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Abstract. Given any complex Laurent polynomial f , Amoeba(f) is the image of its
complex zero set under the coordinate-wise log absolute value map. We discuss an
efficiently constructible polyhedral approximation, ArchTrop(f), of Amoeba(f), and
derive explicit upper and lower bounds, solely as a function of the number of monomial terms
of f , for the Hausdorff distance between these two sets. We also show that
deciding whether a given point lies in ArchTrop(f) is doable in polynomial-time, for any fixed
dimension, unlike the corresponding problem for Amoeba(f), which is NP-hard already in
one variable. ArchTrop(f) can thus serve as a canonical low order approximation to start a
higher order iterative polynomial system solving algorithm, e.g., homotopy continuation.

In memory of Mikael Passare.

1. Introduction

One of the happiest coincidences in algebraic geometry is that the norms of roots of polynomials
can be estimated through polyhedral geometry. Perhaps the earliest incarnation of this fact
was Isaac Newton’s use of a polygon to determine initial exponents of series expansions for
algebraic functions in one variable. This was detailed in a letter, dated October 24, 1676
[New76], that Newton wrote to Henry Oldenburg. In modern terminology, Newton counted,
with multiplicity, the s-adic valuations of roots of univariate polynomials over the Puiseux series
field C〈〈s〉〉 (see, e.g., Theorem 5.7 from Section 5.2 below). Newton’s result has since
been extended to arbitrary non-Archimedean fields (see, e.g., [Dum06, Wei63]). Tropical
geometry (see, e.g., [Ber71, Vir01, EKL06, LS09, IMS09, BR10, ABF13, MS15]) continues
to deepen the links between algebraic, arithmetic, and polyhedral geometry.
We will use tropical methods to efficiently approximate complex amoebae in arbitrary

dimension (see Theorem 3.4 and Corollary 5.1, respectively in Sections 3 and 5.1 below),
and derive an Archimedean analogue of Newton’s univariate result along the way (Theorem
1.5 in Section 1.1 below). While our approximations can be coarse, their computational cost
is quite low (see Theorem 4.4 in Section 4 below), and initial experiments indicate that they
are often good enough to yield high-quality start points for homotopy algorithms applied to
sparse polynomial systems (see, e.g., [AGGR15, Sec. 3]). In what follows, Conv(S) denotes
the convex hull of (i.e., smallest convex set containing) a subset S⊆Rn.

Definition 1.1. Let C∗ :=C\{0}, let c1, . . . , ct∈ C∗, and call any f ∈C
[

x±1
1 , . . . , x±1

n

]

of the

form f(x) =
∑t

j=1 cjx
aj , with {a1, . . . , at} of cardinality t≥ 1, an n-variate t-nomial. (The

notation x = (x1, . . . , xn) and xaj = x
a1,j
1 · · · xan,j

n is understood.) We then define the
(ordinary) Newton polytope of f to be Newt(f) := Conv

(

{ai}i∈[t]
)

, and the Archimedean

Newton polytope of f to be ArchNewt(f) :=Conv
(

{(ai,− log |ci|)}i∈[t]
)

. ⋄
Hadamard defined the n=1 case of ArchNewt(f) around 1893, and observed a relationship
between the absolute values of the complex roots of f and the slopes of certain edges of
ArchNewt(f) [Had93, pp. 174–175 & 201] (see also [Ost40a, pp. 120–121] and [Val54, Ch.

Date: November 22, 2017.
2010 Mathematics Subject Classification. Primary 14Q20, 14T99; Secondary 52B70, 65Y20, 68Q25.
Key words and phrases. Amoeba, Hausdorff distance, tropical variety, Archimedean, complexity.
Partially supported by NSF grants DMS-0915245, CCF-1409020, and DMS-1460766. J.M.R. was also

partially supported by DOE ASCR grant DE-SC0002505 and Sandia National Laboratories.
1
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IX, pp. 193–202]). We’ll see below that, for arbitrary n, approximating absolute values of
complex roots can be reduced to maximizing certain linear forms over ArchNewt(f), and
this ultimately leads us to a particular class of tropical varieties. In what follows, we let ζ=
(ζ1, . . . , ζn)∈(C∗)n and define Amoeba(f) := {(log |ζ1|, . . . , log |ζn|) | f(ζ)=0 and ζ∈(C∗)n}.
Clearly, Amoeba(f) is empty when f is a monomial.

Example 1.2. For the trivariate binomial f(x) = 7 − x21x
3
2x

5
3, it is easily checked that

ArchNewt(f) is the line segment in R4 connecting (0, 0, 0,− log 7) and (2, 3, 5, 0). In
particular, (log |ζ1|, log |ζ2|, log |ζ3|)∈Amoeba(f) ⇐⇒ 7= |ζ21ζ32ζ53 |, and thus it is clear that
Amoeba(f) is exactly the affine hyperplane in R3 defined by 2w1 + 3w2 + 5w3 = log 7. Note
also that any (w1, w2, w3) ∈ Amoeba(f) makes the vector (w1, w2, w3,−1) perpendicular to
ArchNewt(f). ⋄
Example 1.3. When f(x1) :=

1
89
−x161 +x491 it turns out that Amoeba(f) consists of exactly 26

points. However, the points of Amoeba(f) cluster tightly about just 222 values: Exactly 16 complex

roots of f have norm near 16

√

1
89
≈0.7553... (to at least 4 decimal places) and exactly 33 complex

roots of f have norm near 1 (to 3 decimal places). Here, ArchNewt(f) is the convex hull
of

{(

0,− log 1
89

)

, (16, 0), (49, 0)
}

, which is the triangle drawn below. Note also that the linear

form
log 1

89

16
v1 − v2 is maximized on the

lower left edge of ArchNewt(f), while the
linear form 0v1 − v2 is maximized on the

lower right edge of ArchNewt(f) (if we restrict both linear forms to ArchNewt(f)). More than
coincidentally, every point of Amoeba(f) is within 0.00034 of some point of

{

1
16
log 1

89
, 0
}

,
and the horizontal lengths (16 and 33) of the two lower edges count the number of roots
with norm in the corresponding cluster. Note also that when log |x1| = 1

16
log 1

89
we have

1
89

= |−x161 | > |x491 |, and when log |x1| = 0 have 1
89
< |−x161 | = |x491 |. Furthermore, when

log |x1| 6∈
{

1
16
log 1

89
, 0
}

, the set
{∣

∣

1
89

∣

∣ , |−x161 | , |x491 |
}

has cardinality 3. ⋄
We refer the reader to the outstanding texts [Zie95, dLRS10] for further background on

polytopes, faces, and inner and outer normals to faces.

Definition 1.4. We define the Archimedean tropical variety of f , ArchTrop(f), to be
{v∈Rn | (v,−1) is an outer normal of a positive-dimensional face of ArchNewt(f)}

when t≥2 and, when t=1, we set ArchTrop(f)=∅. We also call a face of ArchNewt(f)
a lower face iff it has an outer normal of the form (v,−1) for some v∈Rn. ⋄
For instance, in Examples 1.2 and 1.3, ArchTrop(f) was, respectively, a plane in R3 equal to
Amoeba(f), and then a pair of points around which Amoeba(f) clustered. While ArchTrop(f)
has appeared under different guises in earlier work (see, e.g., [Ost40a, Mik04, PR04, PRS11,
TdW13]), explicit metric estimates for how well ArchTrop(f) approximates Amoeba(f) in
arbitrary dimension have not yet appeared in the literature.1

1.1. Metric Estimates, With Multiplicity, in One Variable. We now give explicit
bounds on how Amoeba(f) clusters about the points of ArchTrop(f). In what follows, for
any line segment L⊂R2 with vertices (a, b) and (c, d), its horizontal length is λ(L) := |c− a|.

1The only works in this direction that we are aware of are [AGS17, Rem. 4.2, Inequality 25] (for n=1,
using new bounds for matrix polynomials) and [Mik05, Lemma 8.5, Pg. 360] (for the case n = 2).
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Theorem 1.5. Given any univariate t-nomial f with t ≥ 2, let vmin := minArchTrop(f),
vmax :=maxArchTrop(f), let Γ be any connected component of the union of open intervals
Uf := (vmin − log 2, vmax + log 2) ∩ ⋃

v∈ArchTrop(f)

(v − log 3, v + log 3), and let ΛΓ be the sum of

λ(L) over all edges L of ArchNewt(f) with outer normal (v,−1) satisfying v∈Γ. Then the
number of roots ζ∈C∗ of f with log |ζ|∈Γ, counting multiplicity, is exactly ΛΓ. In particular,
Amoeba(f)⊂Uf and ΛΓ≥1.

We prove Theorem 1.5 below in Section 2.1, where a slight sharpening (Corollary 2.12) is
also provided for t=3.

Example 1.6. If f(x1) := 1 + 19162399831x161 + x491 then Uf is a disjoint union of two
intervals, and Theorem 1.5 tells us that f has exactly 16 (resp. 33) roots with log-norm in
the open interval (−2.17292,−0.381151202193) (resp. (−0.381151202190, 1.41061)). In fact,
for this example, the much smaller sub-intervals

− log 19162399831
16

+ 10−32(−1, 1) and log 19162399831
33

+ 10−16(−1, 1)
(respectively centered at the 2 points of ArchTrop(f)) still respectively contain the same
number of log-norms. ⋄
Remark 1.7. The constants in the definition of Uf from Theorem 1.5 are optimal: Assertion
(c) of Corollary 2.3 (resp. Lemma 2.5) in Section 2 below reveals that the log 2 (resp. log 3)
in the definition of Uf can not be replaced by any smaller constant. ⋄
We discuss in greater detail below how the neighborhood Uf improves or complements

earlier root norm estimates from [Had93, Ost40a, AGS17]. Along the way, we will review
some background on univariate roots estimates and prove our univariate results, before
discussing our multivariate results.
The reader who wishes to see our higher-dimensional results now can skip to Section 3. Our

results on membership complexity for Amoeba(f) and ArchTrop(f) are stated and proved
in Section 4. Finally, we discuss connections to numerically solving polynomial systems, and
compare our results to the older non-Archimedean case, in Section 5.

2. From Classical Approximations to Tropical Approximations

To prepare for the proof of Theorem 1.5 we will first review some classical root norm
bounds in the univariate case. In particular, a key observation that will help us modernize
some classical bounds is that ArchTrop(f) can be defined in at least 3 ways. In what follows,
we assume f(x1)=

∑t
j=1 cjx

aj
1 ∈C

[

x±1
1

]

is a univariate t-nomial (so the ci are all nonzero).

Proposition 2.1. For any univariate t-nomial f , the following three sets are identical:
1. {v∈R | (v,−1) is an outer normal of an edge of ArchNewt(f)}
2. the set of slopes of the lower edges of ArchNewt(f)
3. {v∈R | maxj |cjeajv| is attained for at least two distinct values of j }. �

That our initial definition of ArchTrop(f) (in terms of outer normals to lower edges) can be
replaced by the second set above is elementary. The equality of ArchTrop(f) with the third
set follows immediately from the fact that an edge of a polygon P is a subset (containing at
least two distinct points) where a non-trivial linear form is maximized on P (see, e.g., [Zie95,
Ch. 7]). As we’ll see in Section 5.2, these alternative characterizations are well-known in the
tropical literature (see, e.g., [MS15]). In the Archimedean case, Hadamard and Ostrowski’s
original univariate root norm estimates were in fact stated in terms of edge slopes.
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We now recall a pair of bounds dating back to 1893 and 1923.

Theorem 2.2.
(1) If ζ∈C is a root of α0 + · · ·+ αdx

d
1∈C

[

x±1
1

]

, and α0αd 6=0, then

1
2

min
αi 6=0,i 6=0

∣

∣

∣

α0

αi

∣

∣

∣

1/i

< |ζ| < 2 max
i∈{0,...,d−1}

∣

∣

∣

αi

αd

∣

∣

∣

1/(d−i)

.

(2) If g(x1)=β0 + · · ·+ βpx
p
1 + γ1x

n1

1 + · · ·+ γqx
nq

1 ∈C[x1] so that β0βp 6=0 and

1≤p<n1< · · · <nq, then g has a nonzero root with absolute value ≤
∣

∣

∣

β0

βp

∣

∣

∣

1/p
(

p+q
q

)1/p
. �

Bound (1) is a paraphrase of a special case of [Had93, Pg. 201, Third Inequality], and is
stated more explicitly in [Fuj16] (see also [RS02, pp. 243–249], particularly Bound 8.1.11 on
Pg. 247). Bound (2) was proved by Montel [Mon23] (see also [RS02, Thm. 9.5.1, Pg. 304]).

Corollary 2.3. Suppose a1< · · · <at and d :=at−a1. Label the roots of f in C∗ by ζ1, . . . , ζd
(counting multiplicity) so that |ζ1| ≤ · · · ≤ |ζd|. Also, for each i ∈ {1, . . . , d}, let vi denote
the slope of the (unique) lower edge of the polygon ArchNewt(f) ∩ ([a1 + i− 1, a1 + i]× R).
Then:

(a) − log 2 < log |ζ1| −minArchTrop(f) ≤ log(t− 1)
(b) − log(t− 1) ≤ log |ζd| −maxArchTrop(f) < log 2
(c) The log 2 (resp. log(t− 1)) terms above can not be replaced by any smaller

constant (resp. function of t solely).

Remark 2.4. Since any lower edge of ArchNewt(f)∩([a1+ i−1, a1+ i]×R) is in fact a line
segment inside a lower edge of ArchNewt(f), Proposition 2.1 thus implies that {v1, . . . , vd}
=ArchTrop(f). Note also that v1≤ · · · ≤vd since ArchNewt(f) is convex and a1< · · · <at. ⋄
Proof of Corollary 2.3: The lower bound from Part (a) and the upper bound from Part
(b) follow immediately from Proposition 2.1, upon taking the log absolute value of both sides
of Bound (1) from Theorem 2.2. In particular, we see that the lower and upper bounds from
Bound (1) are exactly 1

2
eminArchTrop(f) and 2emaxArchTrop(f).

The upper bound from Part (a) follows similarly, but employing Bound (2) from Theorem
2.2 instead of Bound (1). In particular, one must apply Bound (2) in the following way:
Take p so that the (p,− log |βp|) is the right-hand vertex of the left-most lower edge of

ArchNewt(f). By construction, this edge has slope log |β0|−log |βp|
p

. Observing that
(

p+q
q

)1/p
=

(

(q+p)···(q+1)
p!

)1/p

=
((

q
p
+ 1

)

· · ·
(

q
1
+ 1

)

)1/p

≤ ((q + 1)p)1/p = q + 1, and that the number of

terms is t=p+ q + 1 with p≥1, we are done.
The lower bound from Part (b) follows by applying the preceding paragraph to the

polynomial xat+a1
1 f(1/x1): This has the effect of reflecting ArchNewt(f) across the verti-

cal line d
2
×R, and thus ArchTrop(f) is replaced by −ArchTrop(f). So we ultimately prove

an upper bound of log(t− 1) on − log |ζd| − (−maxArchTrop(f)) and we are done.
The optimality of the log 2 terms is evinced by the polynomials

f1(x1) :=x
t−1
1 − xt−2

1 − · · · − 1 and f2(x1) :=−1 + x1 + · · ·+ xt−1
1 :

One need only show that f1 (resp. f2) has a unique positive root increasing toward a limit
of 2 (resp. decreasing toward a limit of 1

2
) as t −→ ∞. Uniqueness follows from Descartes’

Rule, since each f1 and f2 have exactly one sign alternation in their ordered sequence of
coefficients. The limiting behavior of their unique positive roots is easily obtained from
Rolle’s Theorem (since f1(0), f2(0)<0 and f1(x1), f2(x1) −→ ∞ as x1 −→ ∞), and the fact
that the sum

∑r
i=1

1
2i
is a strictly increasing function of r∈N, and converges to 1 as r −→ ∞.
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The optimality of the log(t − 1) terms is easily seen via the polynomial
g(x1) := (x1 + 1)t−1: The left-most (resp. right-most) lower edge of ArchNewt(g) has slope
− log(t − 1) (resp. log(t − 1)), by the log-concavity of the binomial coefficients. So by
Proposition 2.1, minArchTrop(g) = − log(t − 1) and maxArchTrop(g) = log(t − 1). Since
Amoeba(g)={0}, we are done. �

By a slight variation of our last proof, we can easily obtain a family of examples showing
that the log 3 interval-width from Theorem 1.5 is also optimal, unless one refines further to
incorporate t or other parameters.

Lemma 2.5. For any k ≥ 1 let gk(x1) := 1 + x + · · · + xk−1 − xk + 1
9
xk+1 + · · · + 1

9k
xk+k.

Then (1) ArchTrop(gk)={0, log 9} for all k and (2) for any fixed ε>0 there is a k such that
Amoeba(gk) ∩ (log(3)− ε, log(3) + ε) is non-empty. �

We now recall a seminal collection of bounds due to Ostrowski:

Theorem 2.6. [Ost40a, Cor. IX, Pg. 143]2 Following the notation of Corollary 2.3, we have:
(1) − log 2 < log |ζ1| − v1 ≤ log d,
(2) − log d ≤ log |ζd| − vd < log 2,

(3) log

(

1− 1

21/i

)

< log |ζi| − vi < − log

(

1− 1

21/(d−i+1)

)

for all i∈{2, . . . , d− 1}.

In particular, −0.5348 ≤ log

(

1− 1

21/i

)

− (− log i) < −0.3665 and

0.3665 < − log

(

1− 1

21/(d−i+1)

)

− log(d− i+ 1) ≤ 0.5348. �

Remark 2.7. Since ArchTrop(f)={v1, . . . , vd} (see Remark 2.4), Theorem 1.5 implies that
any given log |ζi| lies within distance log 3 of some vj, possibly with j 6= i. In this sense, the
final assertion of Theorem 2.6 tells us that Theorem 1.5 isolates each log |ζi| strictly better
than Ostrowski’s bounds, except possibly in the cases i∈{2, d− 1} or t=d+1=3. Corollary
2.12 in Section 2.1 below matches Ostrowski’s bounds when t=d+ 1=3. ⋄
Recently, Akian, Gaubert, and Sharify have derived metric bounds [AGS17] improving

those of Hadamard and Ostrowski, but in a different direction from ours. Their focus was
the Matrix Polynomial Problem (a.k.a. the Polynomial Eigenvalue Problem): Given matrices
A0, . . . , Ad∈Cn×n, find λ∈C such that A0+λA1+ · · ·+λdAd has determinant 0. The Matrix
Polynomial Problem includes the classical eigenvalue problem for d=1, while the n=1 case
is the problem of univariate polynomial solving. A special case of one of the main theorems
of [AGS17] adds a new bound to the univariate t-nomial setting: The center of mass of the
ℓ smallest points of Amoeba(f) is not too far to the left from the center of mass of the k
smallest points of ArchTrop(f) (assuming repeated points are counted appropriately).

Theorem 2.8. (Special case of [AGS17, Thm. 4.1 & Rem. 4.2]) Following the notation of

Corollary 2.3, for any ℓ∈{1, . . . , d}, we have
∑ℓ

i=1 log |ζi|≥
(

∑ℓ
i=1 vi

)

− 1
2
log t. �

Remark 2.9. It should be noted that our notation differs significantly from that of [AGS17].
However, to keep the focus on proving Theorem 1.5, we postpone a more detailed discussion
until Remark 5.4 of Section 5.2. ⋄

2There was a typo in Ostrowski’s original statement of the upper bound from Assertion (3), later corrected
in an addendum by Ostrowski [Ost40b].
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Note that while the ℓ=1 case of Theorem 2.8 yields a weaker bound than Assertion (1) of
our Theorem 2.6 when t≥4, a strength of Theorem 2.8 is its bound on a particular amortized
error of approximating Amoeba(f) by ArchTrop(f): Applying Theorem 2.8 with ℓ = d to

both f(x1) and f(1/x1) implies that
∣

∣

∣

∑d
i=1

log |ζi|
d

−
∑d

i=1
vi

d

∣

∣

∣
≤ 1

2d
log t. Such an estimate does

not appear to be directly obtainable from our methods here. On the other hand, our methods
usually imply tighter distance bounds for finding some vj close to a given log |ζi|.
We have so far concentrated on showing that each log |ζi| is close to some vj, with

optimal distance bounds. Showing that each vj is close to some log |ζi| requires more
preparation, which we now detail.

2.1. Proving Theorem 1.5. We will need three technical results on bounding the norms
of summands of sparse polynomials, and counting roots of polynomials in annuli, before
proving Theorem 1.5. As before, we let f(x1) =

∑t
j=1 cjx

aj
1 be a univariate t-nomial, with

exponents in strictly increasing order: a1< · · · <at.
Proposition 2.10. Suppose t ≥ 3, v ∈ ArchTrop(f), and ℓ is the unique index such that
(aℓ,− log |cℓ|) is the right-hand vertex of the lower edge of ArchNewt(f) of slope v (so 2≤ℓ).
Then for any N ∈N and x1 with |x1|≥(N + 1)ev we have

ℓ−1
∑

j=1

∣

∣cjx
aj
1

∣

∣< 1
N
|cℓxaℓ1 |.

Proof of Proposition 2.10: First note that 2≤ ℓ≤ t by construction. Letting r := log |x1|
and βj := log |cj| we obtain

∑ℓ−1
j=1

∣

∣cjx
aj
1

∣

∣ =
∑ℓ−1

j=1 e
ajr+βj =

∑ℓ−1
j=1 e

aj(r−v)+ajv+βj . Clearly,

aj ≤ aℓ − (ℓ − j), so for r≥ v we have
ℓ−1
∑

j=1

e(aℓ−(ℓ−j))(r−v)+ajv+βj ≤
ℓ−1
∑

j=1

e(aℓ−(ℓ−j))(r−v)+aℓv+βℓ ,

thanks to Proposition 2.1 and the definition of ArchTrop(f). So then
∑ℓ−1

j=1

∣

∣cjx
aj
1

∣

∣ ≤ e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ
∑ℓ−1

j=1 e
(j−1)(r−v)

= e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ

(

e(ℓ−1)(r−v) − 1

e(r−v) − 1

)

< e(aℓ−(ℓ−1))(r−v)+aℓv+βℓ

(

e(ℓ−1)(r−v)

er−v − 1

)

=
eaℓr+βℓ

er−v − 1

So to prove our desired inequality it clearly suffices to enforce er−v − 1 ≥ N . The last
inequality clearly holds for all r≥v + log(N + 1), so we are done. �

Pellet’s Theorem. [Pel81]3 If the Laurent polynomial |cℓ|xaℓ1 − ∑

i∈{1,...,t}\{ℓ}
|ci|xai1 has exactly

2 positive roots ζ1<ζ2 then, counting multiplicities, f has exactly aℓ−a1 (resp. at−aℓ) roots
with norm in (0, ζ1] (resp. [ζ2,∞)). In particular, f has no roots with norm in (ζ1, ζ2). �

Lemma 2.11. Set vmin :=minArchTrop(f) and vmax :=maxArchTrop(f). Also let u1 and
u2 be consecutive points of ArchTrop(f) satisfying u2 ≥ u1 + log 9, and let ℓ be the unique
index such that (aℓ,− log |cℓ|) is the unique vertex of ArchNewt(f) incident to lower edges
of slopes u1 and u2 (so 2≤ ℓ≤ t − 1). Then, counting multiplicities, f has exactly aℓ − a1
(resp. at − aℓ) roots ζ∈C satisfying 1

2
evmin < |ζ| < 3eu1 (resp. 1

3
eu2 < |ζ| < 2evmax).

3See also [RS02, Thm. 9.2.2, Pg. 285]. Our paraphrase here follows immediately from Pellet’s original
theorem simply by multiplying f by x−a1

1
.
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Proof of Lemma 2.11: By symmetry (with respect to replacing x1 by 1
x1
) it clearly suffices to

prove the first root count. Setting x1 :=3eu1 , Proposition 2.10 tells us that 1
2
|cℓ|xaℓ1 >

∑ℓ−1
j=1 |cj|x

aj
1 .

Observing that 1
x1

= 1
3eu1

≥ 3e−u2 (since u2 − u1 ≥ log 9), another application of Proposition

2.10 to f(1/x1) then implies that 1
2
|cℓ|xaℓ1 >

∑t
j=ℓ+1 |cj|x

aj
1 . So g(x1) := |cℓ|xaℓ1 −∑t

j 6=ℓ |cj|x
aj
1 is

positive at x1 = 3eu1 . Note also that both g(ε) and g(1/ε) are negative for all sufficiently
small ε>0. So by Rolle’s Theorem, g has at least 2 positive roots. Moreover, by Descartes’
Rule (since g has exactly 2 sign alternations in its ordered sequence of coefficients), g has
at most 2 positive roots. So we may apply Pellet’s Theorem and, applying Assertion (1) of
Theorem 2.2 as well, we are done. �

Proof of Theorem 1.5: We first prove that Corollary 2.3 and Lemma 2.11 imply that
the roots of f lie in a particular union of annuli: More precisely, we will first prove that
Amoeba(f)⊂Uf .
Let vmin :=minArchTrop(f) and vmax :=maxArchTrop(f). Then, using Corollary 2.3, the

left-hand inequality of Assertion (a), together with the right-hand inequality of Assertion
(b), imply that Amoeba(f) lies within the interval (vmin − log 2, vmax + log 2). In particular,
if w∈Amoeba(f) satisfies w≤vmin (resp. w≥vmax) then w must be within distance log 2 of
the left-most (resp. right-most) point of ArchTrop(f).
Now assume w ∈ Amoeba(f) satisfies vmin < w < vmax. Let u1 and u2 be the unique

consecutive points of ArchTrop(f) satisfying u1<w<u2. Then u2 − u1≤ log 9 immediately
implies that w must be within distance log 3 of at least one of u1 or u2. Otherwise, Lemma
2.11 implies that w can not lie in the interval [u1 + log 3, u2 − log 3], and thus w is within
distance log 3 of either u1 or u2.
In other words, w must always be within log 3 of some point of ArchTrop(f).

Combined with the containment Amoeba(f) ⊂ (vmin − log 2, vmax + log 2), we thus obtain
that Amoeba(f)⊂Uf .
We now study ΛΓ: Having ordered the monomial terms of f so that the exponents ai are

in increasing order, the Fundamental Theorem of Algebra then tells us that the number of
roots of f in C∗ is exactly at − a1. Also, we clearly have

∑

Γ a connected
component of Uf

ΛΓ = at − a1.(1)

In particular, when t ≥ 2, Uf is non-empty and any Γ must contain at least 1 point of
ArchTrop(f). So any ΛΓ is a positive integer when t≥2.
To conclude, we merely need to prove that f has exactly ΛΓ roots ζ ∈C∗ with log |ζ| ∈

Γ. Toward this end, assume Uf has exactly C connected components, and we label them
Γ1, . . . ,ΓC so that i<j =⇒ every point of Γi is strictly less than any point of Γj.
Now, if C = 1, then Uf = Γ is connected and ΛΓ = at − a1. Since we already know that

Amoeba(f)⊂Uf , the stated root count is thus true.
If C ≥ 2 then Lemma 2.11 immediately implies that f has exactly ΛΓ1

roots ζ ∈C∗ with
log |ζ|∈Γ1: Simply apply Lemma 2.11 with u1 the right-most point of Γ1∩ArchTrop(f) and
u2 the left-most point of Γ2 ∩ArchTrop(f). More generally, it is easy to prove that, for any
i≥ 2, f has exactly ΛΓ1

+ · · · + ΛΓi
roots ζ ∈C∗ with log |ζ| ∈ Γ1 ∪ · · · ∪ Γi: Simply apply

Lemma 2.11 with u1 the right-most point of (Γ1∪· · ·∪Γi)∩ArchTrop(f) and u2 the left-most
point of Γi+1∩ArchTrop(f). Note also that (a2− a1)+ (a3− a2)+ · · ·+(aℓ− aℓ−1)=aℓ− a1,
and thus ΛΓ1

+ · · ·+ ΛΓi
is always of the form aℓ − a1 for ℓ an increasing function of i.
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Since the Γi are disjoint, we then obtain that the number of roots ζ ∈ C∗ of f with
log |ζ|∈Γi is exactly (ΛΓ1

+ · · ·+ ΛΓi
)− (ΛΓ1

+ · · ·+ ΛΓi−1
)=ΛΓi

. So we are done. �

We can tighten the union of intervals Uf further when t=3: Combining Theorem 1.5 with
Assertion (1a) of Theorem 3.4 (stated and proved in Section 3 below) immediately yields
the following refinement.

Corollary 2.12. Let vmin :=minArchTrop(f), vmax :=maxArchTrop(f), and assume that
t=3 and vmax − vmin> log 4. Then there are exactly a2 − a1 (resp. a3 − a2) roots ζ ∈C of f
with vmin − log 2< log |ζ|≤vmin + log 2 (resp. vmax − log 2≤ log |ζ|<vmax + log 2). �

3. Approximating Amoebae in Arbitrary Dimension

Moving on to the multivariate case, let us first review some basic facts on the structure of
ArchTrop(f).

Proposition 3.1. If f is an n-variate binomial then Amoeba(f) and ArchTrop(f) are
identical affine hyperplanes in Rn. �

Lemma 3.2. Suppose f is an n-variate t-nomial with Newt(f) of dimension k. Then:
(0) k≤min{n, t− 1}.
(1) k=1 =⇒ ArchTrop(f) is a non-empty disjoint union of at most t− 1 parallel affine

hyperplanes in Rn.
(2) k≥2 =⇒ ArchTrop(f) is a path-connected polyhedral complex, of pure dimension

n− 1, with at most t(t− 1)/2 faces of dimension n− 1.
(3) t=k + 1 =⇒ ArchTrop(f)⊆Amoeba(f) and both Amoeba(f) and ArchTrop(f) are

contractible. �

Proposition 3.1 is elementary. Assertions (0)–(2) of Lemma 3.2 follows easily from the
definition of ArchTrop(f), thanks to polyhedral duality [Zie95]. (See also [MS15, Ch. 3, Sec.
3] for a much more detailed discussion in the non-Archimedean setting.) Assertion (3) of
Lemma 3.2 was one of the first basic topological results on amoebae and can be found, for
instance, in [For98, Prop. 3.1.8], [Rul03, Thms. 8 & 12], and [TdW13, Lemma 3.4 (a)].
Our main multivariate result is that every point of Amoeba(f) is within an explicit dis-

tance of some point of ArchTrop(f), and vice-versa, independent of the degree or number of
variables of f . We use | · | for the standard ℓ2-norm on Cn.

Definition 3.3. For any ε> 0 and X ⊆Rn we define the open ε-neighborhood of X to be
Xε :={x∈Rn | |x− x′|<ε for some x′∈X}, and let Xε denote its Euclidean closure. ⋄
Theorem 3.4. For any f ∈C

[

x±1
1 , . . . , x±1

n

]

with exactly t≥2 monomial terms and Newt(f)
of dimension k we have:

(1) (a) Amoeba(f) ⊆ ArchTrop(f)log(t−1) and, for k=1, Amoeba(f) $ ArchTrop(f)log 3.

(b) ArchTrop(f) ⊆ Amoeba(f)εk,t where ε1,t :=(log 9)t− log 81
2
<2.2t− 3.7,

ε2,t :=
√
2(t− 2)

(

(log 9)t− log 81
2

)

<(t− 2)(3.11t− 5.23), and

εk,t :=
√
k
⌈

1
4
t(t− 1)

⌉ (

(log 9)t− log 81
2

)

for k≥3.

In particular, εk,t<
3
5
t3/2(t− 1)2 for all k≥1 and t≥2.

(2) Let ϕ(x) :=1 + x1 + · · ·+ xt−1 and ψ(x) :=(x1 + 1)t−k + x2 + · · ·+ xk. Then
(a) Amoeba(ϕ) contains a point at distance log(t− 1) from ArchTrop(ϕ) and
(b) ArchTrop(ψ) contains points approaching distance log(t− k) from Amoeba(ψ).
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We prove Theorem 3.4 below. For multivariate polynomials, our bounds appear to be the
first allowing dependence on just the number of terms t. In particular, Assertion (1a)
sharpens, and extends to arbitrary dimension, an earlier bound of Mikhalkin for the case
n=2: Letting L denote the number of lattice points in the Newton polygon of f , [Mik05,
Lemma 8.5, Pg. 360] asserts that Amoeba(f) is contained in the possibly larger neighborhood

ArchTrop(f)log(L−1). Assertion (2a) of Theorem 3.4 shows that the size of the neighborhood

from Assertion (1a) is in fact optimal for the infinite family of cases t=k + 1≥3.
Finding the tightest neighborhood of Amoeba(f) containing ArchTrop(f) appears to be

an open problem: We are unaware of any earlier multivariate version of Assertion (1b).
The only other earlier distance bound between an amoeba (of positive dimension) and a
polyhedral approximation we know of is a result of Viro [Vir01, Sec. 1.5] on the distance
between the graph of a univariate polynomial (drawn on log paper) and a piecewise linear
curve that is ultimately a piece of the n=2 case of ArchTrop(f) here.

Example 3.5. Setting ψ(x)=(x1 + 1)4 + x2 we see Amoeba(ψ) ∩ ([−7, 7]× [−12, 12])
and ArchTrop(ψ) ∩ ([−7, 7]× [−12, 12]) on the right. ArchTrop(ψ) contains the ray
(log 4, 4 log 4) + R+(0,−1) and this rightmost downward-pointing ray contains points
with distance from Amoeba(ψ) approaching log 4. We also observe that Viro’s earlier
polygonal approximation of graphs of univariate polynomials on log paper, applied
here, would result in the polygonal curve that is the subcomplex of ArchTrop(ψ)
obtained by deleting all 4 downward-pointing rays. ⋄

It is worth comparing Theorem 3.4 to two other methods for approximating
complex amoebae: Purbhoo, in [Pur08], describes a uniformly convergent sequence
of outer polyhedral approximations to any amoeba, using cyclic resultants.2 While
ArchTrop(f) lacks this refinability, the computation of ArchTrop(f) is considerably
simpler: See Section 4 below and [AGGR15]. ArchTrop(f) is actually closer in
spirit to the spine of Amoeba(f). The latter construction, based on a multivariate
version of Jensen’s Formula from complex analysis, is due to Passare and Rullg̊ard [PR04,
Sec. 3] and results in a polyhedral complex that is always contained in, and is homo-
topy equivalent to, Amoeba(f). While ArchTrop(f) is not always homotopy equivalent
to Amoeba(f), ArchTrop(f) at least has polynomial membership complexity in fixed dimen-
sion (see Section 4 below). Further background on the computational complexity of amoebae
can be found in [The02, SdW13, TdW15].

Remark 3.6. The Matrix Polynomial Problem (see our discussion from Section 2) can be
naturally phrased as a polynomial system with solutions in C × Pn−1

C (i.e., an intersection
of several hypersurfaces) by considering the vector equality (A0 + λA1 + · · · + λdAd)x=O.
In particular, [AGS17, Thm. 4.1] describes a tropical approximation to the solutions of the
Matrix Polynomial Problem. However, the metric bounds of [AGS17] for the case n ≥ 2
(which have exponential dependence on the dimension n) are not directly comparable to the
bounds from Theorem 3.4, which apply to a single hypersurface (and have dependence sub-
quartic in the number of terms). ⋄
3.1. Proof of Assertion (1a) of Theorem 3.4. When k = 1 it is clear that f is of the
form g(xa) for some g∈C

[

x±1
1

]

and a∈Zn \ {O}. Assertion (1) of Lemma 3.2, and Theorem
1.5 applied to g — noting in particular that both ArchTrop(f) and Amoeba(f) consist of

4See also [FMMdW17] for recent computational improvements to Purbhoo’s outer approximation.
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affine hyperplanes perpendicular to the vector a — then imply the second bound from Part
(a). So let us now assume k≥2.
Let w := (log |ζ1|, . . . , log |ζn|) ∈Amoeba(f), ζ = (ζ1, . . . , ζn), and assume without loss of

generality that |c1ζa1 | ≥ |c2ζa2 | ≥ · · · ≥ |ctζat |. Since f(ζ) = 0 implies that
|c1ζa1| = |c2ζa2 + · · · + ctζ

at |, the Triangle Inequality immediately implies that
|c1ζa1|≤(t− 1)|c2ζa2 |. Taking logarithms, we then obtain

a1 · w + log |c1| ≥ · · · ≥ at · w + log |ct|(2)

and

a1 · w + log |c1| ≤ log(t− 1) + a2 · w + log |c2|(3)

For each i∈{2, . . . , t} let us then define δi to be the shortest vector such that
a1 · (w + δi) + log |c1| = ai · (w + δi) + log |ci|.

Note that δi=λi(ai−a1) for some nonnegative λi since we are trying to affect the dot-product

δi · (a1 − ai). In particular, λi =
(a1−ai)·w+log |c1/ci|

|a1−ai|2 so that |δi| = (a1−ai)·w+log |c1/ci|
|a1−ai| . (Indeed,

Inequality (2) implies that (a1 − ai) · w + log |c1/ci|≥0.)
Inequality (3) implies that (a1 − a2) · w + log |c1/c2| ≤ log(t − 1). We thus obtain

|δ2| ≤ log(t−1)
|a1−a2| ≤ log(t − 1). So let i0 ∈ {2, . . . , t} be any i minimizing |δi|. We of course

have |δi0 |≤ log(t− 1), and by the definition of δi0 we have
a1 · (w + δi0) + log |c1|=ai0 · (w + δi0) + log |ci0 |.

Moreover, the fact that δi0 is the shortest among the δi implies that
a1 · (w + δi0) + log |c1|≥ai · (w + δi0) + log |ci|

for all i. Otherwise, we would have a1 · (w + δi0) + log |c1| < ai · (w + δi0) + log |ci| and
a1 · w + log |c1|≥ai · w + log |ci| (the latter following from Inequality (2)). Taking a convex
linear combination of the last two inequalities, it is then clear that there must be a µ∈ [0, 1)
such that a1 · (w + µδi0) + log |c1|=ai · (w + µδi0) + log |ci|. Thus, by the definition of δi, we
would obtain |δi|≤µ|δi0|< |δi0| — a contradiction.
We thus have the following:

a1 · (w + δi0)− (− log |c1|)=ai0 · (w + δi0)− (− log |ci0 |),
a1 · (w + δi0)− (− log |c1|)≥ai · (w + δi0)− (− log |ci|)

for all i, and |δi0 |≤ log(t−1). This implies that w+δi0 ∈ArchTrop(f). In other words, we’ve
found a point in ArchTrop(f) sufficiently near (log |ζ1|, . . . , log |ζn|) to prove our desired
upper bound. �

3.2. Proving Assertion (1b) of Theorem 3.4. We begin with a refinement of the special
case n=1. Let #S denote the cardinality of a set S.

Theorem 3.7. Suppose f is any univariate t-nomial with t≥3 and s :=#ArchTrop(f). (So
1≤s≤ t−1.) Then for any v∈ArchTrop(f) there is a root ζ∈C∗ of f with |v−log |ζ||< log 2,
|v − log |ζ||≤ logmin{18, t− 1}, or |v − log |ζ||<(log 9)s− log 9

2
<2.2s− 1.5, according as s

is 1, 2, or ≥2. In particular, |v − log |ζ||<(log 9)t− log 81
2
<2.2t− 3.7 for all t≥3.

Proof of Theorem 3.7: Following the notation of Theorem 1.5, let Γ be the unique
connected component of Uf containing v ∈ArchTrop(f) and let m :=#(Γ ∩ ArchTrop(f)).
(So 1≤m≤ s.) The quantity |v − log |ζ|| is thus clearly maximized when v is as far to the
left as possible and log |ζ|∈Γ is as far to the right as possible, or vice-versa. Without loss of
generality, we may assume the first possibility:

|v − log |ζ||< log(3) + (log 9)(m− 2) + log(3) + δ,
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where δ is log 3 or log 2, according as m<s or m= s. We thus obtain the largest possible
upper bound of (log 9)s− log 9

2
when m=s. Note also that s≤ t− 1. So now we merely need

to refine the cases with s∈{1, 2}.
The case s=1 follows from Corollary 2.3 since minArchTrop(f)=maxArchTrop(f) here.
The case s=2 proceeds as follows: If m=1 then Γ is an open interval of width log(2) +

log(3)=log 6, with v at distance log 2 from the left limit, so we must have |v− log |ζ||< log 3.
If m=2 then Γ is an open interval of width at most log(2) + 2 log(3) + log(2)= log 36, but
we have vmin − log 2 < log |ζ| < vmax + log 2 and ArchTrop(f) = {vmin, vmax}. So we have
|v − log |ζ||< log(3) + log(3) + log(2) = log 18. In addition, we can apply Corollary 2.3 to
observe that there is always a root ζ∈C∗ of f with |vmin − log |ζ||≤ log(t− 1), and the same
bound can be attained for |vmax − log |ζ||, possibly with a different root ζ. So we obtain
|v − log |ζ||≤ logmin{18, t− 1}. �
We will handle the case n≥2 of Assertion (1b) of Theorem 3.4 by showing that any point

v∈ArchTrop(f) lies close to the intersection of Amoeba(f) with a specially chosen line also
containing v. With some care, this enables us to reduce to the case n= 1. In particular,
intersecting a line with Amoeba(f) is the same as evaluating f along a monomial curve, and
we’ll need a technical lemma to pick exponents that permit an easy reduction to n=1.

Theorem 3.8. Given any subset {a1, . . . , at}⊂Zn of cardinality t≥ n + 1, there exists an
α=(α1, . . . , αn)∈Zn\{O} such that the dot-products α · a1, . . . , α · at are pair-wise distinct
and, for all i∈ [n], |αi|≤

⌈

1
4
t(t− 1)

⌉

or |αi|≤ t− 2, according as n≥3 or n=2.

Proof of Theorem 3.8: Observe that for the α ·ai to remain distinct we must have α avoid
a set of ≤ t(t−1)/2 hyperplanes, depending on {a1, . . . , at}. This is equivalent to α avoiding
the zero set of an n-variate polynomial of degree t(t − 1)/2. Schwartz’s Lemma (see, e.g.,
[Sch80]) then tells us that for any S⊂Z with #S>t(t− 1)/2 there is an α∈Sn avoiding our
aforementioned set of hyperplanes. Picking S=

{

−
⌈

1
4
t(t− 1)

⌉

, . . . ,
⌈

1
4
t(t− 1)

⌉}

then gives
us the case n≥3.
For the case n=2, it is enough to prove that the set of lattice points

X :={−(t− 2), . . . , t− 2} × {1, . . . , t− 2}
contains at least 1 + t(t − 1)/2 distinct directions (and thus we can always find a suitable
α ∈X). In other words, we need to prove that X has at least 1 + t(t − 1)/2 points with
relatively prime coordinates. Throwing out the directions (1, 0) and (0, 1), it is then enough

to show that Y := {1, . . . , t − 2}2 contains at least t(t−1)
4

− 1
2
points with relatively prime

coordinates. The number of such points, for arbitrary t, forms the sequence A018805 in
Sloane’s Online Encyclopedia of Integer Sequences [Slo10]. A routine, but tedious calculation
then yields the t∈{3, . . . , 45} portion of the n=2 case.
The remaining cases can be settled as follows: By a standard Möbius inversion argument,

the number of points with relatively prime coordinates in Y is exactly
t−2
∑

d=1

µ(d) ⌊(t− 2)/d⌋2

where µ is the classical Möbius function (see, e.g., [HWW08]). A simple expansion then
yields our desired number of points to be bounded from below by

A(t) := (t−2)2

ζ(2)
− 4(t− 2)− 2(t− 2) log(t− 2)− 2ζ(2)(t− 1),

where ζ(s)=
∑∞

n=1
1
ns is the classical Riemann ζ-function.5 A simple derivative calculation

5Please note that this paragraph of the proof of Theorem 3.8 is the only place where ζ indicates something
other than a complex root of a polynomial.
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then yields that A(t) − t(t−1)
4

+ 1
2
is increasing for all t≥ 25. So it’s enough to prove that

A(46)>517. One can check via Maple that A(46)>519.9, so we are done. �

Proof of Assertion (1b) of Theorem 3.4: The very last assertion follows easily from the
fact that

⌈

1
4
t(t− 1)

⌉

≤ 1
4
t(t− 1) + 1

2
and an elementary computation.

Now let v = (v1, . . . , vn) be any point of ArchTrop(f). If v ∈ Amoeba(f) then there is
nothing to prove. So let us assume v 6∈Amoeba(f). Since the case n=1 is immediate from
Proposition 3.1 and Theorem 3.7, we will assume henceforth that n≥2.
To reduce to the case k=n, let us temporarily assume that k<n. Without loss of general-

ity, we can order the variables x1, . . . , xn so that the image of Newt(f) under the coordinate
projection sending Rn onto Rk × {0}n−k has dimension k, and the restriction of the projec-
tion to Newt(f) is a bijection. Define g(x1, . . . , xk) := f(x1, . . . , xk, e

vk+1 , . . . , evn). By the
definition of ArchTrop(f), maxi∈[t] |cieai·v| is attained for at least two distinct values of i. By
our construction of g, this monomial norm condition implies that (v1, . . . , vk)∈ArchTrop(g).
Clearly then, if we can find a root (ζ1, . . . , ζk) of g with |(v1, . . . , vk)− (log |ζ1|, . . . , log |ζk|)||<εk,t,
then ζ :=(ζ1, . . . , ζk, e

vk+1 , . . . , evn) will be a root of f yielding a point of Amoeba(f) within
distance εk,t of v. But finding such a (ζ1, . . . , ζk) for g is nothing more than a lower-
dimensional instance of the case where the dimension of the underlying Newton polytope is
the same as the underlying number of variables.
We may thus assume k = n ≥ 2 henceforth. Now consider a monomial curve C(t) :=

(γ1t
α1 , . . . , γnt

αn) with α = (α1, . . . , αn) 6= O. (Note that the image of C(C∗) under the
coordinate-wise log absolute map is a line in Rn.) Setting γi := evi for all i we obtain
|C(1)|=(ev1 , . . . , evn), independent of α. So let us pick α satisfying the conclusion of Theorem
3.8 and set h(t) := f(C(t)). Then by the definition of ArchTrop(f), and especially because
the α · ai are pair-wise distinct, we can conclude that h∈C[t] has exactly t monomial terms
and 0∈ArchTrop(h). So to find a root ζ ∈ (C∗)n with (log |ζ1|, . . . , log |ζn|) close to v, it’s
enough to prove that h has a root ρ close to 1. Thanks to Theorem 3.7, we can do the latter,
so now we simply have to account for metric distortion from specializing f along C(t).
Taking logarithms, Amoeba(h) containing a point at distance ε from 0 implies that

Amoeba(f) contains a point at distance ≤ |α|ε from v. So by the coordinate bounds of
Theorem 3.8, we are done. �

3.3. Proving Assertion (2) of Theorem 3.4. We first note an alternative characteriza-
tion of ArchTrop(f), valid in all dimensions.

Proposition 3.9. For any n-variate t-nomial f(x)=
∑t

j=1 cjx
aj ∈C

[

x±1
1 , . . . , x±1

n

]

, we have

ArchTrop(f)={v∈Rn | maxj |cieaj ·v| is attained for at least two distinct values of j }. �

Like Proposition 2.1, Proposition 3.9 follows easily from the fact that a positive-dimensional
face of a polytope P is a subset where a particular linear form attains its maximum (over
P ) at least twice (see, e.g., [Zie95, Ch. 7]).
Proof of Assertion (2) of Theorem 3.4: To prove Part (a), note that
(1, . . . , 1)/(1 − t) is a root of ϕ and thus p := − log(t − 1)(1, . . . , 1) ∈ Amoeba(ϕ). Note
that Newt(ϕ) is the standard n-simplex ∆n ⊂ Rn. So, by polyhedral duality [Zie95], and
the definition of ArchTrop(ϕ), we have that ArchTrop(ϕ) is the positive codimension locus

of the outer normal fan of ∆n. In particular, ArchTrop(ϕ) ∩ Rt−1
− is the boundary of the

negative orthant. So the distance from p to ArchTrop(ϕ) is log(t− 1).
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To prove Part (b), note that (x1+1)t−k has unique root −1, and this root has multiplicity
t − k. Recall that the roots of a monic univariate polynomial are continuous functions of
the (non-leading) coefficients, e.g., [RS02, Thm. 1.3.1, Pg. 10].6 So then, for any ε> 0, we
can find a δε > 0 so that for all δ ∈ C with |δ| ∈ [0, δε), all the roots ζ1 of (x1 + 1)t−k − δ
satisfy |ζ1 + 1| < ε. Clearly then, for any ε′ > 0, taking |ρ2|, . . . , |ρn| sufficiently small (or
u2 :=log |ρ2|, . . . , un :=log |ρn| sufficiently negative) implies that the distance from any point
u∈Amoeba(f) of the form (u1, u2, . . . , un) to the hyperplane {0}×Rn−1 is at most ε′: Simply
take ε so that ε′=log(1 + ε) and |x2|+ · · ·+ |xn|<δε.
On the other hand, by the log-concavity of the binomial coefficients, ArchNewt

(

(x1 + 1)t−k
)

must have an edge of slope t − k. This will enable us to prove that ArchTrop(ψ) contains
a ray of the form {(log(t − k), N, . . . , N)}N→+∞. and thus conclude: The points along this
ray have distance to Amoeba(ψ) approaching log(t− k), by the preceding paragraph.
To see why such a ray lies in ArchTrop

(

(x1 + 1)t−k
)

simply note that as N −→ −∞, the
linear form log(t− k)u1 +Nu2 + · · ·+Nun − un+1 is maximized exactly at the vertices

(t− k − 1, 0, . . . , 0,− log(t− k)) and (t− k, 0, . . . , 0, 0)
of ArchNewt

(

(x1 + 1)t−k
)

. (Indeed, the only other possible vertices of ArchNewt
(

(x1 + 1)t−k
)

are the basis vectors e2, . . . , ek of Rn+1.) So, by Proposition 3.9, we are done. �

4. On the Computational Complexity of ArchTrop(f) and Amoeba(f)

The complexity classes P, NP, PSPACE, and EXPTIME — from the classical Turing
model of computation — can be identified with families of decision problems, i.e., problems
with a yes or no answer. Larger complexity classes correspond to problems with larger worst-
case complexity. We refer the reader to [Sip92, Pap95, AB09, Sip12] for further background.
Aside from the basic definitions of input size and NP-hardness, it will suffice here to simply
recall that P⊆NP⊆PSPACE⊆EXPTIME, and that the properness of each inclusion
(aside from P $ EXPTIME, which has been known for some time [HS65, Rob83]) is a
famous open problem. All algorithmic complexity results below count bit operations, and
do so as a function of some underlying notion of input size.
Deciding membership in an amoeba can easily be rephrased as a problem within the

Existential Theory of the Reals. The latter setting has been studied extensively in the 20th

century (see, e.g., [Tar51, Coh69, BKR86, Can88]) and the current state of the art im-
plies that amoeba membership is in PSPACE, i.e., it can be solved in polynomial-time by
a parallel algorithm7, provided one allows exponentially many processors. More precisely,
we define the input size of a polynomial f ∈ Z[x1, . . . , xn], written f(x) =

∑t
j=1 cjx

aj , to

be size(f) :=
∑t

j=1 log2 ((2 + |cj|)
∏n

i=1(2 + |ai,j|)), where ai,j is the ith entry of the column

vector aj. (Put another way, up to a bounded additive error, size(f) is just the sum of
the bit-sizes of all the coefficients and exponents.) Similarly, we define size(v), for any
v = (v1, . . . , vn) ∈ Qn, to be the sum of the sizes of the numerators and denominators of
the vi (written in lowest terms). We similarly extend the notion of input size to polyno-
mials in Q[x1, . . . , xn]. Considering real and imaginary parts, we can extend further still to
polynomials in Q

[√
−1

]

[x1, . . . , xn].

6The statement there excludes roots of multiplicity equal to the degree of the polynomial, but the proof
in fact works in this case as well.

7i.e., an algorithm distributed across several processors running simultaneously on some shared memory.



14 MARTÍN AVENDAÑO, ROMAN KOGAN, MOUNIR NISSE, AND J. MAURICE ROJAS

Remark 4.1. For our notion of input size, sufficiently sparse polynomials have size
polynomial in the logarithm of the degree of the polynomial (among other parameters). For
instance, our definition implies that c+x1+x

d
2 has size O(log(c)+log(d)). This is in contrast

to other definitions of input size in older papers (see, e.g., [The02]) where degree is counted
in such a way that 1 + x1 + xd2 has size ≥d. ⋄
Theorem 4.2. There is a PSPACE algorithm to decide, for any input pair (z, f) ∈
⋃

n∈N
(

Qn ×Q
[√

−1
]

[x1, . . . , xn]
)

, whether (log |z1|, . . . , log |zn|)∈Amoeba(f). Furthermore,
the special case where z = 1 and f ∈ Z[x1] in the preceding membership problem is already
NP-hard.

Theorem 4.2 is implicit in the papers [Pla84, BKR86, Can88] so, for the convenience of the
reader, we provide an outline of the proof in Section 4.1 below.

Remark 4.3. While [The02, Cor. 2.7] mentions “polynomial-time” amoeba membership
detection in fixed dimension, the definition of input size implicitly used in [The02] differs
from ours and yields complexity polynomial in the degree, among other parameters. So the
method underlying [The02, Cor. 2.7] in fact has exponential worst-case complexity relative
to the input size we use here. Indeed, the NP-hardness lower bound from Theorem 4.2 tells
us that the existence of a polynomial-time amoeba membership algorithm for n=1 (relative
to our notion of input size here) would imply P=NP. ⋄
Since we now know that ArchTrop(f) is provably close to Amoeba(f), ArchTrop(f) would

be of great practical value if ArchTrop(f) were easier to work with than Amoeba(f). This
indeed appears to be the case: When the dimension n is fixed and all the coefficient absolute
values of f have rational logarithms, standard high-dimensional convex hull algorithms (see,
e.g., [Ede87]) enable us to describe every face of ArchTrop(f), as an explicit intersection of
half-spaces, in polynomial-time.

The case of rational coefficients presents some subtleties because the underlying computations,
done naively, involve arithmetic on rational numbers with exponentially large bit-size. Nevertheless,
point membership for ArchTrop(f) has polynomial bit complexity when n is fixed.

Theorem 4.4. Fix any ε > 0. Then there is an O(nt(log d)1+ε(20.8σ(log σ)1+ε)2n+2)
algorithm to decide, for any input (z, f) ∈ ⋃

n∈N
(

Qn ×Q
[√

−1
]

[x1, . . . , xn]
)

(with f(x) of

the form
∑t

j=1 cjx
aj , with degree at most d with respect to any variable, z=(z1, . . . , zn), and

the bit-sizes of the zi and ci at most σ), whether (log |z1|, . . . , log |zn|)∈ArchTrop(f).
Furthermore, if we instead assume that both log |zi|, log |ci|∈ Q have bit size ≤σ for all i,

then there is an O
(

nt(σ + log d) log2(σd)
)

algorithm to decide whether (log |z1|, . . . , log |zn|)∈
ArchTrop(f).

We prove Theorem 4.4 in Section 4.2 below. An important relaxation of the point member-
ship problem is the problem of finding the distance to ArchTrop(f) from a given query point
v. The complexity of the latter problem, and its relevance to polynomial system solving, is
explored further in [AGGR15].

4.1. From Classical Computational Algebra to the Proofs of Theorems 4.2 and
4.4. In what follows, all O-constants are effective and absolute. Let us first recall the
following results of Plaisted and Ben-Or, Kozen, and Reif.

Theorem 4.5. [Pla84] The problem “Decide whether an arbitrary input f ∈ Z[x1] has a
complex root of norm 1.” is NP-hard. �
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Theorem 4.6. [BKR86, Can88] There is an algorithm that, given any collection of polynomi-
als f1, . . . , fp, g1, . . . , gq, h1, . . . , hr ∈Q[x1, . . . , xn], decides whether there is a ζ=(ζ1, . . . , ζn)
∈Rn with f1(ζ)= · · · =fp(ζ)=0, g1(ζ), . . . , gq(ζ)>0, and h1(ζ), . . . , hr(ζ)≥0, in time

[
∑p

i=1 size(fi)) + (
∑q

i=1 size(gi)) + (
∑r

i=1 size(hi))]
O(1)

,

using [
∑p

i=1 size(fi)) + (
∑q

i=1 size(gi)) + (
∑r

i=1 size(hi))]
O(1)

processors. �

Theorem 4.2 will then follow easily from two elementary propositions. The first is a well-
known trick from computational algebra for re-expressing polynomial systems in a simpler form.
The second efficiently reduces complex root detection to real root detection.

Proposition 4.7. Given any f1, . . . , fm ∈Q
[√

−1
][

x±1
1 , . . . , x±1

n

]

, we can find g1, . . . , gM ∈
Q
[√

−1
][

x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

N

]

satisfying the following properties:

1. f1= · · · =fm=0 has a root in Cn ⇐⇒ g1= · · · =gM =0 has a root in CN .
2. Each gi is either a quadratic binomial or a linear trinomial.
3.

∑M
i=1 size(gi)=O(

∑m
i=1 size(fi)).

Moreover, g1, . . . , gM can be found in time O(
∑m

i=1 size(fi)). �

Proposition 4.8. Given any f1, . . . , fm ∈ Q
[√

−1
][

x±1
1 , . . . , x±1

n

]

with each fi of degree

at most 2, we can find g1, . . . , gM ∈ Q
[

x±1
1 , . . . , x±1

n , y±1
1 , . . . , y±1

N

]

satisfying the following
properties: 1. f1= · · · =fm=0 has a root in Cn ⇐⇒ g1= · · · =gM =0 has a root in RN .

2.
∑M

i=1 size(gi)=O(
∑m

i=1 size(fi)).
Moreover, g1, . . . , gM can be found in time O(mn). �

A simple example of Proposition 4.7 is the replacement of f(x1) := 1 − 2x1 + x51 by the
system G := (y1 − x21, y2 − y21, y3 − y2x1, y4 − 1 + 2x1, y5 − y4 − y3): It is easy to see that at
a root of G, we must have y5=1 − 2x1 + x51=0. The proof of Proposition 4.7 is not much
harder: One simply substitutes new variables to break down sums with more than 2 terms
and (employing the binary expansions of the underlying exponents) monomials of degree
more than 2. Proposition 4.8 follows easily upon expanding every complex multiplication
(resp. complex addition) into 4 real multiplications (resp. 2 real additions), by introducing
new variables for the real and imaginary parts of the xi.

Sketch of Proof of Theorem 4.2: First observe that (log |z1|, . . . , log |zn|)∈Amoeba(f) ⇐⇒
f has a complex root ζ with |ζi|= |zi| for all i. Letting A and B denote the real and imag-
inary parts of f , and letting αi and βi denote the real and imaginary parts of ζi, we thus
obtain that (log |z1|, . . . , log |zn|)∈Amoeba(f) if and only if the polynomial system

A(α1, β1, . . . , αn, βn) = B(α1, β1, . . . , αn, βn) = 0, α2
1 + β2

1 = |z1|2, . . . , α2
n + β2

n = |zn|2
has a root (α, β)= (α1, . . . , αn, β1, . . . , βn)∈R2n. Now, while the preceding system of equa-
tions has size significantly larger than size(z) + size(f) (due to the underlying expansions of
powers of ζi=αi + βi

√
−1), we can introduce new variables and equations (via Propositions

4.7 and 4.8) to obtain another polynomial system, also with a real solution if and only if
(log |z1|, . . . , log |zn|) ∈ Amoeba(f), with size linear in size(z) + size(f) instead. Applying
Theorem 4.6, we obtain our PSPACE upper bound.
Our NP-hardness complexity lower bound for the special case n=1 follows immediately

from Theorem 4.5, since |ζ1|=1 ⇐⇒ log |ζ1|=0. �

Remark 4.9. A reduction of amoeba membership to the Existential Theory of the Reals,
with an EXPTIME complexity upper bound instead, was observed in [The02, Sec. 2.2]. ⋄
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4.2. Proving Theorem 4.4. Let us first recall the following result on comparing monomials
in rational numbers.

Theorem 4.10. [BRS09, Sec. 2.4] Suppose α1, . . . , αN ∈Q are positive and β1, . . . , βN ∈Z.
Also let A be the maximum of the numerators and denominators of the αi (when written in
lowest terms) and B :=maxi{|βi|}. Then, within

O
(

N30N log(B)(log logB)2 log log log(B)(log(A)(log logA)2 log log logA)N
)

bit operations, we can determine the sign of αβ1

1 · · ·αβN

N − 1. �

While the underlying algorithm is a simple application of Arithmetic-Geometric
Mean Iteration (see, e.g., [Ber03]), its complexity bound hinges on a deep estimate of
Nesterenko [Nes03], which in turn refines seminal work of Matveev [Mat00] and Alan Baker
[Bak77] on linear forms in logarithms.

Proof of Theorem 4.4: From Proposition 3.9, it is clear that we merely need an efficient
method to compare quantities of the form |cizai |, and there are exactly t−1 such comparisons
to be done. So our first complexity bound follows immediately from the special case of
Theorem 4.10 where A=2σ, B=d, and N=2n+ 2. In particular, 30 log 2<20.8.
The second assertion follows almost trivially: Thanks to the exponential form of the

coefficients and the query point, one can take logarithms to reduce to comparing integer
linear combinations of rational numbers of bit size linear in max{σ, log d}. So the under-
lying monomial norm comparisons can be reduced to standard techniques for fast integer
multiplication (see, e.g., [BS96, Pg. 43]). �

5. Connections to Numerical Solutions and Non-Archimedean Tropical

Geometry

5.1. Coarse, but Fast, Isolation of Roots of Polynomial Systems. An immediate
consequence of Assertion (1a) of Theorem 3.4 is an estimate for isolating the possible absolute
value vectors of complex roots of arbitrary systems of multivariate polynomial equations.

Corollary 5.1. Suppose f1, . . . , fm∈C
[

x±1
1 , . . . , x±1

n

]

where fi has exactly ti monomial terms
for all i. Then any root ζ∈(C∗)n of F =(f1, . . . , fm) satisfies

(log |ζ1|, . . . , log |ζn|)∈ArchTrop(f1)ε1 ∩ · · · ∩ ArchTrop(fm)εm,
where εi :=log(ti − 1) for each i. �

Example 5.2. We can isolate the log absolute value vectors of the complex roots of the 3×3
system

F :=(f1, f2, f3) :=(x121 x
11
2 − x221 − 1/166, x112 x

12
3 − 1− x221 /16

6, x113 − 1− x221 /16
18)

via Corollary 5.1 as follows: Find the points of X :=ArchTrop(f1) ∩ ArchTrop(f2) ∩ ArchTrop(f3)
by searching through suitable triplets of edges of the ArchNewt(fi), and then create
isolating parallelepipeds about the points of X. More precisely, observe that
Conv({(12, 11, 0, 0), (22, 0, 0, 0)}), Conv({(0, 12, 11, 0), (0, 0, 0, 0)}), Conv({(0, 0, 11, 0), (0, 0, 0, 0)})
are respective edges of ArchNewt(f1), ArchNewt(f2), and ArchNewt(f3), and the vector
(0, 0, 0,−1) is an outer normal to each of these edges. So (0, 0, 0) is a point of X. Running
through the remaining triplets of edges we then obtain that X in fact consists of exactly 4
points:

(−1, 0, 0) log 4 , (0, 0, 0) ,
(

1, 10
11
, 0
)

log 4 , and
(

25
11
, 250
121
, 14
11

)

log 4.
So Corollary 5.1 tells us that the points of Y :=Amoeba(f1)∩Amoeba(f2)∩Amoeba(f3) lie
in the union of the 4 parallelepipeds drawn below to the right: Truncations of ArchTrop(f1),
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ArchTrop(f2), and ArchTrop(f3) are drawn below on the left, and the middle illustration
uses transparency to further detail the intersection.

(The parallelepipeds are simply intersections of slabs of thickness log 4, which are portions of
the (log 2)-neighborhoods arising from applying Corollary 5.1.) Suitably ordered, each point
of X is actually within distance

√
3 × 10−6 (< 0.693... = log 2) of some point of Y (and

vice-versa), well in accordance with Corollary 5.1.
Finding Y took about 2500 seconds via Bertini8 (set to adaptive precision9), on a Dell

XPS13 laptop running Ubuntu Linux 14.4. Finding X took a fraction of a second via a short
Matlab program running on the same system. ⋄
In our preceding 3 × 3 example, each parallelepiped corresponded naturally to a 3 × 3

binomial system, easily obtainable from each triplet of edges mentioned above. For instance,
if one considers (0, 0, 0) ∈ X, then the binomial summand x121 x

11
2 − x221 of f1 corresponds

naturally to the lower edge E1 of ArchNewt(f1) with inner normal (0, 0, 0, 1): Each term of
the binomial corresponds to some vertex of E1. Repeating this construction with f2 and f3,
one can then associate the lower binomial system G := (x121 x

11
2 − x21, x

11
2 x

12
3 − 1, x113 − 1) to

the point (0, 0, 0)∈X.
The intersections of the ArchTrop(fi) in fact lead to approximations of the roots of F

in (C∗)3 — not just their absolute value vectors: This is accomplished via the roots of the
lower binomial system corresponding to an isolated point of the tropical intersection X. For
example, for our preceding F , there is a set S of 1210 complex roots of F with coordinate-
wise log absolute value clustering within distance

√
3× 10−6 of (0, 0, 0). The corresponding

lower binomial system G has exactly 1210 complex roots: They form a set T consisting of
points of the form

(

e(
24p
110

− 2q
10

+ 2r
10)π

√
−1, e(

2q
11

− 24p
121)π

√
−1, e

2p
11

π
√
−1
)

,

as (p, q) ranges over {0, . . . , 10} and r ranges over {0, . . . , 9}. The Hausdorff distance between
S and T (see Section 5.2 below) is < 0.2846, so S is a rather coarse approximation of T .
However, 110 of the true roots of F (in the cluster S) are in fact within distance 1.26× 10−8

of some root of the lower binomial system G.
The remaining lower binomial systems of F are

(

x1x2 − 1
166
, x2x3 − 1, x3 − 1

)

,
(

x1x2 − x21, x2x3 − x2
1

166
, x3 − 1

)

, and
(

x1x2 − x21, x2x3 − x2
1

166
, x3 − x2

1

1618

)

.

The total number of complex roots for our 4 lower binomial systems is 5566 — exactly
the number of complex roots of F , thanks to a classical result of Bernstein [Ber75]. Using
lower binomial systems to obtain canonical start points for homotopy continuation is pursued
further in [AGGR15, Sec. 3].

8Bertini is a state of the art homotopy solver freely downloadable from https://bertini.nd.edu .
9For our example, fixed precision of 200 digits was insufficient for Bertini to correctly find all complex

roots. However, default adaptive precision gave a correct count.
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Remark 5.3. One should also observe that the total number of real roots for all the lower
binomial systems of F is 8, which also happens to be the exact number of real roots of F .
One isn’t always this lucky, but the probability of successfully counting real roots this way
can be quantified: See [BHPR11] for initial results in this direction, and connections to
A-discriminants. ⋄
5.2. Non-Archimedean Precursors and Simplified Maslov Dequantization.
Recall that C〈〈s〉〉 is the union

⋃

d∈N C
((

s1/d
))

of formal Laurent series fields. While C is
perhaps a more popular field in applications than C〈〈s〉〉, C is more exceptional algebraically:
C is the unique (up to isomorphism) algebraically closed field that is complete with
respect to an absolute value that is unbounded on Z (see, e.g., [EP05, Thm. 1.2.3]). Such an
absolute value is called Archimedean, so let us now review what a non-Archimedean valuation is.
A (non-Archimedean) valuation on a field K is a function ν : K −→ R ∪ {∞} such that

ν(0) =∞ and, for all a, b ∈K, (1) ν(ab) = ν(a) + ν(b) and (2) ν(a + b)≥min{ν(a), ν(b)}
with equality if ν(a) 6= ν(b). Inequality (2) is sometimes called the Ultrametric Inequality.
Note in particular that − log(a + b) ≥ min{− log a,− log b} − log 2 for any a, b ∈ R+, so
− log | · | violates the Ultrametric Inequality when a=b=1. − log | · | is thus sometimes called
the Archimedean valuation on C, and the minus sign on the log is one of the reasons behind
various sign discrepancies when comparing Archimedean and non-Archimedean tropical varieties.

Remark 5.4. Let us note some additional notational divergences in the tropical literature:
In the notation of [AGS17], our ArchTrop(f) would be the log of the set of “tropical roots”
of the “tropical polynomial” maxi∈{1,...,t} |ci|xai defined over the nonnegative reals. However,
most other authors (e.g., [Pin98, MS15]) would instead call maxi∈{1,...,t}{aiw + log |ci|} or
mini∈{1,...,t}{aiw − log |ci|} a tropical polynomial, depending on what semi-ring they prefer.
This in turn introduces a sign flip in the corresponding definitions of tropical root or tropical
variety. (The oldest definition of tropical polynomial is in fact via the minimum of a collection
of linear forms [Pin98].) Because of this sign discrepancy, some authors ([AGS17] included)
use a variant of ArchNewt(f) which implies examining upper hulls, instead of the lower hulls
used here, to define tropical varieties. ⋄
More to the point, let us recall a particular classical non-Archimedean valuation used often

in the current tropical geometry literature.

Definition 5.5. We define the s-adic valuation of any element c=
∑∞

j=k γjs
j/d ∈ C〈〈s〉〉 \ {0}

to be νs(c) := minγj 6=0 j/d, and set νs(0) := ∞. We then define the s-adic Newton

polytope of any f ∈ C〈〈s〉〉
[

x±1
1 , . . . , x±1

n

]

to be Newts(f) := Conv
(

{(ai, νs(ci))}i∈[t]
)

. We
also define the s-adic tropical variety of f to be
Trops(f) :={v∈Rn | (v, 1) is an inner normal of a face of Newts(f) of positive dimension}. ⋄
Example 5.6. We have drawn Newts(f) for the trinomial f(x1) :=s−x161 +x491 below, along
with some representative inner normals for the edges of Newts(f):

There are just two upward-pointing inner normals, and thus just two inner normals of the
form (v, 1):

(

1
16
, 1
)

and (0, 1). So Trops(f)=
{

1
16
, 0
}

here. ⋄
Letting Z∗

s (f) denote the roots of f in (C〈〈s〉〉 \ {0})n, Newton’s 17th-century result on
Puiseux series expansions [New76], in modern language, can then be paraphrased as follows:
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Theorem 5.7. [New76] If f ∈C〈〈s〉〉
[

x±1
1

]

, v∈Q, and L is the face of Newts(f) with inner
normal (v,−1), then f has exactly λ(L) roots, counting multiplicity, with s-adic valuation
v. In particular, νs(Z

∗
s (f))=Trops(f). �

Example 5.8. The trinomial f(x1) := s − x161 + x491 from our last example has exactly 49

roots in C〈〈s〉〉: 16 of the form e2π
√
−1j/16s1/16 +

∑∞
i=2 αi,js

i/16 (for j ∈ [16]) and 33 of the

form e2π
√
−1j/33+

∑∞
i=1 βi,js

i (for j∈ [33]), where αi,j∈Q
[

e2π
√
−1/16

]

and βi,j∈Q
[

e2π
√
−1/33

]

.

So the horizontal lengths (16 and 33) of the two lower edges of Newts(f) indeed count exactly
the number of roots with corresponding valuation. ⋄
Note how the valuations νs(Z

∗
s (f)) are exactly determined by the lower edges of Newts(f),

unlike the Archimedean setting where approximation is unavoidable (witness Example 1.3).
Our Theorem 1.5 is thus an Archimedean analogue of Newton’s result, including counting
norms up to some variant of multiplicity. Dumas, around 1906, extended Theorem 5.7 to the
p-adic complex numbers Cp [Dum06]. In fact, one can replace C〈〈s〉〉 by any algebraically
closed field with non-Archimedean valuation [Wei63].
There are two important additional characterizations of Trops(f), completely parallel to

our earlier Propositions 2.1 and 3.9.

Proposition 5.9. If f ∈C〈〈s〉〉
[

x±1
1

]

then −Trops(f) is the set of slopes of the lower edges

of Newts(f). More generally, if f ∈C〈〈s〉〉
[

x±1
1 , . . . , x±1

n

]

, then

Trops(f)=
{

v∈Rn
∣

∣

∣
min

i
{ai · v + νs(ci)} is attained for at least two distinct values of i

}

.�

The first assertion is elementary, while the second follows easily from the definition of an
inner face normal (see, e.g., [Zie95, Ch. 7]).
For any ζ1, . . . , ζn∈C〈〈s〉〉 \ {0}, let νs(ζ) :=(νs(ζ1), . . . , νs(ζn)). That the last assertion of

Theorem 5.7 can be extended to multivariate polynomials was first observed by Kapranov.

Kapranov’s Non-Archimedean Amoeba Theorem. (Special Case)10 [EKL06] For any f ∈
C〈〈s〉〉

[

x±1
1 , . . . , x±1

n

]

, we have νs(Z
∗
s (f)) = Trops(f) ∩ νs(C〈〈s〉〉)n. �

Our Theorem 3.4 is thus an Archimedean analogue of Kapranov’s Theorem.
We close with some topological observations. First observe that ArchTrop(f) need not be

contained in Amoeba(f), nor even have the same homotopy type as Amoeba(f),
already for n = 1: The example f(x1) = (x1 + 1)2 yields ArchTrop(f) = {± log 2} but
Amoeba(f) = {0}. However, one can always recover ArchTrop(f) as the Hausdorff limit
of a sequence of suitably scaled amoebae. To clarify this, first recall that the Hausdorff
distance between any two subsets X, Y ⊆Rn is

∆(X, Y ) :=max

{

sup
x∈X

inf
y∈Y

|x− y|, sup
y∈Y

inf
x∈X

|x− y|
}

.

Also, the support of a Laurent polynomial f(x)=
∑t

j=1 cjx
aj is Supp(f) :={aj | cj 6=0}.

Corollary 5.10. Let f be any n-variate t-nomial with t≥2 and k :=dimNewt(f). Then:

(1) ∆(ArchTrop(f),Amoeba(f))≤
√
k
⌈

1
4
t(t− 1)

⌉ (

(log 9)t− log 81
2

)

=O
(

t7/2
)

.
(2) There exists a family of Laurent polynomials (fµ)µ≥1 with Supp(fµ)=Supp(f) for all

µ≥1 and ∆
(

1
µ
Amoeba(fµ),ArchTrop(f)

)

−→ 0 as µ −→ ∞.

10Kapranov’s Theorem was originally stated for any algebraically closed field with a non-Archimedean
valuation. Note in particular that νs(C〈〈s〉〉)=Q here.
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We will prove Corollary 5.10 momentarily, but let us first recall one of the consequences of
Maslov dequantization (see, e.g., [Mas86, LMS01, Vir01] and [Mik04, Cor. 6.4]): a method
to obtain any non-Archimedean tropical variety as a limit of a family of scaled Archimedean
amoebae. Assertion (2) thus shows how ArchTrop(f) provides a fully Archimedean version
of this limit. Another precursor to Assertion (2), involving the piecewise linear structure
approached by the intersection of Amoeba(f) with a large sphere, appears in [Ber71] and
[GKZ94, Prop. 1.9, Pg. 197]. Thanks to Assertion (1), we can prove Assertion (2) in just
three lines.

Proof of Corollary 5.10: Assertion (1) of Corollary 5.10 follows immediately from
Assertion (1b) of Theorem 3.4, and the fact that k≤ t − 1. Let us write f(x)=

∑t
j=1 cjx

aj ,

define fµ(x) :=
∑t

j=1 c
µ
j x

aj , and observe that f1=f .

Since |cieai·v|≥|cjeaj ·v| ⇐⇒ |cieai·v|µ≥|cjeaj ·v|µ, we immediately obtain that ArchTrop(fµ)

=µArchTrop(f). So then ∆(Amoeba(fµ),ArchTrop(fµ)) =µ∆
(

1
µ
Amoeba(fµ),ArchTrop(f)

)

and

Assertion (1) thus implies ∆
(

1
µ
Amoeba(fµ),ArchTrop(f)

)

=
O(t7/2)

µ
for all µ≥1. �
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zéros des polynomes et des séries de Laurent’,” Acta Math. 72, (1940), pp. 183–186.
[Pap95] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley, 1995.
[PRS11] Mikael Passare; J. Maurice Rojas; and Boris Shapiro, “New Multiplier Sequences via Discriminant

Amoebae,” Moscow Mathematical Journal (special issue in memory of Vladimir Igorevich Arnold), vol.
11, no. 3, July–Sept. 2011, pp. 547–560.

[PR04] Mikael Passare Hans Rullg̊ard, “Amoebas, Monge-Ampère measures, and triangulations of the New-

ton polytope,” Duke Math. J., Vol. 121, No. 3 (2004), pp. 481–507.
[PT05] Mikael Passare and August Tsikh, “Amoebas: their spines and their contours,” Idempotent math-

ematics and mathematical physics, Contemp. Math., v. 377, Amer. Math. Soc., Providence, RI, 2005,
pp. 275–288.
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