 3 is due to
Fuchs ([5]) for functions of finite order. The conclusion for functions
of finite lower order represents a slight sharpening of a result of Sons ([14]),
who proved a corresponding theorem on a set of infinite logarithmic
measure. The condition (2.15) for (2.11) was suggested by Kovari ([9]),
who carried out the proof under the slightly stronger condition

<p{n) = 0(7i)(logra)-« (a > 2),

but obtained the result outside a set of finite logarithmic measure.

2.2. The rest of the paper will be devoted to the proof of Theorem 3
apart from the next section in which we prove Theorem 2. In §4 we
obtain the lower bounds for L(r,f) which are required for Theorem 3.
The methods here are familiar and are due to Kovari ([8], [9]), Fuchs ([5]),
and Sons ([14]). However, in order to prove Theorem 3 in the case of
finite lower order we have to be rather careful to show that L(r,f) is large
at most points of certain particular intervals [1, R], namely those for which
log M(R,f) is not too big (Theorem 4) and this needs a modification in the
arguments employed by the previous authors. The key for this is the use
of Lemma 4 and in particular (4.5) subject to (4.4). For the application
to infinite order (Theorem 5) we use (4.3). We note that the Wiman-
Valiron method is not in fact essential for this type of application but can
be replaced by the simpler Lemma 2, which gives an estimate for the
remainder after N terms of a power series f(z) on \z\ = r in terms of
M(R,f) for R > r and, when combined with Lemma 4 permits a better
control of the location of the exceptional intervals.

In §§5-8 we estimate IQ(r) and these estimates constitute the central
idea of the paper. In Lemma 7 we show that the argument of a polynomial
is bounded on any ray by kv, where k is the number of distinct non-zero
terms. This leads to a bound for the number of zeros of such a polynomial
in a sector (Theorem 6). The bounds for the argument extend from
polynomials P(z) to power series f(z) = P(z)+r(z), on a straight line
segment [Q,Reie] provided that \r(z)\ < \f(z)\ on the segment, and in
particular if \r(z)\ is less than the minimum L^dfR) of \f(z)\ on this
segment (Lemma 8). Using a bound from a previous paper for the
average of —log L-^d^E) we finally obtain in Lemma 10 an estimate for
the average value of v(R, 6). Unfortunately, we need the logarithmic
integral of v(r, 6), and so the logarithmic integral of the estimate of
Lemma 10. The result is achieved by means of Theorem 7, an inequality
for real functions whose statement and proof fill §6. In §7 we apply
Theorem 7 and Lemma 10 to obtain the required estimates for 70(r) for
functions of infinite order, and in § 8 for functions of finite lower order.
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Finally, in § 9 the results of § 5 are combined with those in §§ 7 and 8 to
complete the proof of Theorem 3.

3. Proof of Theorem 2
The proof of Theorem 2 is quite simple. We define £0 by the equation:

(3.1) W = a

We put

and write N(dv 02) for N(r, 0l5 02,0). We show first that

(3.2) N(dvd2) > J(0v0t)-2e0\ogM{r).

If e0 > \{0z — 9x) this is trivial since then the right-hand side is negative.
We now assume that e0 ̂  £(02 —#i)- With this assumption suppose that
(3.2) is false. Then we have when 0 < e < £0, in view of (2.6),

J(91)92)--\ogM(r)-N(91,92)
TT

> (2e0 )logM(r),

since (3.2) is false by hypothesis. We integrate this inequality with respect
to e from e = 0 to e0, and deduce that

e0
2 2 - — logM(r) <\ \V(r,91 + e)\d9+\ \V{r,B2-e)\d6

which contradicts (3.1). Thus (3.2) must hold.
We deduce at once that

1 2 1

Thus
015 02) = N(d1} 6X + 2TT) - N(d2,0r + 2TT)

= J(019 0X + 2TT) -

^ J{dv 0X + 2TT) - J(02,0X + 2TT) + 2e0 log M(r)
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On combining this with (3.2) we deduce that

\N(dvd2)-J(dvd2)\ < 2s0\ogM(r)=-n^—-(I0(r)\ogM(r))K

This yields (2.10), i.e. Theorem 2.
Next we have always

so that (2.10), (2.11), and (2.12) yield (2.13). This proves the corollary.

4. Lower bounds for L(r,f)
We proceed to obtain suitable conditions for (2.11) to hold in order to

prove Theorem 3. Following Kovari ([8], [9]), Fuchs ([5]), and Sons
([14]), we shall use for this an important inequality of Turan ([15]).
This is

LEMMA 1. Let P(z) = bo + b1z
Xl+...+bN_1z

x*-1 be a polynomial of N

terms, let y be the arc z = reie (0X < 6 < 61 + B), and let

My(r) = max | P(z) |, M(r) = max | P(z) |.

Then

(4.1) M(r) < ( 4 - MJr).

We apply the above lemma, by taking for P(z) a suitable partial sum
of our power series. A suitable error term for the remainder is provided
by the following simple

L E M M A 2. Suppose that f(z) = So> a / i z ? l *s regular in \z\ < pQ, and that

r < reh < pQ. Then if

/ * ( * ) = £ a>n*n

we have, for \ z \ = r,

M{re*)e~Nh

\JN\Z)\ < ^ •

In fact we have from Cauchy's inequality, applied with R = reh,

so that

\an\r
n ^ M{R)[-^\ = M{reh)e~nh.
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Thus

M(reh)e~{N+1)h _M{reh)e~Nh M(reh)e~Nh

We deduce

LEMMA 3. Suppose that with the hypotheses of Lemma 2, the quantity N is
chosen so large that

Then, if y is the arc z = rei0 (dx < 9 < Bx + 8), and

M7(r,f) = ma,x\f(z)\,
zey

we have

^ j M(r,f)-2,

where <p(N) is the number of non-zero terms among ax to aN.

We apply Lemma 1 to PN{z) =f{z)—fN{z). By Lemma 2 we have
^(2)1 ^ l o n | 2 | = r. Thus

M(r,f) < M(r, PN) + 1 < \j-j My{r, PN)

4.7Tg\

47re\«)(i)+1

^ j {My(r,f) + 2},
and this proves Lemma 3.

4.1. A lemma on growth. We next need a lemma on growth for general
increasing functions. The result is

LEMMA 4. Suppose that T(r) is a continuous increasing positive function

of r for r ^ 1, and that <p(x) is a continuous positive decreasing function of x

for x ^ 0 such that,

) dx
Ji x

< 00.

Then, if K > 0, we have, for r ^ 1 and r outside a set of finite logarithmic
measure,

(4.3) T{r[l + <p{T{r))]} < eKT{r).
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If further A and h are positive constants, such that h < K/X, and for some
arbitrarily large R we have

(4.4) T(R) < R\

then we have

(4.5) T{reh) < eKT{r)

except on a subset ER of [I,i2], whose logarithmic measure is at most
, as R -> co through values on which (4.4) holds.

The result (4.3) subject to (4.2) is due to Edrei and Fuchs ([4],
Lemma 10.1), but we include the proof for completeness.

Let rx be the smallest value of r for which (4.3) is false and, if rn has
already been defined, let rn+1 be the smallest value of r, if any, such that

and (4.3) is false. If there is no such r, for some n, then (4.3) holds for all
sufficiently large r, and there is nothing more to prove. Thus we may
assume that rn exists for all n. Then we have, since T(r) increases with r,

T(rn+1) Z T(rn[l + ip[T(rn)}]) > eKT(rn) > ... > e ^ r j .
Thus rn -> oo with n. We also see that (4.3) holds except in the intervals

IW«]> where

r'n = rn[l + ?{Tn)l Tn = T(rn)
Also,

since <p(x) decreases with x. Thus the total logarithmic measure of the
exceptional intervals [rn, r'n] for n ^ 2 is at most

1 » CTn dx 1
-r? S <p(x)— = r=
•«*• n=2 J Tn-i x &

dx
I < 00

X

by (4.2). Thus (4.3) holds outside a set of finite logarithmic measure.
Next we define a sequence rn similarly with respect to (4.5), i.e. we

choose for rx the smallest value of r ^ 1 for which (4.5) is false, and, if rn

has been defined, we choose for rn+1 the smallest value of r ^ rne
h, such

that (4.5) is false.
Then again (4.5) holds except in the intervals [rn,r'n], where

r'n = rne
h, Tn = T(rn) > T{r'n_x) > e*Tu_v n>2.

Let n be the largest integer for which rn ^ R. Then
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so that

nK < AlogE+if+log^- = Alog72 + 0(1).

Also (4.5) holds in [1,JB] outside the intervals [rvir'v] (1 ^ v ̂  n) whose
total logarithmic measure is at most

nh = ̂ nK <^\ogR + O(l).

This completes the proof of Lemma 4.

4.2. A lemma of Fuchs. In order to achieve our lower bounds for
L{r,f) we follow the method of Fuchs and quote the following result
of his ([5]).

LEMMA 5. Suppose that 0 < 17 < \ and 0 < 8 < \. Letf(z) be meromorphic
in \z\ ^ R, and such thatf(O) = 1, and let dx,d^, ...,dmbe the set of all zeros
and poles of f(z) in \ z\ ^ R. Then we have, for r < R outside an exceptional
set F of intervals of total length at most 2-qR,

( 4-6 ) 8 -
2R

where J is any interval of length 8, and T(r,f) is the Nevanlinna characteristic.

We apply this lemma to our integral functions f(z), and shall replace
T(r,f) by the larger T(r) = log M{r,f). We suppose that 0 < h < 1, and
shall use Lemma 4. We suppose that (4.5) holds, i.e. that

(4.7) T(RQe») <

assume that 17 < TO, apply (4.6) with rjh instead of 77, and put

R = RoeW\ R1 = RQe*, R^Roe^-^K

Then if m is the number of zeros of f(z) in | z \ ̂  R, we have

m

Also if Ro ^ r ^ R2, we have

^ 4^2

{R-R2)
2
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Thus we have in the interval [Ro, R2], outside a set of r of length at most

Thus we have, for large Ro and an absolute constant A,

for any arc of length 8r on | z | = r, when r belongs to a subset E of the
interval [Ro, Rx] of length at least

R2-R0- 2rlhR1 = R1-R0-

Thus if E' is the complement of E in [Ro, Rx], we have

f dr I
— <W

We write 17 instead of 4e^ and embody our result in

LEMMA 6. Suppose that 0 < rj < l , 0 < h < 1, and that T(r) = log M(r,f)
satisfies (4.7). Then we have, for Ro ^ r ^ Roe

h, except for a set E' of
logarithmic measure at most rfi,

(4.8) r f
f(reid)

where Ax is an absolute constant, and y is any arc on \z\ = r of length 8r,
where 8 < £.

4.3. Application to functions of finite order. We now put

(4.9) A = I i H ^ ,
n-»oo ft

where <p(n) is the number of non-zero coefficients among ava2, ...,an,
and have

THEOREM 4. Suppose that f(z) is an integral function such that for some
arbitrarily large R we have

(4.10) logM(R,f)<R\

where A is a positive constant. Let rj1} 7)2 be constants between 0 and 1 and
suppose that

where A2is a certain absolute constant.
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Then there exists a subset E of the real axis, such that the logarithmic
measure of E[l,R] is at least (1 —•»71)log22 + 0(l), as R -> oo through values
satisfying (4.10) and such that we have, for r in E,

(4.12) log£(r,/) > ( l -

A somewhat weaker inequality was proved by Anderson, but never
published.! In order to achieve (4.12) he needed

A2 log A

for large A, where 8 was a larger upper density of the coefficients. We note
that if

then L{r,f) is unbounded by (4.11), (4.12), with rjvrj2 near to one, so that
f(z) has no finite asymptotic or deficient value. For this case we can apply
(4.11) with suitable T)X < 1 and rj2 < 1.

We choose K = 1 in Lemma 4 and define h by the equation

(4.13)

Then if (4.10) holds and 22 > 22O, (4.5) holds outside a set ER in [1,22],
whose logarithmic measure is at most ^qx log 22 + O( 1). We take for 22X the
lower bound of numbers 22 > 1, such that (4.5) holds, and if Rn has been
defined, we define

(4.14) R'n = e*Rn, so that T(R'n) < eT(Rn),

and take for Rn+1 the lower bound of all numbers 22 ̂  22 ,̂ satisfying (4.5).
Let Ex be the set of complementary intervals [R'n,Rn+1] and 2£JX1,22] the
part of Ex in [1,22]. Then 2^1,22] consists entirely of points where (4.5)
is false and so by Lemma 4 we have

dt(4.15) f f ^

if R is such that (4.10) holds. Also the complement of 2^(1,22] in [1,22]
consists of the intervals [22 ,̂22 ]̂ satisfying (4.14). In view of Lemma 6
we have, for r in [Rn, R'n] and outside a subset of logarithmic measure

since we may take 17 = - ^ in Lemma 6.

t The result is mentioned in a survey article by Fuchs ([6], Theorem 18, p. 286).
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We next apply Lemma 4, again with h given by (4.13) and deduce that
we have, outside a set E2, such that (4.15) holds for E2{1}R) also,

T{reh) < eT{r).

Thus outside E2 we now apply Lemma 3, provided that

and in particular if r is large enough, Rn < r < R'n, and

We also suppose given e > 0, and suppose N so large that

<p(N) + l < (A + e)iV.

Then we have, for any arc y of length rh on | z | = r,

\(A+e)N

)

so that for some point z0 = reido on y we have

(4.17) log|/(z0)| =

Hence if zx — rei01 is any other point on y, it follows that, if (4.16) holds,

/'(re») M

f(rei0)

We recall that h is given by (4.13) and choose 8 so small that

Ulfi^ 4»81og(l/8)(4.18) ^ % a < fe

which is certainly satisfied if
8 <

and so if

where -<45 is a suitable absolute constant. We then suppose that A is so
small that

10A
T l0gT"
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and so
10(A + e). 4-rre . r . . . . ...
—~~z—l°g-r~ < V)v *or a suitable positive e.h o

This is certainly satisfied if

= log(477e/5) '

Thus if (4.11) holds with a suitable A2 the above conditions are satisfied.
If, further, r satisfies (4.16), then, if zx = reWl is any point of \z\ = r, we
can always find 0O, such that 0O < 9X < d0 + S and such that z0 = rei0°
satisfies (4.17), where 8 satisfies (4.18) and we deduce that

This is true for any point zx on | z \ = r, so that

logX(r,/) > ( l - ^ l r ) = (l-r,2)logM(r,f)
as required.

Finally, the conclusion holds for all r not in Ex nor E2 but in [Rn, R'n]
with the exception of a set of logarithmic measure ^ f t . Thus the
logarithmic measure of the set of r in [1,12] for which (4.12) is false is at
most

f+f y
El{l,R) f JEiilJt) C

as R -> oo. Here n is the least integer such that Rn < R. This proves
Theorem 4.

4.4. Application to functions of infinite order. We proceed to prove

THEOREM 5. Suppose that f(z) is an integral function satisfying (2.15).
Then we have

log L{r) ~ log i f (r)

as r -> oo on a set E of logarithmic density 1.

We again choose T(r) = log If (r), and apply Lemma 4 with

4
?{%) = i n—^ znr> ic ̂  10, x = f, £ < a — 2.
r v ' loga;(logloga;)1+e 2

We deduce that outside a set Ex of finite logarithmic measure we have
T(reh) < T{r{l

where

logT(r){loglogT(f)}1 +- '
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We now apply Lemma 3 with this value of h, and deduce that, if

i.e. certainly if r is large and

N = |T(r)logy(r)(loglogT(r))1+8

we have, with the notation of Lemma 3, and on using (2.15)

log My(r,f) > T(

(4.19) > T(

where y is any arc of length r8 on | z \ = r.
Next we construct a set of intervals [Rn, R'n] as before such that Rt is

the smallest number such that

and if Rn has already been defined we set R'n = Rne
h, and define Rn+1 to

be the lower bound of numbers R ^ R'n such that

(4.20) T{Reh) ^ %T(R).

Then if E2 is the set of complementary intervals {R'ni Rn+1), we see that
(4.20) is false in E2, so that E2 has finite logarithmic measure by Lemma 4.
Also it follows from Lemma 6 that we have, for r in (Rn, R'n) except in a
subset En of logarithmic measure rjh,

fire")ijy

We choose

T' f(ri0) dd

and deduce that if y is our arc of length r8, where r is in [Rn, Rn+1] and
outside En, then we have for large n

f'(rei0)'J
Jy

fire*
dd

Suppose now that r satisfies this condition and let z0 = reido be any point
on \z\ = r. Then by (4.19) we can find zx = reidl on \z\ = r such that
dQ < dx ^ 61 + S and

log 1/(^)1 > T(r){l-6[log\ogT(Rn) + O(l)](\oglogT(Rn))i+*-«}

> T(r)[l-nog\ogT(Rn)*+°-*].
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Hence

Iog|/(z0)l > T{r)[l-n-noglogT{Bn)*+*«\.

We may suppose that |/(z0) | = L(r) and deduce that

log L(r) ~ T(r), as r -> oo,

through such values. Also the set of exceptional values of r consists of a
set E of finite logarithmic measure, together with all the sets En, which
occupy a proportion of [Rn,B'n] which is small for large n. Thus the
exceptional set has logarithmic density zero, as required. This completes
the proof of Theorem 5.

5. Estimates for IQ(r): the basic formalism
Having obtained our estimates for L(r) we now turn to /0(r).
The basis of our results is the following lemma for polynomials.

LEMMA 7. Suppose that f(z) = 1 + ^$L1avz
v is a polynomial and that k of

the terms av are different from zero. Then if f(z) ^ 0 on the ray argz = 9,
we have

| v(p, 6) | < TCTT (0 < p < oo).

We assume, as we may do without loss of generality, that 0 = 0, since
otherwise we may consider f{zei0) instead of f(z). We write av = bv + icv,
so that

(5.1) /(2) = l
v=l

say, where P(z), Q(z) are real for real z. By Descartes's rule of signsf
Q(x) has at most h — 1 positive zeros, since Q(x) is a real polynomial having
at most k distinct terms. These zeros divide the positive real axis into at
most Jc intervals in each of which Q(x) has constant sign, and so the
argument of P(x)+iQ(x) varies by at most IT in each of these intervals.
This proves Lemma 7.

We can deduce immediately the following result, which may have
independent interest. J

THEOREM 6. Let P(z) be a polynomial of degree N, having k + 1 non-zero
terms and such that P(0) # 0. Let n(p, 6X, 02) be the number of zeros of P(z)
in the sector S(p, dx, 62). Then, given s > 0, we have, for sufficiently large

t See, for instance, P61ya and Szego ([13], Problem 36, p. 43).
X Biernacki implies in a footnote to [3] that something similar to Theorem 6

would follow from the method used by him in [2], pp. 587-94. However, his
arguments in [2] are not easy to follow.
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p , and &! < 92 ^ 9X + 2TT,

(5.2) n(P,eve2)-N
92-9x

2TT
< k + e.

In particular P(z) has at least one zero in the closure of S(p, 9V 92) for large p,
provided that

We consider the variation v0 of arg P(z) around the boundary of
, #1} 02). By Lemma 7 the arms argz = 9V92, contribute at most 2hn

to vQ. Also on | z | = p for large p

so that the arc on | z \ — p contributes N(92 — 9t) + 0{\)/p to v0. Thus

K - # 0 8 - 0 ! ) | = \27rn(p,9li92)-N(92-91)\

This proves the result, provided that P(z) has no zeros on the rays
argz = 9V d2. If there are such zeros we replace 6V62 by 61 + 8, 92 — 8,
where 8 is chosen so small that N8/TT < e, and P(z) ^ 0 for
9X < argz < #! + §, and 62 — 8 < argz < 92. Then we may apply (5.2)
with #! + §, 92 — 8 instead of 9V92 and deduce (5.2) with 2e instead of e.
This proves Theorem 6.

In particular (5.2) gives a contradiction if n(p,9v92) = 0 for all p, and

2TT

If N(92 — 61)/{2TT) = k, and P(z) has no zeros for 6± ^ argz ^ 92, then
P(z) has no zeros for 91 — 8< arg z < 92 + 8, for some positive S3 and so we
again have a contradiction. This proves (5.3).

The inequality (5.3) is sharp, at least when N is a multiple of k. Suppose
in fact that N = pk, where p is a positive integer, let Q(z) be a polynomial
of degree k, with all its zeros real and positive, e.g. Q(z) = (z— 1)&, and put

Then P(z) has k + l non-zero terms and degree N and all the zeros of P(z)
lie on the rays argz = 2vn/p (0 ^ v < p— 1). Thus P(z) has no zero in
S(p,0,2TT/P), SO that (5.3) is false if we replace the closure of S(p,9v92)
hy S(P,9V92).

For our application we need a slight extension of Lemma 7. This is
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LEMMA 8. Suppose that the power series f(z) given by (1.1) is regular in
\z\ ^ JR, and non-zero on the segment y{6): z = teie (0 < t < R).

Suppose further that

n+1

on y(9). Then \ v(R, 9) | < ir(<p(n) + £).

We write

1 n+1

so that P(z) has k +1 = cp(ri) +1 non-zero terms. Also on y(9) we put

- d Q{z)\
By hypothesis \Q{z)/f(z)\ < 1, so that the argument of l-Q{z)/f(z) is
continuous on y{6) and less than \TT in absolute value. Thus

|argP(z)-arg/(z)| < \<n

on y(6). Now Lemma 8 follows from Lemma 7.

5.1. An estimate for v(p,6). In order to apply Lemma 8 we need an
estimate for the minimum L^O^) of \f(z)\ on the segment y(6,R). The
following result was obtained by the author in a previous paper ([7],
Theorem 1, p. 183].

LEMMA 9. Suppose that f(z) is meromorphic in \z\ ^ Reh, where h > 0,
and that / (0) = 1. Then

where T(R,f) denotes the Nevanlinna characteristic and

The result in Lemma 9 was in fact proved with T(Reh, l/f) instead of
T(Reh,f), but since /(0) = 1, these two quantities are the same. Also,
since / is regular in our case, we have

Next we note that, for h < 1,



608 W. K. HAYMAN

Thus we deduce from Lemma 9 that, for h ^ 1,

The inequality evidently remains valid for h > 1, since in this case we may
replace h by 1, which diminishes the right-hand side of (5.4). We deduce

LEMMA 10. Suppose that h > 0, and that, for some e such that 0 < e ^ 1,
we have

,K*\ t \* f ^ log M(Reh)
(5.5) cp(n) < en, for n ^ —-—^ -.

Then

1 r2"

(5.6) —J |«(12>»)|^<6 +

We recall from Lemma 2 that

Zj I «„ I i t < 7 •
|>=7l.+l '«-

We choose for n the smallest positive integer such that

(5.7) . _ _ _ <£,(«, JB).

Then (5.5) holds, since LX{6,R) ^ / (0) = 1. Thus Lemma 8 gives

Also

M(Reh)
ein-l)h

so that

Thus we deduce that

(5.8) |,<*,«)| < ^

We now integrate with respect to 6 and use (5.4). This gives

±f*\ ^±f*\vi*J)\d0

This proves Lemma 10.
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6. A theorem for real functions
In order to exploit Lemma 10, and thus to prove our results we need to

integrate the estimate of (5.6) and show that the result is in general
comparable with log M(R). The argument here depends solely on the
convexity of the function log M(R) as a function of log JR. The result
may have other applications and so we state it as

THEOREM 7. Suppose that g(x) is a positive strictly increasing convex
function of x for x > 0, such that g'{x) -> oo with x. Let xv be defined by

(6.1) 0K) = 2"<7(O) (v = 0,l,...),

put hv = xv+1 — xv and h(x) = xv+2 — x, when xv ^ x < xv+1. We suppose that
A,B are non-negative constants, and define

go{x) = g(x + h)/h,

(6.2) 9l(z) = (

where h = h(x), and a,/? are real constants, such that a > 0, or j3 > 0 and
a = 0. Let

(6.3) Gx{x)= {
Jo

Then if 0 < 77 < 1, there exists a positive constant K, depending only on
oc, j3, and a set E having lower density at least l — rj, and depending only on 7]
and the function g(x), but not on <x,fi,A,B, such that we have, for x e E,

ot+\/3\+l( e
log-

We take for E' the union of all the intervals [xv+1 — \r)hv, xv+x

and for E the complement of E'. Suppose that X > 0 and that
xn ^ X < xn+1. Then the part of E' in [0, X] has measure at most

V v+1
v=0

Thus Ef has upper density at most 77 and so E has lower density at least
1-7).

We now assume that xn < x < xn+1 and that x e E. Then we have,
for v < n,

(6.5) r)2"-n-1 < h±± ^ 2.
hv

5388.3.24 U
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To prove the right-hand inequality in (6.5), which is true for all v, we
note that since g'(x) is increasing

Thus

which gives the required result. We suppose now that, for some v ^ n,

and proceed to obtain a lower bound for 8. Then we have, for
0 ^ k < n — v—l,

Thus
n—v—l n—v—1

a-*H-l^a:n+l-a!H-l= 2 K+k+l^^K S 2&

fc=0 &=0

But since a; e ^7, we have

so that

so that
S >

This completes the proof of (6.5).
We note next that, for p > 0,

lt>n k=Q nn-k

so that (6.5) shows that

(6.6) 2 - "n—p

Using (6.5) and (6.6) we shall proceed to estimate G^x). It is sufficient
to consider the cases A = 1, B = 0, and A = 0, B = 1, separately, since
both sides of (6.4) are clearly linear in A,B. We accordingly define, for
A = 1, B = 0,

J x
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and, for A = 0, B = 1,

Thus in the general case we have

(6.7) o1{x)
j<=0

We denote by K any positive constant depending on a,j3, only, not
necessarily the same each time.

Suppose that xv < t < xv+1, where v ^ n, and t ^ x if v = n. Then

( 6 . 8 )
Xv+2 ~

Thus we have, using (6.5),

>

On the other hand, since x e E,

H*) = fc«+i+ *»+!

and by (6.6) we have, for v = n—p,

Thus

Hence

2

Thus if a > 0, or a = 0, j8 > 0,

(log+5r0(a;))*(log+log+sr0(a;))/'

[ 61(p + l)2log-J
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so that 

W. K .  HAYMAN 

We next obtain an upper bound for the other terms in the definition of 
g#). We have from (6.8), for w = n - p < n, 

Also 
( 2;) 

3 < 4g(~)2-p log 1 + - < 4g(x)2-p(p + 1)log - . 
71 

< g(0)2n+a log - 2 
hn < 4g(x)log-, 

Xn+l - X rl 
since x E E, so that xn+, - x  > +9hn. 

Using (6.9), we deduce that, for p = n - v (0 $ v 6 n), 

(6. '0) 1, < ~g(x)( log go(x))-or(log+ log+ go(x))-J 

We next tackle I:. We note that for v = n -p,  where p > 0, 

< 4g(x)2-P(p + 1) 

in view of (6.6). Since also h(x) < ia, + hn+, < 3h, by ( 6 4 ,  we deduce that 

%+I 1 
Jzv gdt)log* - dt h Kg(%) Z - p ( p  + 1)2 log W) 
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Similarly

(log- —L_) log | .

These inequalities together with (6.9) yield, for v = 0 to n,

(6.11) / ; < Kg(x)(log+g0(x))-«(\og+\og+g0(x))-fi

I 6\a+ly?l+l/ 1 \
P log- 1 + l O g+—- .

\ V \ h{x)J

Summing (6.10) and (6.11) from p = 0 to n and using (6.7), we deduce
(6.4), with 6/77 instead of e/77. We deduce the result with e/77 by increasing
K if necessary. This proves Theorem 7.

7. Estimates for I0(r) conclusion
We proceed to apply Theorem 7 to Lemma 10. We write, for any

complex number a, Ia(r) for the quantity IQ(r), denned as in (2.9) but with
respect to/a(z) instead of/(z), where fa(z) is given by (2.14). We then have
the following

THEOREM 8. Suppose that f(z) is the integral function (1.1) and let <p{ri)
be the number of non-zero coefficients among ax to an. Suppose further that we
have, for all sufficiently large n,

(7.1) <p(n) < enilogn^^oglogn)-^,

where e > 0, and a > 0, with j8 real, or a = 0, with j3 > 0. Let 8,77 be numbers
such that 0 < 8 < 1, 0 < 17 < 1, and a be a complex number such that a = 1,
or 8 < \a-l\ < 8-1.

Then there exists a set E of numbers on the positive axis, which depends only
on f(z) and has lower logarithmic density at least l — rj, a constant K
depending on <x, j8 only, and r0 depending on oc, j8, S, e, andf(z) only, such that,
if r e E, and r > r0, we have

/ e\oc+\/3\+l/ 1 \
(7.2) 4W<^(log-) ( l o g ^ + l)

x log M (r)log iV(r)^(log log N{r))-P.
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Here N(r) is the central index off(z) and h = h(r) is a quantity such that

(7.3) M{rf < M{reh) < M{r)\

where M(r) is the maximum modulus off(z).

We start by applying Lemma 10 to fa{z). Suppose first that a # 1,
and write

Mn{r) = M(r,fa(z)).
Then since

/(*) = j /(*) = «+(!
we deduce that, if S < 11 — a \ < S"1,

M(r) <\a\ + 8Ma(r) < Jfa(r).

Suppose now that r0 is so chosen that M(rQ) > (3/S)2. Then we have

(7.4) 3 < M(r)* < Ma(r) < M(r)2 {r > r0).

We now take

(7.5) g(x)=logM(e*)

in Theorem 7, let a,j8 be the quantities occurring in (7.1), and define
h = h(x) as in Theorem 7. It follows from these definitions that

2g{x)
so that (7.3) holds.

Next we write x = logr,

(7.6) ^

and deduce from (7.1) that, for n > \gQ(x) (x > xj, we have

cp(n) < ew(l

(7.7) < Ken[l + (log

Also if we temporarily define \ogMa{ex) = ga{x), it follows from (7.4) that,
for x > x2,

i \ i / x s'o^+'O
2 h ^X)'

Thus we have (7.7), with the same values of h, provided that x > #2(S)
and n > ga(x + h)/h. Hence we deduce from Lemma 10, that, if



ANGULAR VALUE DISTRIBUTION OF POWER SERIES 615

R = ex > Ro = e*0, say,

1 r2ff

- J \va(R,d)\dd

(7.8) <5 + Ke(l+log+^Jg0(x){l

where va(R,9) refers to the function fa(z).
We can also deduce (7.8) for a = 1. In this case

so that (7.4) again holds for sufficiently large r, since/(2) is a transcendental
integral function. Thus the argument proceeds as before and we deduce
(7.7) for x > x0, provided that a, 6 are related as in Theorem 8, and x > x2,
where x2 depends on S only. We note next that, since g'{x) is increasing,

g{x + h) >g(x) + hg'(x),
so that

g{x
g(x) =

Also g'(x) cannot tend to a finite limit, since otherwise g(x) = 0(x), so that
f(z) is a polynomial. Thus go{x) -> oo with x, and hence so do

9'0(a;){l + (log+^0(a;))a(log+log+^0(a;))'?}-1 and g^x),

where gx{x) is defined as in (6.2).
It follows that we have, for x > x3, from (7.8)

1 r2ff / 1\
— |va(R,0)\d0 < Ks\ 1 +log+T)go{x){l + (log+0o(*))a(log+log+$ro(a;))/?}-1.
ZTT JQ \ tlj

Here x3 depends on Ke as well as go(x), i.e. on a, jS, S, e, and/.
We are now able to apply Theorem 7. We have

<p(x) = Ia(e*) = Ia(e*>)+ -— \va(t,9)\d9

X 1 /*2ff
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where g±(t) is as in (6.2) with A = B = Ke. We also note that, since
gx(t) -> oo with t,

(7.9) gx{t)dt-*• co, as x -> oo.
Jo

We now deduce from Theorem 7, that we have, on the set E of that
theorem, from (6.4)

(7.10) 7a(e*) < ^ ( l o g - j 9(x)(logg0(x))

.(loglogfiro(a0)-*(

It follows from (6.4) and (7.9) that the right-hand side tends to infinity
with x. The set of x = logr has lower density at least l—rj and so the
corresponding set of r has lower logarithmic density at least 1 —77.

It is not difficult to see from continuity considerations, that Ia(e
X3)

is uniformly bounded, when x3 is fixed and a varies subject to
8 < I a-11 < 8-\ Thus (7.10) yields, for x > xt{8) and x on E,

( e\a+l/?l+l

+ log+ - L ) .

Next it is classical that if fi(r) is the maximum term and N(r) the central
index of f(z), then

(7.12) ^

except at isolated points, and N(r) increases with r. Thus

N(r) < i
Thus if r = ex,

logi(f(refe)

On substituting this and (7.5) in (7.11) we deduce (7.2). This proves
Theorem 8.

8. Functions of finite lower order
We can now prove our estimate when the order or lower order is finite.

THEOREM 9. Suppose thatf(z) is an integral function of finite lower order
satisfying the Fabry gap condition (1.2). Then there exists a set E, such that
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we have, as r -> oo on E, simultaneously

(8.1) log£(r)~ log i f (r)

and, if a is any complex number,

(8.2) I0(r,fa) = o$ogM(r,f)}.

Further if R -> oo, through any set of values satisfying for a fixed A,

(8.3) logM(R,f)<R\

we have

(8.4) f y~logi2.

COBOLLABY 1. E has upper logarithmic density 1, and if f(z) has finite
order, E has logarithmic density 1.

COROLLABY 2. We have (2.13) as r -» oo on E for fa(z) instead of f(z),
when a is fixed.

COBOLLABY 3. The function f(z) has no Borel exceptional values in any
angle, i.e. the order of N{r,dx,B2,a) is equal to that of f(z) for any finite a,
and 6X< B^^

Clearly Theorem 9 contains Theorem 3, when the order or lower order
is finite. It is, however, a little more precise, since it tells us that E is
'thick' in those intervals [1, JB] for which log M(R) is not too large.

We proceed to prove Theorem 9. We apply Theorem 4 with
Vi = Vz — ^~1 = n~Xi where n is a large positive integer, and let En be the
set for which (4.12) holds. Then since A = 0 in this case we deduce
(4.12), i.e.

(8.5) logL(r,/) > (l - i) log Jf(r,/) (r G En),

where

(8.6) f !>

whenever R is sufficiently large and

(8.7) log M{R,f) <Rn.

Next it follows from Lemma 4, (4.5) applied with T(r) = log M(r),
K = log 2, that we have

log M(reh) < 2 log i f (r),
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where h = Iog2/n2, outside a set E'n, which also satisfies (8.6) when 22 is
sufficiently large and satisfies (8.7). Thus outside E'n we have

(8.8) h{r)>\og2/ni,

where h(r) is the quantity satisfying (7.3). Also we may apply Theorem 8,
with a = j8 = 0, and e as small as we please for any fixed rj. We chose
7) = \/n, and £ so small that

Ke\og{en){\og\n* + \) = \/n

in (7.2). Then we deduce that, if r e E, where E is the set of that theorem
and h(r) satisfies (8.8), and if

(8.9) a = 1, or n-1 <\l-a\ <n,

and r is sufficiently large depending on n only, we have

(8.10) 7a(r)<ilogJf(r).
IV

We deduce that we have simultaneously (8.5) and (8.10) outside a set
Fn such that

(8.11) f j<^ogR,
J Fn[l,R) { n

whenever R satisfies (8.7), a satisfies (8.9), and R > Rn, say.
We assume that Rn is chosen to satisfy the above conditions, and, in

addition,

(8.12) Rn > R^-K

We now define

(8.13) F= \JFn[Rn,Rn+1].
n=l

Thus r G F, if Rn ^ r ^ Rn+1 for some n and r e Fn.
Suppose now that R satisfies (8.3) and R > Rno, where n0 = [A] + 2.
Then we have Rn ^ R ^ Rn+1, where n > A + 1 ; and, if Rn_x <t < R

and t e F, we see that t e Fn_xuFn = Fn_v so that, in view of (8.12),
we have

dt r dt

Thus if E is the complement of F, we see that (8.4) holds as R -> oo through
any set of values satisfying (8.3) for a fixed A. Since/(z) has finite lower
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order Ao the set of R satisfying (8.3) is unbounded for A > Ao, so that E has
upper logarithmic density 1. If f{z) has finite order Ao and A > Ao, then
(8.3) holds for all large R, so that E has logarithmic density 1.

Again if r e E, Rn ̂  r ̂  Rn+\, and a satisfies (8.9), we see that r is
outside Fn, and so (8.5) and (8.10) hold. In particular (8.1) and (8.2) hold
as r -> co in E if a is fixed. This completes the proof of Theorem 9.

It remains to prove the corollaries. We have already noted that (8.4),
subject to (8.3), implies Corollary 1. Next Corollary 2 follows from
Corollary 1 of Theorem 2, since if f(z) satisfies (8.1), so do all the functions
fa(z) for any fixed a.

It remains to prove Corollary 3. If f(z) has zero order we have

N(rt0v02,a) ^ N(r,0,27T,a) ^ logJf(r) + 0(l) = 0(f)

as r -»• co for any e > 0. Thus N{r, 6lt 92, a) has zero order.
We prove similarly that the order of N{r,61,62,a) can never exceed

that of log M(r). It remains to prove the opposite inequality, when/(z)
has positive order fx. Suppose first that /u, < co. Then given e > 0, we can
find rn as large as we please such that

log M{rn) >rn^-'K

Also, in view of Corollary 1, we can for all sufficiently large n find r'n e E,
such that

rn < r'n < rn1+S-
Thus

log M{r'J > log M(rn) > rtj«
1-»> > r'^-M^+'K

If n -> co through the sequence r'n, and 6V 62, a are fixed, we deduce from
Corollary 2 that

Thus N(r, 9V 92, a) has order at least /x(l — e)/(l + e), i.e. at least jit.
Finally, suppose that fi = co, but that f(z) has finite lower order Ao.

Choose Al5 A2 so that Ao < Ax < A2 < co. Then there exist arbitrarily large
values of r = r'n, such that

(8.14) logJf(r;)<r;*».

Also since /u, = co, there exist arbitrarily large values rn of r, such that

(8.15) logM(rn)>rn\

Given r'n, we choose for rn the largest number satisfying (8.15) and
rn < r'n> which is possible for large n, since r'n -> co with n. Thus
(8.16)
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Also, since log M(r) increases with r, we deduce from (8.14) and (8.15) that

«•' Ai v r Aa i e r ' > r ^a/^i
'n & 'n » l t C * 'n. ^ 'rc

Thus it follows from (8.4) and (8.15) that we can find r"n, such that

r ^ r" ^ r

and r"n e E, when n is large. Now Corollary 2 yields, for any fixed a,
as 7i -> oo

IQ a \

^ 4,7 ^ ^ 47T ^ '

We can choose Ax as large as we please and deduce that N(r, 9V 62, a) has
infinite order. This completes the proof of Corollary 3.

9. Completion of proof of Theorem 3
By proving Theorem 9 we have proved the part of Theorem 3 which

refers to functions of finite order or finite lower order. We now obtain a
corresponding result for general functions under the gap condition (2.15).
In view of Theorem 5 we can confine ourselves to estimating Ia{r). In fact
we can obtain a somewhat stronger result. This is

THEOREM 10. Suppose that f(z) is an integral function satisfying the
gap-condition

(9.1) cp{n) = o{?i(log?i)~a(loglog?i)~'9} as n->co,

where a > 0, or a = 0, j8 > 1. Then there exists a set E of logarithmic
density 1, such that we have, for any fixed a, as r -> oo on E

(9.2) Ia(r) = O(

where N(r) is the central index off(z).

We shall apply Theorem 8. Before doing so we shall, however, need to
deal with h(r). Our conclusion is contained in

LEMMA 11. Suppose that h(r) is a quantity satisfying (7.3). Then

(9.3) I i

outside a set of r of logarithmic density zero.
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Suppose that E is the set where (9.3) is false. Let R be any number
such that

(9.4)

Then if h0 is any fixed constant, we have, for large r in E,

(9.5) h(r) < h0,

since N(r) -> oo, with r. Thus it follows from (4.4) and (4.5) of Lemma 2
applied with A = 1 and K — log 2, and (7.3), that (9.5) can hold at most on a
set Eo of r such that

r dt h0

as R -> oo for R satisfying (9.4). Since h(r) satisfies (9.5) for all large r in
E, we deduce that

dt
J E11.R) *

as R -> oo through values satisfying (9.4).
Next it follows from (4.3) of Lemma 4, applied with T{r) = log i f (r),

and (7.3) that

(9-6) MT) > 7l 4
M ( xv2

outside a set of finite logarithmic measure. Also, if fx(r) is the maximum
term we have as r -> oo outside a set of finite logarithmic measure ([16]),

logft(r) - log i f (r).

Next in view of (7.12), we see that

log/x(r) =

Thus

N(r) ^ + 0 ( i ) >
logr ' 21ogr

outside a set of finite logarithmic measure. Thus if (9.4) is false and R
is outside a set of finite logarithmic measure, we have (9.6) and

N(R) > (log i f (22))*,
which gives
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Hence if R is sufficiently large this gives

(9.7) l o ^

If (9.4) is false for all large R, we deduce (9.7) for all large R outside a
set of finite logarithmic measure, which proves Lemma 11. Otherwise, if
Rx is large, let R2 be the largest number such that R2 < R± and (9.4) holds
for R = R2. Then, for R2 < R ^ Rv we have (9.7) outside a fixed set E of
finite logarithmic measure. Also for 1 < JB ^ R2) we have (9.3) outside a
set of logarithmic measure o(logR2) = oilogRj). Thus we have in all
cases, if E is the set where (9.3) is false,

f dt ,_ _ .
J E(l,Bi) *

This proves Lemma 11.

9.1. We can now prove Theorem 10, and for this purpose we apply
Theorem 8. We choose a positive integer p, and define e by

1

p'

By hypothesis we have (7.1) for all large n. We deduce from (7.2) and
Lemma 11 that we have, outside a set Fp of upper logarithmic density
at most 7} = p-1,

Ia{r) < 1 (log+^y+ ljlogJf(

(9.8) < -
Jr

provided that

(9.9) a=l or - <\a-l\ <p.
p

In particular (9.8) holds, subject to (9.9), outside a set Fp, such that

We suppose again that the Rp satisfy (8.12), define F by (8.13), and deduce
as before that F has logarithmic density zero and that (9.8) holds, subject
to (9.9), if r is outside F and r > Rp. This completes the proof of
Theorem 10.
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9.2. Proof of Theorem 3. We now suppose that / (z) is an integral function
satisfying (2.15). Then it follows from Theorem 5 that

(9.10) logL{r)~ log M{r)

as r -> oo on a set Ex of logarithmic density 1, and from Theorem 10 that
there exists a set E2 of logarithmic density 1, such that for any fixed a

(9.11) Ia(r) = o{logM(r)(logN(r))-i(loglogN(r))i-«}

as r -> oo in E2. If E = E1nE2 then (9.10) and (9.11) hold simultaneously
as r -> oo in E, and E has logarithmic density 1. This completes the
proof of Theorem 3.

In fact the argument gives a little more. If we apply (9.11) to fa{z),
and note that

we deduce from (2.10) that

N{r,61,e2,a) = -!- i6t

as r -> oo on E. A corresponding conclusion also holds under the
hypothesis (9.1) but if a < 1, or a = 1, j8 < 2, we cannot deduce (9.10). If
(9.1) holds with a > 1, or a = 1, jS > 2, we have (9.10) and (9.2) and we
deduce from this and (2.10)

N(r,dv92,a) =

uniformly for 6X < 62 ^ 61 + 2TT. In particular

Nir.d^d^r) = (l+o(l))logif(r) 2, 1
>

provided that
1

2 - 1 > (logiV(r))*a(loglogi^(7

This paper owes a great deal to discussion with Dr J. M. Anderson,
Professor J. G. Clunie, and Professor W. H. J. Fuchs, but particularly
to Professor L. Sons who read the manuscript very carefully, corrected a
large number of small errors in it, and made several helpful suggestions.
I am also grateful to the Referee for pointing out several previous papers
to me, which I had overlooked, and suggesting the outline in §(2.1),
which will, I hope, make the paper a little easier to read.
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