Three of these problems will be graded (you won’t know which), but you should know how to do them all. Please note that the problems marked H are optional if you are in the regular section, but are required if you are in the honors section.

1: Please find bases for the right nullspaces of the matrices below:

(a) $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$, (b) $\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 0 & 0 & 1 & 2 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & 0 & 1 & 0 & 2 \end{bmatrix}$, (e) $\begin{bmatrix} 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 2 & 0 & -5 \\ 0 & 0 & 0 & 1 & 11 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

2: Please prove that if $\{u_1, \ldots, u_m\}$ and $\{v_1, \ldots, v_n\}$ are bases for a vector space V then $m=n$.

3: Let F be any field. Recall that $F[x]$ denotes the set of polynomials with coefficients in F and the degree of f is the largest exponent appearing in f. Please decide whether the following sets are vector spaces (with respect to polynomial addition):

(a) $\{0\} \cup \{f \in F[x] \mid f \text{ has degree divisible by 3}\}$
(b) $\{0\} \cup \{f \in F[x] \mid f \text{ has degree divisible by 17}\}$

4: Let us define a function $T : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ as follows: $T(f)(x)$ is defined to be $\frac{f(x)-f(7)}{x-7}$ or $f'(7)$, according as $x \neq 7$ or $x = 7$. Please prove that T is a linear map.

5: Recall that, for any field F, any vector space V over F, and any linear map $T : V \rightarrow V$, we call $(\lambda, v) \in F \times V$ an eigenpair if and only if $Tv = \lambda v$. (We also call λ the eigenvalue associated with the eigenvector v.)

(a) Please find all eigenpairs for the linear map $\frac{d}{dx} : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$.
(b) Please give an example of a linear map with no eigenvalues. **Hint:** There are numerous examples if you use a field other than \mathbb{C}.
(c) Suppose $T : V \rightarrow V$ is a linear map and $v, w \in V$ satisfy $T(v) = 4w$ and $T(w) = 4v$. Prove that either 4 or -4 is an eigenvalue of T.

6: Suppose $v \in \mathbb{R}^n$ is a column vector with transpose v^\top. Recall that an invariant subspace of a linear map $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is the set of all eigenvectors associated to a fixed eigenvalue.

(a) Please find all eigenvalues and invariant subspaces for the matrix $vv^\top/v^\top v$. **Hint:** First find a basis for the right nullspace of v^\top.
(b) Let I_n denote the $n \times n$ identity matrix. Please find all eigenvalues and invariant subspaces for the matrix $I_n - vv^\top/v^\top v$. **Hint:** If you know the image of a suitable basis of \mathbb{R}^n under $vv^\top/v^\top v$, it is easy to find the image of the basis under $I_n - vv^\top/v^\top v$, and then the problem is easy.

7H: (a) Please prove that our algorithmic definition of the determinant makes sense for upper-triangular matrices, i.e., no matter what order we apply elementary row operations to A to reduce to row echelon form, we still get the same value for the determinant.

(b) For any subset $\{i_1, \ldots, i_d\} \subset \{1, \ldots, n\}$ of cardinality d, let $(i_1 \cdots i_d)$ denote the permutation of $\{1, \ldots, n\}$ that sends i_j to i_{j+1} (for all $j \in \{1, \ldots, j-1\}$) and i_d to i_1. We call (i_1i_2) a transposition. Please prove that if $(n \cdots 1)$ is written as a composition of transpositions, the number of transpositions must be odd or even according as n is even or odd.

NOTE: Please feel free to e-mail comments, questions, and/or corrections.

Instructor: J. Maurice Rojas