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Philippe Pébay 1 J. Maurice Rojas 2 David C. Thompson 1

Sandia National Laboratories, PO Box 969, MS 9159, Livermore, CA 94551,
USA. 1

TAMU 3368, Department of Mathematics, Texas A&M University, College
Station, Texas 77843-3368, USA. 2

Abstract

We give a high precision polynomial-time approximation scheme for the supremum
of any honest n-variate (n + 2)-nomial with a constant term, allowing real expo-
nents as well as real coefficients. Our complexity bounds count field operations and
inequality checks, and are quadratic in n and the logarithm of a certain condition
number. For the special case of n-variate (n+2)-nomials with integer exponents, the
log of our condition number is sub-quadratic in the sparse size. The best previous
complexity bounds were exponential in the sparse size, even for n fixed. Along the
way, we partially extend the theory of Viro diagrams and A-discriminants to real
exponents. We also show that, for any fixed δ>0, deciding whether the supremum
of an n-variate

(

n+ nδ
)

-nomial exceeds a given number is NPR-complete.

1 Introduction and Main Results

Maximizing or minimizing polynomial functions is a central problem in sci-
ence and engineering (see, e.g., [BG-V03,AM10]). Typically, the polynomials
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have an underlying structure, e.g., sparsity, small expansion with respect to a
particular basis, invariance with respect to a group action, etc. In the setting
of sparsity, Fewnomial Theory [Kho91] has succeeded in establishing bounds
for the number of real solutions (or real extrema) that depend just on the
number of monomial terms. However, the current general complexity bounds
for real solving and non-linear optimization are still stated in terms of de-
gree and number of variables, and all but ignore any finer input structure. In
this paper, we present new speed-ups for the optimization of certain sparse
multivariate polynomials, extended to allow real exponents as well. Along the
way, we reveal two new families of problems that are NPR-complete, i.e., the
analogue of NP-complete for the BSS model over R [BSS89]. Our framework
has both symbolic and numerical aspects in that (a) we deal with real num-
ber inputs and (b) our algorithms give either Yes/No answers that are always
correct, or numerically approximate answers whose precision can be efficiently
tuned.

Recall that R∗ is the multiplicative group of nonzero elements in any ring R.

Definition 1.1 When aj∈Rn, the notations aj=(a1,j, . . . , an,j), x
aj =x

a1,j
1 · · · xan,j

n ,
and x=(x1, . . . , xn) will be understood. If f(x) :=

∑m
j=1 cix

aj where cj∈R∗ for
all j, and the aj ∈Rn are pair-wise distinct, then we call f a (real) n-variate
m-nomial, and we define Supp(f) :={a1, . . . , am} to be the support of f . We
also let Fn,m denote the set of all n-variate m-nomials and, for any m≥n+1,
we let F∗

n,m ⊆Fn,m denote the subset consisting of those f with Supp(f) not
contained in any (n− 1)-flat. 3 We also call any f ∈F∗

n,m an honest n-variate
m-nomial (or honestly n-variate). ⋄

For example, upon substituting y1 :=x2
1x2x

7
3x

3
4, it is clear that the dishonestly

4-variate trinomial −1+
√
7x2

1x2x
7
3x

3
4−e43x198e2

1 x99e2

2 x693e2

3 x297e2

4 (with support
contained in a line segment) has the same supremum over R4

+ as the honest

univariate trinomial −1 +
√
7y1 − e43y99e

2

1 has over R+. More generally, it is
natural to restrict to F∗

n,n+k (with k ≥ 1) to study the role of sparsity in
algorithmic complexity over the real numbers.

The main computational problems we address are the following.

Definition 1.2 Let R+ denote the positive real numbers, and let SUP denote

the problem of deciding, for a given (f, λ)∈
(

⋃

n∈N
R[xa | a∈Rn]

)

×(R∪{+∞}),
whether supx∈Rn

+
f(x)≥λ or not. Also, for any subfamily F ⊆ ⋃

n∈N R[xa | a∈
Rn], we let SUP(F) denote the natural restriction of SUP to inputs in F .

3 A d-flat is simply a translated d-dimensional subspace. Note that our definitions
of Fn,m and F∗

n,m here permit real coefficients and real exponents, unlike [BRS09]
where the same notation included a restriction to integer coefficients and exponents.
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When ε>0 we say that a∈R∪{+∞} is a strong (1+ε)-factor approximation

of b∈R ∪ {+∞} when a=0, a=+∞, or a
b
=
[

1
1+ε

, 1 + ε
]

, according as b=0,

b = +∞, or b ∈ R∗. Finally, we let FSUP (resp. FSUP(F)) denote the
obvious functional analogue of SUP (resp. SUP(F)) where (a) the input is

instead (f, ε)∈
(

⋃

n∈N
R[xa | a∈Rn]

)

× R+ and (b) the output is instead a pair

(x̄, λ̄)∈(Rn
+ ∪ {‘‘boundary’’})× (R ∪ {+∞}) where

1. λ̄ is a strong (1 + ε)-factor of λ∗ :=supx∈Rn
+
f(x).

2. x̄= (x̄1, . . . , x̄n) and, for all i, x̄i is a strong (1 + ε)-factor approximation
of x∗

i ∈Rn
+ with f(x∗

1, . . . , x
∗
n)=λ∗<+∞ (when λ∗ is finite and attained by

f in Rn
+), or x̄=‘‘boundary’’ (when λ∗ is not attained in Rn

+). ⋄

Note that the output to FSUP always includes a true declaration of bound-
edness, or unboundedness, for f over Rn

+.

We will need to make one final restriction when optimizing n-variate m-
nomials: we let F∗∗

n,n+k denote the subset of F∗
n,n+k consisting of those f with

a nonzero constant term. In what follows, our underlying notion of input size
is clarified in Definition 2.1 of Section 2.1 below, and illustrated in Example
1.3 immediately following our first main theorem.

Theorem 1 We can efficiently optimize n-variate (n + k)-nomials over Rn
+

for k ≤ 2. Also, for k a slowly growing function of n, optimizing n-variate
(n+ k)-nomials over Rn

+ is NPR-complete. More precisely:

(0) Both SUP
(

⋃

n∈N F∗∗
n,n+1

)

and FSUP
(

⋃

n∈N F∗∗
n,n+1

)

can be solved in time
logarithmic in the input size, using a number of processors linear in the
input size.

(1) SUP
(

⋃

n∈NF∗∗
n,n+2

)

∈ PR. Moreover, we can solve FSUP
(

⋃

n∈N F∗∗
n,n+2

)

using only a number of arithmetic operations quadratic in the input size
and log log 1

ε
.

(2) For any fixed δ>0, SUP(
⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ′∩R[x1, . . . , xn]) isNPR-complete.

Example 1.3 Suppose ε>0. A very special case of Assertion (1) of Theorem
1 then implies that we can approximate within a factor of 1+ε — for any real
nonzero c1, . . . , cn+2 and D — the maximum of the function f(x) defined by

c1 + c2
(

xD
1 · · · xDn

n

)

+ c3
(

x2D
1 · · · x2nDn

n

)

+ · · ·+
(

cn+2x
(n+1)D
1 · · · x(n+1)nDn

n

)

,

using a number of arithmetic operations linear in n2 log |nD| + log log 1
ε
(see

Definition 2.1 below). The best previous results in the algebraic setting (e.g.,
the critical points method as detailed in [S08], or by combining [BPR06] and
the efficient numerical approximation results of [MP98]) would yield a bound
polynomial in nnDn + log log 1

ε
instead, and then only under the assumption

that D ∈ N. Alternative approaches via semidefinite programming (see, e.g.,
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[Par03,Las06,DN08,KM09]) also result in complexity bounds superlinear in
nnDn for our family of examples, and still require D∈N. ⋄

For any input f with unbounded supremum, our algorithm evincing Theorem
1 (Algorithm 3.1 of Section 3.2) in fact gives additional information: a curve
along which the values of f tend to +∞.

Theorem 1 thus gives a significant speed-up for a particular class of ana-
lytic functions, laying some preliminary groundwork for improved optimiza-
tion of (n + k)-nomials with k arbitrary. Some of the intricacies of extend-
ing our techniques to n-variate (n + k)-nomials with k ≥ 3 are detailed in
[DRRS07,BHPR10] and Example 1.7 below. Theorem 1 is proved in Section
3.2 below, using an extension of tropical geometric ideas and A-discriminant
theory to real exponents (see Theorem 6 of Section 2.3 in particular).

Example 1.4 Consider the trivariate pentanomial

f(x) :=c1 + c2x
999
1 + c3x

73
1 x

√
363

3 + c4x
2009
2 + c5x

74
1 x108e

2 x3,
with c1, . . . , c4 < 0 and c5 > 0. Theorem 8 of Section 2.4 below then easily
implies that f attains a maximum of λ∗ on R3

+ iff f − λ∗ has a degener-
ate root in R3

+. Via Theorem 6 of Section 2.3 below, the latter occurs iff

bb55 (c1 − λ∗)b1cb22 c
b3
3 c

b4
4 − bb11 b

b2
2 b

b3
3 b

b4
4 c

b5
5 vanishes, where b := (b1, b2, b3, b4,−b5)

is any generator of the kernel of the map ϕ : R5 −→ R4 defined by the matrix




















1 1 1 1 1

0 999 73 0 74

0 0 0 2009 108e

0 0
√
363 0 1





















,

normalized so that b5>0. In particular, such a b can be easily computed through
5 determinants of 4×4 submatrices (via Cramer’s Rule), and we thus see that
λ∗ is nothing more than c1 minus a monomial (involving real exponents) in
c2, . . . , c5. Via the now classical fast algorithms for approximating log and
exp [Bre76], real powers of positive numbers (and thus λ∗) can be efficiently
approximated. Similarly, deciding whether λ∗ exceeds a given λ reduces to a
simple check of an inequality involving real powers of positive numbers. ⋄

1.1 Origins, and Extensions of Viro Diagrams

Our main technical tool is a combinatorial/numerical characterization of when
an f ∈F∗∗

n,n+2 has an unbounded supremum: Theorem 8 of Section 2.4. Perhaps
the best way to understand this result is to recall one of its inspirations:
Viro diagrams. First, recall that a triangulation of a point set A is simply a
simplicial complex Σ whose vertices lie in A. We say that a triangulation of A
is coherent iff it its maximal simplices are exactly the domains of linearity for
some function that is convex, continuous, and piecewise linear on the convex
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hull of 4 A.

Definition 1.5 (See Proposition 5.2 and Theorem 5.6 of [GKZ94, Ch. 5, pp.
378–393].) Suppose A ⊂ Zn is finite and the convex hull of A has positive
volume and boundary ∂A. Suppose also that A is equipped with a coherent
triangulation Σ and a function s : A −→ {±} which we will call a distribution
of signs for A. We then define a piece-wise linear manifold — the Viro diagram
VA(Σ, s) — in the following local manner: For any n-cell C∈Σ, let LC be the
convex hull of the set of midpoints of edges of C with vertices of opposite sign,
and then define VA(Σ, s) :=

⋃

C an n-cell
LC \ ∂A. When A=Supp(f) and s is the

corresponding sequence of coefficient signs, then we also call VΣ(f) :=VA(Σ, s)
the Viro diagram of f . ⋄

Example 1.6 Consider f(x) :=1−x1−x2+
6
5
(x4

1x2+x1x
4
2). Then Supp(f)=

{(0, 0), (1, 0), (0, 1), (1, 4), (4, 1)} and has convex hull a pentagon. So then there
are exactly 5 coherent triangulations, yielding 5 possible Viro diagrams for f
(drawn in thicker green lines):

+

−

− +

+

−

−+

+

−+

+

+−

+

+

+−

−

+

+

+

+

−

−

Note that all these diagrams have exactly 2 connected components, with each
component isotopic to an open interval. Note also that our f here is a 2-variate
(2 + 3)-nomial. ⋄

Viro originally used his diagrams to construct
real algebraic varieties with prescribed topological
behavior (see, e.g., [Vir84]). In particular, for cer-
tain f , one can sometimes find a triangulation Σ
such that VΣ(f) is isotopic to the set of positive ze-
roes of f . This construction is sometimes referred
to as patchworking, but does not always yield all
possible topologies for the positive zero set of a real
polynomial with support A.

Example 1.7 Our last example f(x) := 1 − x1 − x2 +
6
5
(x4

1x2 + x1x
4
2) is the

4 i.e., smallest convex set containing...
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simplest example we know where no Viro diagram has topology matching that
of the positive zero set of f : It is easily checked that the positive zero set of
our f has exactly 3 connected components, one of which is isotopic to a circle.
The last illustration above shows the image of the complex roots of f under
the map x 7→ (Log|x1|,Log|x2|) (with image of the positive roots in blue). ⋄

On the other hand, when f ∈ F∗∗
n,n+2, it is possible to (a) extend the Viro

diagram to real point sets and (b) find a triangulation Σ such that the positive
zero set of f is isotopic to VΣ(f). This is illustrated in 4 additional examples
in Section 2.4, and will be pursued further in future work. To the best of our
knowledge, Viro diagrams have only been used in the setting A⊂Zn.

1.2 Related Work

Let us first recall the following basic inclusions of complexity classes from the
BSS model over R: NC1

R $ PR ⊆ NPR [BCSS98, Ch. 19, Cor. 1, pg. 364].
(The properness of the latter inclusion remains a famous open problem, akin
to the more famous classical P ?

=NP question.) Let us also recall that, for any
k ∈ N ∪ {0}, NCk

R is the family of real valued functions (with real inputs)
computable by arithmetic circuits 5 with size polynomial in the input size
and depth O

(

logk(Input Size)
)

(see [BCSS98, Ch. 18] for further discussion).
The BSS model over R has proven quite useful for unifying computational
complexity and numerical analysis. For instance, while the BSS model over
R involves field operations with exact arithmetic, many recent results build
upon this model to elegantly capture round-off error and numerical condi-
tioning (see, e.g., [CS99,ABKM09]). Furthermore, results on PR and NPR do
ultimately impact classical complexity classes in the Turing model (see, e.g.,
[Koi99,ABKM09]).

The number of natural problems known to be NPR-complete remains much
smaller than the number of natural problems known to be NP-complete: de-
ciding the existence of real roots for multivariate polynomials (and various
subcases involving quadratic systems or single quartic polynomials) [BCSS98,
Ch. 5], linear programming feasibility [BCSS98, Ch. 5], and bounding the real
dimension of algebraic sets [Koi99] are the main representative NPR-complete
problems. Optimizing n-variate (n + nδ)-nomials (with δ > 0 fixed and n un-
bounded), and the corresponding feasibility problem (cf. Corollary 3 below),
now join this short list.

While sparsity has been profitably explored in the context of interpolation (see,

5 This is one of 2 times we will mention circuits in the sense of complexity the-
ory: Everywhere else in this paper, our circuits will be combinatorial objects as in
Definition 2.4 below.
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e.g., [KY07,GLL09]) and factorization over number fields [Len99,KK06,AKS07],
it has been mostly ignored in numerical analysis (for non-linear polynomials)
and the study of the BSS model over C and R. One important exception is
work of Gabrielov and Vorobjov [GV04] that yields singly exponential com-
plexity bounds for computing certain types of cell decompositions for a class of
sub-analytic sets far more general than those we consider here. Nevertheless,
there appear to have been no earlier published complexity upper bounds of
the form SUP (F1,m)∈PR (relative to the sparse encoding) for any m≥3.

We can at least obtain a glimpse of sparse optimization beyond n-variate
(n+2)-nomials by combining our framework with an earlier result from [RY05].

Corollary 2
(0) We can find strong (1 + ε)-factor approximations for the real roots of any

trinomial in F1,3∩R[x1] in time polynomial in the input size and log log 1
ε
.

(1) SUP(F∗∗
1,4 ∩ R[x1])∈PR. Moreover, FSUP(F∗∗

1,4 ∩ R[x1]) can be solved in
time polynomial in the input size and log log 1

ε
.

Assertion (1) appears to be new. Our corollary is proved in Section 3.3.

As for earlier complexity lower bounds for SUP in terms of sparsity, we are
unaware of any. For instance, it is not even known whether SUP(R[x1, . . . , xn])
is NPR-hard for some fixed n (relative to the sparse encoding). An important
precursor to our work here is thus the paper [BRS09], which deals with decision
problems (i.e., Yes/No answers) and bit complexity (as opposed to arithmetic
complexity). In fact, we can extend some of the complexity lower bounds from
[BRS09] as follows. (See Section 3.2 for the proof.)

Definition 1.8 Let FEASR (resp. FEAS+) denote the problem of deciding
whether an arbitrary system of equations from

⋃

n∈NR[xa | a ∈ Rn] has a
real root (resp. root with all coordinates positive). Also, for any collection
F of tuples chosen from

⋃

k,n∈N(R[xa | a ∈ Rn])k, we let FEASR(F) (resp.
FEAS+(F)) denote the natural restriction of FEASR (resp. FEAS+) to in-
puts in F . ⋄

Corollary 3 For any δ>0, both FEASR(
⋃

n∈N
0<δ′<δ

F∗
n,n+nδ′ ∩R[x1, . . . , xn])

and FEAS+(
⋃

n∈N
0<δ′<δ

F∗
n,n+nδ′ ∩ R[x1, . . . , xn]) are NPR-complete.
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2 Background

2.1 Input Size

Unlike integer exponents, real exponents can come arbitrarily close to each
other. We will thus need to incorporate geometric information on the spread
or proximity of the exponents of f when discussing the hardness of optimizing
f . So we use the following notation for input size and condition number.

Definition 2.1 Given any subset A = {a1, . . . , am} ⊂ Rn of cardinality
m ≥ n + 1, let us define Â to be the (n + 1) × m matrix whose jth column
is the transpose of {1} × aj, and βJ the determinant of the submatrix of Â
consisting of those columns of Â (written in increasing order of their index)
with index in a subset J ⊆ {1, . . . ,m} of cardinality n + 1. Then, given any
f ∈F∗

n,m written f(x)=
∑m

i=1 cix
ai, we define its condition number, C(f), to be

(

m
∏

i=1
max

{

3, |ci|, 1
|ci|

}

)

× ∏

J⊆{1,...,m}
#J=n+1

max∗
(

3, |βJ |, 1
|βJ |

)

,

where max∗(a, b, c) is max{a, b, c} or a, according as max{b, c} is finite or not.

For all computational problems in this paper, save for SUP, the size of an
input f is defined to be log C(f). For SUP, the size of an instance (f, λ) is

defined to be log
(

max∗
(

3, |λ|, 1
|λ|

))

+ log C(f). ⋄

For f ∈Z[x1, . . . , xn] it is easy to show that log C(f)=O
(

(n+ k)min{n+1,k−1}S(f)
)

where S(f) is the sparse size of f , i.e., S(f) is the number of bits needed
to write down the monomial term expansion of f . For sufficiently sparse
polynomials, algorithms with complexity polynomial in S(f) are thus much
faster than those with complexity polynomial in n and deg(f). The papers
[Len99,KK06,AKS07,KY07,GLL09,BRS09] provide other important examples
of algorithms with complexity polynomial in S(f).

2.2 Tricks with Exponents

By substituting monomials in new variables it is easy to reduce n-variate
(n+ k)-nomials to a simpler canonical form.

Definition 2.2 For any ring R, let Rm×n denote the set of m × n matrices
with entries in R. For any M = [mij] ∈Rn×n and y = (y1, . . . , yn), we define
the formal expression yM :=(y

m1,1

1 · · · ymn,1
n , . . . , y

m1,n

1 · · · ymn,n
n ). ⋄

Proposition 4 (See, e.g., [LRW03, Prop. 2].) For any U, V ∈Rn×n, we have
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the formal identity (xy)UV =(xU)V (yU)V . Also, if detU 6=0, then the function
mU(x) :=xU is an analytic automorphism of Rn

+, and preserves smooth points
and singular points of positive zero sets of analytic functions. In particular,
for any f ∈F∗∗

n,n+1 we can compute c∈R∗ and ℓ∈{0, . . . , n} within NC1
R such

that f̄(x) :=c+x1+ · · ·+xℓ−xℓ+1−· · ·−xn satisfies: (1) f̄ and f have exactly

the same number of positive coefficients and (2) f̄
(

Rn
+

)

=f
(

Rn
+

)

.

The last assertion can be seen easily upon substituting x= yA
−1

(where A is
the matrix with columns the exponents of f) and rescaling the norms of the
variables of f .

2.3 Generalized Circuit Discriminants and Efficient Approximations

Our goal here is to extract an extension of A-discriminant theory sufficiently
strong to prove our main results.

Recall that the affine hull of a point setA= {a1, . . . , am}⊂Rn is simply the set
of all linear combinations of the form λ1a1 + · · ·+ λmam where λ1, . . . , λm∈R
satisfy λ1 + · · · + λm = 1. Such linear combinations are called affine linear
combinations. In particular, A is said to be affinely dependent iff there is an
affine linear combination satisfying λ1a1 + · · ·+ λmam=O (the zero vector).

Definition 2.3 Given any A={a1, . . . , am}⊂Rn of cardinality m and c1, . . . ,
cm∈C∗, we define ∇A⊂Pm−1

C — the generalized A-discriminant variety — to
be the closure of the set of all [c1 : · · · : cm]∈Pm−1

C such that g(y)=
∑m

i=1 cie
ai·y

has a degenerate root in Cn. In particular, we call g an n-variate exponential
m-sum. ⋄

We use the appelation “generalized” because A-discriminants were originally
developed by Gelfand, Kapranov, and Zelevinsky with A⊂Zn [GKZ94]. The
more general setting A⊂Cn is pursued further in [CR10].

Remark 5 Note that by taking logs and exponentials, optimizing n-variate
exponential m-sums over the real numbers is essentially the same as optimizing
n-variate m-nomials over the positive numbers. To simplify our development,
we will henceforth deal with exponential sums. ⋄

To prove our results, it will actually suffice to deal with a small subclass of
A-discriminants.

Definition 2.4 We call A⊂Rn a (non-degenerate) circuit 6 iff A is affinely

6 This terminology comes from matroid theory and has nothing to do with circuits
from complexity theory.
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dependent, but every proper subset of A is affinely independent. Also, we say
that A is a degenerate circuit iff A contains a point a and a proper subset
B such that a ∈ B, A \ a is affinely independent, and B is a non-degenerate
circuit. ⋄

For instance, both and are circuits, but is a degenerate circuit.
In general, for any degenerate circuit A, the subset B named above is always
unique.

Definition 2.5 For any A⊂Rn of cardinality m, let GA denote the set of all
n-variate exponential m-sums with support A. ⋄

There is then a surprisingly succinct description for ∇A when A is a non-
degenerate circuit. The theorem below is inspired by [GKZ94, Prop. 1.2, pg.
217] and [GKZ94, Prop. 1.8, Pg. 274] — important precursors that covered
the special case of integral exponents.

Theorem 6 Suppose A = {a1, . . . , an+2} ⊂ Rn is a non-degenerate circuit
and, following the notation of Definition 2.1, let b :=(b1, . . . , bn+2) where bi :=
(−1)iβ{1,...,n+2}\{i}. Then:

(1) ∇A ⊆
{

[c1 : · · · : cn+2]∈Pn+1
C :

n+2
∏

i=1

∣

∣

∣

ci
bi

∣

∣

∣

bi
=1

}

. Also, (b1, . . . , bn+2) can be

computed in NC2
R.

(2) There is a [c1 : · · · : cn+2]∈Pn+1
R satisfying the two conditions

(i) sign(c1b1)= · · · =sign(cn+2bn+2)

(ii)
n+2
∏

i=1
|ci/bi|bi =1

iff the real zero set of g(y) :=
n+2
∑

i=1
cie

ai·y contains a degenerate point ζ. In

particular, any such ζ satisfies eai·ζ = |bi/ci| for all i, and thus the real
zero set of g has at most one degenerate point.

Theorem 6 is proved in Section 3 below. As a warm-up, it is worth noting that
the range of certain exponential sums supported on circuits can be described
quite explicitly. Let ConvA denote the convex hull of A.

Lemma 2.6 Suppose A = {a1, . . . , aj}⊂Rn is a non-degenerate circuit with
aj in the relative interior of Conv{a1, . . . , aj−1}. Suppose also that g(y) :=
∑j

i=1 cie
ai·y with c1, . . . , cj−1<0 and cj>0. Finally, let b=(b1, . . . , bj)∈Rj\{O}

be any vector such that b1a1 + · · ·+ bjaj=O and b1 + · · ·+ bj=0. Then:

(1) If aj=O then supy∈Rn g(y)=cj −|bj|
∣

∣

∣

∏j−1
i=1 (ci/bi)

bi
∣

∣

∣

|1/bj |
, and this value is

attained exactly on an (n+ 2− j)-flat perpendicular to the affine hull of
A.
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(2) If ar=O for some r<j then supy∈Rn g(y)=cr+ |br|
∣

∣

∣

∣

∏

i 6∈{j,r}
(ci/bi)

|bi|

(cj/bj)
|bj |

∣

∣

∣

∣

−|1/br|
,

and this value is attained exactly on an (n+ 2− j)-flat perpendicular to
the affine hull of A.

(3) If j<n+ 2 and the affine hull of A does not contain O then

(a)
∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣<(cj/bj)
|bj | =⇒ supy∈Rn g(y)=+∞, and

(b)
∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣≥(cj/bj)
|bj | =⇒ supy∈Rn g(y)≤0.

Proof: First note that, by assumption, aj is a convex (and positive) linear
combination of a1, . . . , aj−1. In other words, the bi are all nonzero, and the signs
of b1, . . . , bj−1 are all identical and opposite to that of bj. Since Assertions (1)–
(3) are clearly invariant under the sign flip b 7→ −b, let us henceforth assume
that b1, . . . , bj−1> 0> bj to simplify matters.

Now recall the Weighted Arithmetic-Geometric Inequality (AGI) [HLP88, Sec.
2.5, pp. 16–18]: For any nonnegative real numbers w1, u1, . . . , wk, uk ≥ 0 with
w1 + · · ·+ wk>0, we have

w1u1+···+wkuk

w1+···+wk
≥ (uw1

1 · · · uwk

k )1/(w1+···+wk),
with equality iff all ui with wi>0 are equal. Substituting k :=j−1, and wi=bi
and ui=

−cie
ai·y

bi
for all i∈{1, . . . , j − 1}, we then easily obtain

(⋆) − (c1e
a1·y + · · ·+ cj−1e

aj−1·y) ≥ −bje
aj ·y

∣

∣

∣

∏j−1
i=1 (ci/bi)

bi
∣

∣

∣

−1/bj
.

(Note also that the last inequality is invariant under scaling of the vector
b since b1 + · · · + bj = 0.) By the weighted AGI, equality holds in (⋆) iff
c1ea1·y

b1
= · · · = cj−1e

aj−1·y

bj−1
. In particular, the latter equalities have an (n+2−j)-

flat as their solution set: this follows immediately upon taking log and using
the fact that a2−a1, . . . , aj−1−a1 are linearly independent. Furthermore, this
flat is clearly perpendicular to the affine hull of A, by the orthogonality of left
nullspaces and column spaces.

Assertion (1) then follows immediately from Inequality (⋆), and its conditions
for equality, upon setting aj=O.

The proof of Assertion (2) follows a similar approach, but via Theorem 6
instead of the weighted AGI: we first observe that, by our hypotheses, g has
supremum λ∗ iff g(y)− λ∗ has a degenerate real zero set. (Indeed, via a slight
variant of our application of the weighted AGI above, it is easy to see that
g is bounded from above. That g is unbounded from below is easy to see by
evaluating eai·y along a suitable ray — a trick we’ll expand on in the next
paragraph.) In particular, the second assertion of Theorem 6 tells us that we

must have
∣

∣

∣

cr−λ∗

br

∣

∣

∣

∏

i 6=r

∣

∣

∣

ci
bi

∣

∣

∣

bi
= 1 and cr − λ∗ < 0 (since cjbj < 0). Solving for

λ∗ we then immediately obtain the stated formula for the supremum. The
statement on where the supremum is attained follows almost identically as
in Assertion (1), except that the exponential equalities come from the second
assertion of Theorem 6 and involve the vectors {a1, . . . , aj} \ ar instead.
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Assertion (3) then follows easily from Assertion (1) and a geometric construc-
tion: By applying Assertion (1) to g(y)/eaj ·y we obtain that

|cj/bj|−bj >
∣

∣

∣

∏j−1
i=1 (ci/bi)

bi
∣

∣

∣ =⇒ g(y0)=g0 for some y0∈Rn and g0>0.

Now let v be any nonzero vector perpendicular to the affine hull of A. (Such a
vector must exist since j<n+2 =⇒ dimConvA < n.) Clearly ai ·v is nonzero
and constant (say, equal to µ) for all i∈ {1, . . . , j}. So, replacing v by −v if
necessary, we may assume µ>0. So then

g(y0 + tv) =

(

j
∑

i=1
cie

ai·(y0+tv)

)

=

(

j
∑

i=1
cie

ai·y0(eai·v)t
)

= eµt
(

j
∑

i=1
cie

ai·y0
)

=

eµtg0,
which is an unbounded increasing function of t. So supy∈Rn g(y) :=+∞.

Assuming |cj/bj|−bj ≤
∣

∣

∣

∏j−1
i=1 (ci/bi)

bi
∣

∣

∣ instead, we clearly have g(y)/eaj ·y is non-

positive for all y∈Rn, using Assertion (1) once again. So we are done. �

Remark 7 If O lies in the affine hull of A but not in the convex hull of A
then Assertion (3) still holds: one simply sets v to be the point in A of maximal
norm and uses almost the proof as above. This strengthening may be of future
use in the optimization of certain n-variate exponential (n+ 3)-sums. ⋄

We will also need a variant of a family of fast algorithms discovered indepen-
dently by Brent and Salamin.

Brent-Salamin Theorem [Bre76,Sal76] Given any positive x, ε>0, we can

approximate log x and exp(x) within a factor of 1+ε using just O
(

| log x|+ log log 1
ε

)

arithmetic operations. �

In particular, for any a > 0 and b ∈ R∗, it is easy to show via the identity
ab = eb log a that a (1 + ε)-factor approximation of ab can be computed using

just O
(

| log a|+ | log b|+ log log 1
ε

)

arithmetic operations. While Brent’s paper

[Bre76] does not explicitly mention general real numbers, he works with a
model of floating point number from which it is routine to derive the statement
above.

2.4 Unboundedness, Sign Checks, and Generalized Viro Diagrams

Optimizing an f ∈F∗∗
n,n+1 will ultimately reduce to checking simple inequalities

involving just the coefficients of f . The supremum will then in fact be either
+∞ or the constant term of f . Optimizing an f ∈F∗∗

n,n+2 would be as easy were
it not for two additional difficulties: deciding unboundedness already entails
checking the sign of a generalized A-discriminant, and the supremum can be
a transcendental function of the coefficients.
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To formalize the harder case, we will continue working in the realm of expo-
nential sums: let us define Gn,m, G∗

n,m, and G∗∗
n,m to be the obvious respective

exponential m-sum analogues of Fn,m, F∗
n,m, and F∗∗

n,m.

Theorem 8 Suppose we write g ∈ G∗∗
n,n+2 in the form g(y) =

∑n+2
i=1 cie

ai·y

with A = {a1, . . . , an+2}. Let us also order the monomials of g so that B :=
{a1, . . . , aj} is the unique non-degenerate sub-circuit of A and, if ConvB is
a simplex, aj is in the relative interior of ConvB. Also let b := (b1, . . . , bn+2)
be the vector defined in Theorem 6. Then sup

y∈Rn

g(y) = +∞ ⇐⇒ one of the

following 2 conditions holds:

(1) cs>0 for some vertex as of ConvA not equal to O.

(2) ConvB is a simplex, cj>0, ci<0 for all i<j, O 6∈B, and
∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣<

|cj/bj||bj |.

Finally, if λ∗ := sup
y∈Rn

g(y)<+∞, let r be such that ar=O. Then either

(3) λ∗=cr and ci<0 for all i 6=r, or
(4) ConvB is a simplex, O∈B, cj>0, ci<0 for all i<j, and λ∗ is either

cj − |bj|
∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣

|1/bj |
or cr + |br|

∣

∣

∣

∣

∣

∏

i 6∈{j,r}(ci/bi)
|bi|

(cj/bj)|bj |

∣

∣

∣

∣

∣

−|1/br |

,

according as aj=O or not.

Note that Conditions (1) and (2) can not hold simultaneously, by virtue of
their respective restrictions on the signs of coefficients ci (and since aj can not
be a vertex if ConvB is a simplex). Similarly, Conditions (3) and (4) can not
hold simultaneously. While the 4 cases above may appear complicated, they
are easily understood from a tropical perspective: our cases above correspond
to 4 different families of generalized Viro diagrams that characterize how the
function g can be bounded from above (or not) on Rn.

More precisely, for any A ⊂ Rn, Σ a triangulation of A, s a distribution of
signs for A, and f any real n-variate m-nomial with support A, we can mimic
Definition 1.5 of Section 1.1 to define the generalized Viro diagrams VA(Σ, s)
and VΣ(f). Some representative examples for n = 3 are illustrated below:
The right-hand illustrations show the graphs of explicit honest tetranomials
f(x1, x2), while the left-hand illustrations show the corresponding generalized
Viro diagrams of f(x1, x2) − x3. (A blue (resp. red) vertex correspond to a
positive (resp. negative) monomial coefficient.)
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Case 1

x1

x2

O
0

2
4

6
8

10 0
2

4
6

8
10

0

200

400

600

800

1000

f(x1, x2) := −1− x1 − x2 + x1.5
1

x1.5
2

Case 2

x21

x22

O
0 2 4 6 8 100

5

10

0

10

20

30

40

50

60

70

80

f(x1, x2) := 1− x2
1
− x2

2
+ 4x1x2

Case 3

x1

(λ∗<+∞)

2

x22

O

0

2

4

6

8

10 0
2

4
6

8
10

0

50

100

150

f(x1, x2) := 150− x2
1
− x2

2
− x1.5

1
x1.5
2

Case 4

x31

(λ∗<+∞)

O

x32

f(x1, x2) := −10− x3
1
− x3

2
+ 15x1x2
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Note that there is a hidden blue vertex in the left-hand illustration for Case 2.
Also, to simplify the illustrations, we have not drawn the underlying triangu-
lations. (The triangulations underlying Cases 1–3 involve exactly 2 tetrahedra
each, while the triangulation for Case 4 involves exactly 3 tetrahedra meeting
along the line segment from the top red vertex to the sole blue vertex.) Letting
g(y1, y2) :=f(ey1 , ey2), the first four illustrations thus show how there can exist
rays along which g increases without bound. Similarly, the last 4 illustrations
respectively show cases where g either approaches a finite supremum as some
yi −→ −∞ or g has a unique maximum in the real plane.

Proof of Theorem 8: Let P :=ConvA. We have 2 cases to consider.

(supy∈Rn g(y)=+∞supy∈Rn g(y)=+∞supy∈Rn g(y)=+∞):Wemust prove that Condition (1) or Condition (2) holds
iff supy∈Rn g(y)=+∞. Let us start with the “only if” direction.

First, if Condition (1) is true, then let v be any outer normal vector to the
vertex as. The quantity ai · v, for ai ∈A, then clearly has a unique positive
maximum µ. So g(tv)= cse

µt + o(eµt) is an unbounded increasing function of
t, and thus supy∈Rn g(y)=+∞.

On the other hand, if Condition (2) is true, then ConvB is a face of P not
incident to O, and O avoids the affine hull of B as well. So let us instead
take v to be any outer normal vector to this face. By construction, we have
that the quantity ai · v is maximized (positively) exactly for ai ∈ B. Call
this positive maximum µ once again. By Assertion (1) of Lemma 2.6, we can
clearly find a y0 ∈Rn such that

∑j
i=1 cie

ai·y0 = g0 for some g0 > 0. Moreover,
g(y0 + tv)=g0e

µt + o(eµt) and is thus an unbounded increasing function of t.
So supy∈Rn g(y)=+∞.

To prove the “if” direction it suffices to show that the failure of both Con-
ditions (1) and (2) implies that g is bounded from above. Toward this end,
observe that the failure of both Conditions (1) and (2) implies that ci is neg-
ative for all vertices ai of P (save possibly O), and thus at least one of the
following conditions holds: (a) ConvB is not a simplex, (b) cj < 0, (c) O∈B,
(d)

∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣≥|cj/bj||bj |. We will conclude by showing that the truth of
any of these conditions implies that g is bounded from above.

If (a) holds then every point of B is a vertex of A, which in turn implies that
the only potentially positive coefficient of g is its constant term. So then g
would be bounded from above. Similarly, (b) also implies that g is bounded
from above. So let us assume henceforth that ConvB is a simplex and cj > 0
(i.e., the failure of both (a) and (b)) to see the role of conditions (c) and (d).

If (c) fails, then O can not lie in the affine hull of B, since O ∈A. So then,
the hypotheses of Assertion (3)(b) of Lemma 2.6 are satisfied for

∑j
i=1 cie

ai·y.
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In other words, (d) implies that
∑j

i=1 cie
ai·y is non-positive for all y, and thus

g is bounded from above again.

On the other hand, should (c) hold true, then the hypotheses of Assertion (2)
of Lemma 2.6 are satisfied for

∑j
i=1 cie

ai·y. In particular,
∑j

i=1 cie
ai·y is bounded

from above, and thus g is bounded from above yet again.

We have thus proved the “if” direction, by showing that the failure of both
Conditions (1) and (2) implies that g is bounded from above. �

(supy∈Rn g(y)<+∞supy∈Rn g(y)<+∞supy∈Rn g(y)<+∞): From our last proof, we know that g is bounded from
above iff Conditions (1) and (2) both fail, and this in turn implies the truth
of at least one of the conditions (a), (b), (c), or (d) mentioned above.

From our previous analysis, it is clear that Conditions (a) or (b) imply the
supremum formula in Condition (3).

Similarly, our previous analysis reveals that Condition (c) implies that the
formulae of Condition (4) hold, thanks to Assertions (1) and (2) of Lemma
2.6.

To conclude, the truth of Condition (d) provides a minor subtlety: Should
Condition (c) fail, then, as we saw earlier,

∑j
i=1 cie

ai·y has a negative supre-
mum, attained at some value y0∈Rn. Letting v be an inner normal to the face
ConvB of P it is then easily checked that g(y0 + tv) −→ cr as t −→ +∞. So
the formula from Condition (3) holds.

Having covered all the necessary cases, we are done. �

3 The Proofs of Our Main Results: Theorems 6 and 1, and Corol-
laries 3 and 2

3.1 The Proof of Theorem 6

In what follows, we let ZK(g) denote the zero set in Kn of g, for any field K
and any function g : Kn −→ K.
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Assertion (1): It is easily checked that ZC(f) has a degenerate point ζ iff

Â















c1e
a1·ζ

...

cn+2e
an+2·ζ















=















0
...

0















.

In which case, (c1e
a1·ζ , . . . , cn+2e

an+2·ζ)T must be a generator of the right null
space of Â. On the other hand, by Cramer’s Rule, one sees that (b1, . . . , bn+2)

T

is also a generator of the right null space of Â. In particular, A a non-
degenerate circuit implies that bi 6=0 for all i.

We therefore obtain that
(c1e

a1·ζ , . . . , cn+2e
an+2·ζ)=α(b1, . . . , bn+2)

for some α∈C∗. Dividing coordinate-wise and taking absolute values, we then
obtain

(

|c1/b1|ea1·Re(ζ), . . . , |cn+2/bn+2|ean+2·Re(ζ)
)

=(|α|, . . . , |α|).
Taking both sides to the vector power (b1, . . . , bn+2) we then clearly obtain

(

|c1/b1|b1 · · · |cn+2/bn+2|bn+2

) (

e(b1a1+···+bn+2an+2)·Re(ζ)
)

= |α|b1+···+bn+2 .

Since Â(b1, . . . , bn+2)
T =O, we thus obtain

n+2
∏

i=1

∣

∣

∣

ci
bi

∣

∣

∣

bi
=1. Since the last equation

is homogeneous in the ci, its zero set in Pn+1
C actually defines a closed set of

[c1 : · · · : cn+2]. So we obtain the containment for ∇A.

The assertion on the complexity of computing (b1, . . . , bn+2) then follows im-
mediately from Csanky’s classic efficient parallel algorithms for linear algebra
over R [Csa76]. �

Assertion (2): We can proceed by almost exactly the same argument as
above, using one simple additional observation: eai·ζ∈R+ for all i when ζ∈Rn.
So then, we can replace our use of absolute value by a sign factor, so that all
real powers are well-defined. In particular, we immediately obtain the (⇐=)
direction of our desired equivalence.

To obtain the (=⇒) direction, note that when ZR

(

∑n+2
i=1 cie

ai·y
)

has a degen-

eracy ζ, we directly obtain eai·ζ = sign(b1c1)bi/ci for all i (and the constancy
of sign(bici) in particular). We thus obtain the system of equations

(

e(a2−a1)·ζ , . . . , e(an+1−a1)·ζ
)

=
(

b2c1
b1c2

, . . . , bn+1c1
b1cn+1

)

,
and a2 − a1, . . . , an+1 − a1 are linearly independent since A is a circuit. So,
employing Proposition 4, we can easily solve the preceding system for ζ by

taking the logs of the coordinates of
(

b2c1
b1c2

, . . . , bn+1c1
b1cn+1

)[a2−a1,...,an+1−a1]−1

. �
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3.2 Proving Corollary 3 and Theorem 1

Corollary 3 and Assertion (2) of Theorem 1: Since our underlying family
of putative hard problems shrinks as δ decreases, it clearly suffices to prove
the case δ < 1. So let us assume henceforth that δ < 1. Let us also define
QSATR to be the problem of deciding whether an input quartic polynomial
f ∈⋃n∈N R[x1, . . . , xn] has a real root or not. QSATR (referred to as 4-FEAS
in Chapter 4 of [BCSS98]) is one of the fundamental NPR-complete problems.

That SUP ∈ NPR follows immediately from the definition of NPR. So it
suffices to prove that SUP(

⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn]) is NPR-hard. We

will do this by giving an explicit reduction ofQSATR to SUP(
⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ′∩

R[x1, . . . , xn]), passing through FEAS+(
⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ′ ∩R[x1, . . . , xn]) along

the way.

To do so, let f denote anyQSATR instance, involving, say, n variables. Clearly,

f has no more than







n+ 4

4





 monomial terms. Letting QSAT+ denote the

natural variant ofQSATR where one instead asks if f has a root in Rn
+, we will

first need to show that QSAT+ is NPR-hard as an intermediate step. This is

easy, via the introduction of slack variables: using 2n new variables
{

x±
i

}n

i=1

and forming the polynomial f±(x±) := f
(

x+
1 − x−

1 , . . . , x
+
n − x−

n

)

, it is clear

that f has a root in Rn iff f± has a root in R2n
+ . Furthermore, we easily see

that size(f±)=(16 + o(1))size(f). So QSAT+ is NPR-hard. We also observe
that we may restrict the inputs to quartic polynomials with full-dimensional
Newton polytope, since the original proof for the NPR-hardness of QSATR

actually involves polynomials having nonzero constant terms and nonzero x4
i

terms for all i [BCSS98].

So now let f be any QSAT+ instance with, say, n variables. Let us also define,
for anyM ∈N, the polynomial tM(z) :=1+zM+1

1 +· · ·+zM+1
M −(M+1)z1 · · · zM .

One can then check via the Arithmetic-Geometric Inequality [HLP88] that tM
is nonnegative on RM

+ , with a unique root at z = (1, . . . , 1). Note also that

f 2 has no more than







n+ 4

4







2

monomial terms. Forming the polynomial
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F (x, z) :=f(x)2 + tM(z) with M :=



















n+ 4

4







2/δ












, we see that f has a root in

Rn
+ iff F has a root in Rn+M

+ . It is also easily checked that F ∈F∗∗
N,N+k with

k≤N δ′ , where N :=n+M and 0<δ′≤δ. In particular,

k<







n+ 4

4







2

≤



















n+ 4

4







2/δ












δ

=M δ<(n+M)δ.

So we must now have that FEAS+(
⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ ∩ R[x1, . . . , xn]) is NPR-

hard. (A small digression allows us to succinctly prove that

FEASR(
⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ∩R[x1, . . . , xn]) isNPR-hard as well: we simply repeat

the argument from the last paragraph, but use QSATR in place of QSAT+,
and define F (x, z) :=f(x)2 + tM(z21 , . . . , z

2
M ) instead.)

To conclude, note that F (x, z) is nonnegative on Rn
+. So by checking whether

−F has supremum ≥ 0 in Rn
+, we can decide if F has a root in Rn

+. In other

words, SUP







⋃

n∈N
0<δ′<δ

F∗∗
n,n+nδ′ ∩ R[x1, . . . , xn]





 must be NPR-hard has well. So

we are done. �

Assertion (0) of Theorem 1: Letting (f, ε) denote any instance of

FSUP
(

⋃

n∈N F∗∗
n,n+1

)

, first note that via Proposition 4 we can assume that

f(x)=c1+x1+ · · ·+xℓ−xℓ+1−· · ·−xn, after a computation in NC1
R. Clearly

then, f has an unbounded supremum iff ℓ≥1. Also, if ℓ=0, then the supremum
of f is exactly c1. So FSUP

(

⋃

n∈NF∗∗
n,n+1

)

∈NC1
R. That SUP

(

⋃

n∈N F∗∗
n,n+1

)

∈
NC1

R is obvious as well: after checking the signs of the ci, we merely need to
decide the sign of c1 − λ. �

Remark 9 Note that checking whether a given f ∈Fn,n+1 lies in F∗
n,n+1 can

be done within NC2
R: one simply finds d :=dimSupp(f) in NC2

R by computing
the rank of the matrix whose columns are a2−a1, . . . , an+1−a1 (via the parallel
algorithm of Csanky [Csa76]), and then checks whether d=n. ⋄

Assertion (1) of Theorem 1: We will first show how to effectively solve
FSUP. Observe the following algorithm:

Algorithm 3.1
Input: A coefficient vector c := (c1, . . . , cn+2), a (possibly degenerate) circuit
A={a1, . . . , an+2} of cardinality n+ 2, and a precision parameter ε>0.
Output: A pair (x̄, λ̄)∈Rn

+ × (R ∪ {+∞}) where
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1. λ̄ is a strong (1 + ε)-factor of λ∗ :=supx∈Rn
+
f(x).

2. x̄ = (x̄1, . . . , x̄n) and, for all i, x̄i is a strong (1 + ε)-factor
approximation of x∗

i ∈Rn
+ with f(x∗) = λ∗ <+∞ (when λ∗ is

attained by f in Rn
+); or, should supx∈Rn

+
f(x) not be attained

in Rn
+, λ̄ as in Statement (1) and a monomial curve along

which supx∈Rn
+
f(x) is attained.

Description:

(1) If ci>0 for some i with ai 6=O a vertex of ConvA then let v be any outer
normal vector to ai and output

“f tends to +∞ along a curve of the form {ctv}t→+∞”
and STOP.

(2) Let b := (b1, . . . , bn+2) be the vector defined in Theorem 6. If b or −b has
a unique negative coordinate bj, and cj is the unique positive coordinate
of c, then do the following:
(a) Replace b by −sign(bj)b and then reorder b, c, and A by the same

permutation so that bj<0 and [bi>0 iff i<j]. Also let v be any outer
normal vector to the face {a1, . . . , aj} of ConvA.

(b) If O 6∈{a1, . . . , aj} and
∣

∣

∣

∏j−1
i=1 (ci/bi)

∣

∣

∣

|bi|
<(cj/bj)

|bj | then output

“f −→ +∞ along a curve of the form {ctv}t→+∞” and STOP.
(c) If O∈{a1, . . . , aj} then compute, via the Brent-Salamin Theorem, a

strong (1 + ε)-factor approximation λ̄ of

cj − |bj|
∣

∣

∣

∏j−1
i=1 (ci/bi)

|bi|
∣

∣

∣

|1/bj |
or cr + |br|

∣

∣

∣

∣

∣

∏

i 6∈{j,r}(ci/bi)
|bi|

(cj/bj)|bj |

∣

∣

∣

∣

∣

−|1/br |

,

according as aj=O or ar=O for some r 6=j. If j<n+2 then output
“f tends to a supremum of λ̄ along a curve of the form

{ctv}t→+∞.”
and STOP.

(d) Compute, via Proposition 4 and the Brent-Salamin Theorem, x̄∈Rn
+

having coordinates that are respective strong (1 + ε)-factor approxi-
mations of the unique solution to the binomial system

(xa2−a1 , . . . , xan+1−a1) =
(

b2c1
b1c2

, . . . , bn+1c1
b1cn+1

)

.

Then output “f attains a supremum of λ̄ at x̄.” and STOP.
(3) Let v be any outer normal to the vertex ar=O of ConvA. Then output

“f approaches a supremum of cr along a curve of the form

{ctv}t→+∞.”
and STOP.

Our proof then reduces to proving correctness, and a suitable complexity
bound, for Algorithm 3.1. In particular, correctness follows immediately from
Theorem 8. So we now focus on a complexity analysis.

First note that ConvA and j can be computed via n+2 determinants, simply
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by solving linear systems to determine which point of A lies in the relative
interior of the others. Also, b can be computed in NC2

R thanks to Theorem
6. So Steps 1 and 3 (and the computation of any face normals) can clearly
be done within NC2

R. Moreover, the number of processors needed is O(n4)
[Csa76].

For Step 2, the dominant complexity comes from Parts (b)–(d). These steps
can be done by taking logarithms, checking the sign of linear combination of
logarithms of positive real numbers, and approximating linear combination of
logarithms of positive real numbers. By the Brent-Salamin Theorem (applied
O(n) times to approximate λ∗ and n times to compute each coordinate of x̄),

the arithmetic complexity of our algorithm is O
(

n
(

log C(f) + log log 1
ε

))

, and
we thus obtain our efficient solution of FSUP.

That SUP
(

⋃

n∈NF∗∗
n,n+2

)

∈PR now follows directly: we merely need to com-
pare λ against the formulae of our algorithm above. Since we are deciding
inequalities, we can actually attain correct answers simply by using sufficient
precision, and this can be attained within PR thanks to our formulae, our
definition of C(f), and the Brent-Salamin Theorem. �

Note that just as in Remark 9, checking whether a given f ∈ Fn,n+2 lies in
F∗

n,n+2 can be done withinNC2
R by computing d=dimConvSupp(f) efficiently.

3.3 The Proof of Corollary 2

Assertion (0): Since the roots of f in R+ are unchanged under multiplication
by monomials, we can clearly assume f ∈ F∗∗

1,3 ∩ R[x1]. Moreover, via the
classical Cauchy bounds on the size of roots of polynomials, it is easy to show
that the log of any root of f is O(log C(f)). We can then invoke Theorem
1 of [RY05] to obtain our desired strong (1 + ε)-factor approximations as
follows: If D :=deg(f), [RY05, Theorem 1] tells us that we can count exactly
the number of positive roots of f using O(log2 D) arithmetic operations, and

ε-approximate all the roots of f in (0, R) within O
(

(logD) log
(

D log R
ε

))

arithmetic operations. Since we can take logR = O(log C(f)) via our root
bound observed above, we are done. �

Assertion (1): Writing any f ∈F∗∗
1,4∩R[x1] as f(x)=c1+c2x

a2 +c3x
a3 +c4x

a4

with 0<a2<a3<a4, note that f has unbounded supremum on R+ iff c4> 0
So let us assume c4<0.

Clearly then, the supremum of f is attained either at a critical point in R+

or at 0. But then, any positive critical point is a positive root of a trinomial,
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and by Assertion (0), such critical points admit efficient strong (1 + ε)-factor
approximations. Similarly, since f is a tetranomial (and thus evaluable within
O(log deg(f)) arithmetic operations), we can efficiently approximate (as well
as efficiently check inequalities involving) supx∈R+

f(x). So we are done. �
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