
Randomized and Deterministic Algorithmsfor the Dimension of Algebraic Varieties�Pascal KoiranLaboratoire de l'Informatique du Parall�elismeEcole Normale Sup�erieure de Lyon69364 Lyon Cedex 07, Francekoiran@lip.ens-lyon.frAbstractWe prove old and new results on the complexityof computing the dimension of algebraic varieties. Inparticular, we show that this problem is NP-completein the Blum-Shub-Smale model of computation over C ,that it admits a sO(1)DO(n) deterministic algorithm,and that for systems with integer coe�cients it is inthe Arthur-Merlin class under the Generalized Rie-mann Hypothesis. The �rst two results are based on ageneral derandomization argument.1 IntroductionWe wish to compute the dimension of an algebraicvariety V � Cn de�ned by a system of algebraic equa-tions f1(x) = 0; : : : ; fs(x) = 0 (1)where fi 2 C [X1 ; : : : ; Xn]. This can be formalized asa decision problem DIMC. An instance of DIMC is asystem of this form together with an integer d � n.An instance is accepted if the variety de�ned by thesystem has dimension at least d. We also consider foreach �xed value of d the restriction DIMdC of DIMC.For instance, DIM0C is the problem of deciding whethera variety has dimension � 0, i.e., is nonempty. Thisproblem has sometimes been called Hilbert's Nullstel-lensatz (HNC). We also consider systems with integercoe�cients (in the standard Turing machine model)since we can give further complexity bounds in thatcase. The corresponding problems are denoted DIM,DIMd and HN.We show that there is a simple polynomial-timerandomized reduction from DIMC to HNC. It has�This work was supported by the ESPRIT Neurocolt Work-ing Group No. 8556.

been shown in [16] that under the Generalized Rie-mann Hypothesis (GRH), HN is in the Arthur-Merlinclass (AM). This complexity class is included in thesecond level (�2) of the polynomial hierarchy. It fol-lows from this result and from the randomized reduc-tion that DIM 2 AM as well.Without GRH it is only known that HN 2PSPACE, and that HNC can be solved in parallel poly-nomial time. It follows from this randomized reduc-tion that the same bounds apply to DIM and DIMC.This is not a new result: see [7, 11, 12], and also [19]where special attention is paid to uniformity issues.Another early reference for that problem (with lessemphasis on complexity issues) is [18]. The PSPACEalgorithm described in section 4.3 seems to be simplerthan previously published algorithms.In [8] and [12], \polynomial time" means polyno-mial in the input size and in Dn, where D is an upperbound on the degree of the fi's. In fact, the dimen-sion cannot be computed in polynomial time in theusual sense, even if we use a dense representation forthe polynomials. To make this point clear, we give a(very simple) NP-hardness proof in section 1.3.Using a general derandomization argument, we con-vert the randomized reduction to HNC into a de-terministic reduction, showing that DIMC is NP-complete in the Blum-Shub-Smale model of computa-tion over C [3]. This is perhaps only the second gen-uine example of a NPC-complete problem (all other ex-amples known to the author are straightforward varia-tions on HNC, the canonical NPC-complete problem).This yields a deterministic algorithm for DIMC withthe same sequential complexity as the non-uniform al-gorithm of [12], i.e., sO(1)DO(n). A similar result isestablished in [8], albeit for projective varieties only(the author claims that his result also extends to a�nevarieties). Also the model of computation is di�erent:Chistov's algorithm is not algebraic in the sense that1



the coe�cients of input polynomials must be given asa sequence of bits1.1.1 Outline of the randomized algorithmMany previous algorithms are based on an e�ec-tive version of the Noether normalization lemma. Weuse a di�erent geometric idea (see section 2). Avoid-ing Noether normalization results in a simpler algo-rithm, especially for the PSPACE bound. For thereduction to HN, we pick a \random" matrix A andcheck whether the transformed varietyAV has a denseprojection in C d . This is a weaker condition than inNoether Normalization. It is sometimes pointed out inthe literature that generic linear transformations canblow up a system's size. This is certainly true, butfor the problem under consideration there are at leasttwo simple ways of getting around this di�culty (seesection 4).To check density in C d , we pick a generic point inRd and accept if there exists a point of AV \above"x. This can be checked by solving an instance of HNin dimension n � d. Here \generic" means that theset of bad choices is nowhere dense (and has Lebesguemeasure 0). This procedure can thus be formalized asa probabilistic algorithm that draws random elementsfrom R. In fact we work with ordinary probabilisticalgorithms (random elements are from f0; 1g). Any al-gebraic algorithm that draws random elements fromRcan be e�ciently converted into an ordinary proba-bilistic algorithm [14]. Here we use special features ofthe geometry of this problem (and a result from [14])to obtain better bounds.1.2 NotationsLet S be a system of the form (1), where the fi'shave degree di � D. For the DIM problem, the sizeof a system is the bit size of a representation of S in asuitable binary encoding scheme. As usual, for DIMCthe size of each complex coe�cient is de�ned to be 1.In this paper we use a sparse representation. Thismeans that we do not charge for monomials with acoe�cient equal to 0. A polynomial of degree D inn variables can have up to �n+DD � coe�cients. Hencethere can be a big (exponential) gap between the sizesof dense and sparse encodings. In fact this issue isnot that important because one can always assume1The �eld of coe�cients is represented as an algebraic ex-tension of a transcendental extension of Q, and the generatorsof this transcendental extension are simply represented by newindeterminates. In this way he still manages to allow arbitrarycomplex coe�cients.

that the fi's are of degree di � 2. Indeed, the generalcase of DIM (or DIMC) is polynomial-time many-onereducible to this special case: one just has to introducenew variables that help represent monomials of highdegree (by \repeated squaring"). Let S0 be the systemobtained from S by this procedure. The polynomialsin S0 are polynomials of degree at most 2 in x 2 Cnand new variables xn+1; : : : ; xn+k. Let us illustratethis on a random example: starting from� x5y4 + x+ z2 = 0x2 � y3 + 2xyz = 0we obtain8<: r = x2; s = r2; t = sx;u = y2; v = u2;w = xytv + x+ z2 = 0x2 � uy + 2wz = 0:Let V � Cn be the variety de�ned by S, and V 0 �Cn+k the variety de�ned by S0. These two vari-eties have the same dimension since the projection�n : Cn+k ! Cn satis�es:1. �n(V 0) = V ;2. each point of V has a unique preimage in V 0.Since S0 can be constructed from S in polynomialtime, the computation of dim V can be reduced tothe computation of dimV 0.1.3 NP-hardnessProposition 1.1 For every d � 0, DIMdC is NPC-hard and DIMd is NP-hard.Proof. DIM0C is the canonical NPC-complete problem.To show that DIMdC is NPC-hard for d � 1, we ex-hibit a (trivial) reduction from DIM0C to DIMdC. Thereduction is as follows: to decide whether V � Cn isnonempty, we ask whether V 0 = V � C d has dimen-sion at least d (V 0 � Cn+d is de�ned by the samesystem of equations as V ; the d additional variablesxn+1; : : : ; xn+d do not appear in this system). If V isempty, V 0 is also empty; and if V is nonempty, V 0 hasdimension d+ dimV .Since DIM0 is NP-hard, the same reduction showsthat DIMd is NP-hard as well. �It is clear from the proof (or from section 1.2) thatthis result still holds even if we restrict our attentionto polynomials of degree 2 and if we use dense repre-sentations.2



1.4 De�nable SetsA basic quasi-algebraic set of Cn is de�ned by asystem of polynomial equalities and inequalities of theformP1(x) = 0; : : : ; Pk(x) = 0; Q1(x) 6= 0; : : : ; Ql(x) 6= 0where P1; : : : ; Pk; Q1; : : : ; Ql are in C [X1 ; : : : ; Xn]. Aquasi-algebraic set (or constructible) set is a �niteunion of basic quasi-algebraic sets. By quanti�er elim-ination, a set is quasi-algebraic if and only if it is de�n-able in the �rst-order theory of (C ;+; :). The followingresult from [10] gives an e�ective version of quanti�erelimination.Theorem 1.2 Let K be an algebraically closed �eldand � a prenex formula in the �rst-order theory of K.Let r be the number of quanti�er blocks, n the totalnumber of variables, and �(�) the total degree of �,de�ned as: �(�) = 2 + sXi=1 deg Fiwhere F1; : : : ; Fs are the polynomials occurring in �.� is equivalent to a quanti�er-free formula 	 in whichall polynomials have degree at most2nO(r)(log �(�))O(1) :The number of polynomials occurring in 	 isO(�(�)nO(r)).Moreover, when K is of characteristic 0 and � is aformula in which all constants are integers of bit-sizeat most L, the constants in  are integers of bit sizeat most L:2nO(r)(log �(�))O(1) .2 Normal PositionLet I � f1; : : : ; ng be a set of indices. �I : Cn !C jIj denotes the projection on the jIj-dimensionalsubspace de�ned by the system of equations fxi =0; i 62Ig. It is well known (see e.g. Corollary 4 in sec-tion 9.5 of [9]) that for any algebraic variety V � Cnof dimension d,1. for k � d there exists a set I of k indices suchthat �I(V ) is dense in C k ;2. for k > d there does not exist a set of k indiceswith this property.

We say that V is in normal position with respect to theset of variables fXi; i 2 Ig if �I(V ) is dense in C jIj(this terminology may not be quite standard). Wesay that V is in normal position if it is in normalposition with respect to fX1; X2; : : : ; Xdg, and write�d for �f1;2;:::;dg.It is well known that applying a generic linear trans-formation to V yields a variety of dimension d in nor-mal position. We need to precise the exact meaningof \generic" in this context.If A is a n� n matrix, AV denotes the image of Vby the linear transformation x 7! Ax.Theorem 2.1 Let V � Cn be a variety of dimensiond. Let SV � Cn2 be the set of matrices A 2 Mn(C )such that:1. A is invertible;2. AV is a variety of dimension d in normal posi-tion.SV contains a set of the form PV (A) �detA 6= 0 wherePV 2 C [X1 ; : : : ; Xn2] is a multilinear polynomial ofdegree at most d.A is invertible i� detA 6= 0, and in this case AV is avariety of the same dimension. In order to show thatnormal position follows from the additional assump-tion PV 6= 0, we �rst study a special case.Lemma 2.2 Theorem 2.1 holds when V is an a�nesubspace.Proof.Let fv1; : : : ; vdg be a basis of V . fAv1; : : : ; Avdg is abasis of AV hence f�d(Av1); : : : ; �d(Avd)g generates�d(AV ). Thus �d(AV ) = C d ifdet(�d(Av1); : : : ; �d(Avd)) 6= 0: (2)This is a multilinear condition of degree at most d inthe coe�cients of A. �Proof of Theorem 2.1. By decomposing V in irre-ducible components if necessary, we may assume thatV is irreducible. Let x0 2 V be a smooth point of V .The tangent space T to V in x0 has dimension d. Letus apply Lemma 2.2 to T : we claim that one can takePV = PT . Indeed, let A be a matrix in ST . AT isthe tangent space to AV in Ax0. By de�nition of ST ,�d(AT ) = C d and therefore by the implicit functiontheorem (Corollary 1.26 in [21]), �d(AV ) contains anopen set. Hence �d(AV ) is dense in C d . �3



Of course dimAV < dimV is possible if A is not in-vertible (take for instance V = f(x1; x2); x2 = 0g andA : (x1; x2) 7! (x2; x2)).Remark 2.3 If V is given by (1) the change of vari-ables x = A�1y yields a system of equations for AV .This requires a matrix inversion. Alternatively, onecould perform the change of variables x = Ay. Thenno matrix inversion is required but the coe�cients ofAmust now avoid the zero set of a polynomial of degreed(n� 1), instead of degree d only in Theorem 2.1.3 Connected ComponentsIf the projection of an algebraic variety is dense inC l then \most" points with integer coordinates belongto the projection. Theorem 3.9 provides an e�ectiveversion of this statement.In this section we need to go back and forth betweenreal and complex space. If z = (x1 + iy1; : : : ; xn +iyn) 2 Cn , ẑ = (x1; y1; x2; y2; : : : ; xn; yn) 2 R2n de-notes the \reali�cation" of z. And for V � Cn ,V̂ = fx̂; x 2 V g. If V is de�ned by a system of spolynomial equations of degree bounded by D, V̂ isde�ned by a system of 2s equations with the samedegree bound.As in the complex case, �k : Rm ! Rk denotesprojection on the �rst k components (usually, m =2n).The number of connected components of a setU � Rm is denoted B0(U ). The following bound isTheorem 4.4.1 from [1] (see also [4]).Theorem 3.1 Let P 2 R[X1; : : : ; Xm] be a polyno-mial of degree D. The zero set of P has at mostDm�1(D + 2) connected components.A similar bound for systems of algebraic equations im-mediately follows. Note that the number of equationsdoes not appear in that bound.Corollary 3.2 Let W � Rm be de�ned by a systemf1(x) = 0; : : : ; fs(x) = 0 (3)where fi 2 R[X1; : : : ; Xm] is a polynomial of degree atmost D: B0(W ) � (2D)m�1(2D + 2).Proof. Apply Theorem 3.1 to P =Psi=1 f2i . �In section 5 we will need a further bound.De�nition 3.3 Fix s polynomials f1; : : : ; fs 2R[X1; : : : ; Xm]. A sign condition � is an element of

f�1; 0; 1gs. A point x 2 Rm satis�es � if fi(x) < 0when �i = �1, fi(x) = 0 when �i = 0, and fi(x) > 0when �i = 1. The sign condition is consistent if it issatis�ed by some x 2 Rm. A cell is a connected com-ponent of the set of points satisfying a sign condition.By de�nition, the cells form a partition of Rm. Theyare connected, and the fi's have constant signs on eachcell (and they are maximal with this property).Theorem 3.4 Let f1; : : : ; fs 2 R[X1; : : : ; Xm] be spolynomials of degree at most D. They de�ne at most(sD + 1)(2sD + 1)m+1(4sD + 1)m cells.Proof. There are at most (2sD+1)(4sD+1)m consis-tent sign conditions [20]. By [1] (after correction of atypo in Proposition 4.4.5), the set of points satisfyinga given sign condition has at most (sD+1)(2sD+1)mconnected components. Taking the product of thesetwo quantities gives the desired bound. �This result can be somewhat improved by using War-ren's bounds [24].Corollary 3.5 Let F (u) (with u 2 Rm) be aquanti�er-free formula involving s atomic predicatesof degree at most D. The set S of u 2 Rm satisfy-ing F has at most (sD + 1)(2sD + 1)m+1(4sD + 1)mconnected components.Proof. Each cell de�ned by the s atomic predicates iseither included in a unique connected component ofS, or in a unique connected component of its comple-ment. Hence the number of cells is an upper bound onthe number of connected of S (and of its complement).�In order to work with real rather than complex samplepoints, we will use the following easy lemma.Lemma 3.6 If a quasi-algebraic set E � Cn is densein Cn then E \Rn is dense in Rn, otherwise E \Rnhas Lebesgue measure 0.Proof. If E is dense in Cn it contains a set of the formP 6= 0 where P 2 C [X1 ; : : : ; Xn] is a nonconstantpolynomial. Write P = Q + iR with Q and R inR[X1; : : : ; Xn]. For x 2 Rn, P (x) 6= 0 i� Q(x) 6= 0 orR(x) 6= 0. Either P or Q must be nonconstant, andthe complement of the zero set of that polynomial isdense in Rn.If E is not dense in Cn it is included in a set of theform P = 0 where P 2 C [X1 ; : : : ; Xn] is a nonconstantpolynomial. By the argument above this is equivalentfor x 2 Rn to Q(x) = 0 and R(x) = 0, where Q andR are the real and imaginary parts of P . �4



ForW � Rm, �h(W ) denotes the proportion of pointswith integer coordinates smaller than h that lie in W ,i.e., �h(W ) = jW \ [h]nj=hnwhere [h] = f0; 1; : : : ; h� 1g.We need a result which was established in [14] (withslightly di�erent notations).Theorem 3.7 Let E � [0; h]m be a measurable set.Let �(E) be the maximum number of connected com-ponents of an intersection E \� where � is an axis-parallel line.If �(E) is �nite, j�(E \ [0; h]m)=hm � �h(E)j �m�(E)=h.Theorem 3.8 Let W � Rm be de�ned by a system ofthe form (3). The image of W by the projection �k :Rm! Rk satis�es: �(�k(W )) � (2D)m�k(2D + 2).Proof. We need to boundB0(U\�) where U = �k(W )and � is an axis-parallel line. Assume for instancethat fx1 = a1; : : : ; xk�1 = ak�1g is an equation of� (i.e., � is parallel to the last axis). U \ � is theprojection on � of a variety W 0 � Rm. A system ofequations for W 0 can be obtained by adding the equa-tions x1 = a1; : : : ; xk�1 = ak�1 to (3). B0(U \�) �B0(W 0) since projections cannot increase B0. More-over, B0(W 0) = B0(W 00) where W 00 � Rm�k+1; asystem of equations for W 00 can be obtained by mak-ing the substitutions x1 = a1; : : : ; xk�1 = ak�1 in (3).Hence B0(W 00) � (2D)m�k(2D + 2) by Theorem 3.2.�Theorem 3.9 Let V � Cn be de�ned by a system ofdegree-D equations, and Vl = �l(V ) \Rl.If �l(V ) is dense in C l then Vl is dense in Rland for any h � 1, �h(Vl) � 1 � C=h where C =l(2D)2n�2l(2D + 2).If V is not dense in C l then �(Vl) = 0 and �h(Vl) �C=h.Proof. Let Wl = �2l(V̂ ) \ (R � f0g)l. Observethat �(Vl) = �(Wl) since the points of Wl are ob-tained from the points of Vl by interleaving l '0'components. Moreover �(Wl) � �(�2l(V̂ )) and byTheorem 3.8, �(�2l(V̂ )) � (2D)2n�2l(2D + 2): ByLemma 3.6, �(Vl \ [0; h]l) = hl if �l(V ) is dense inC l , and �(Vl \ [0; h]l) = 0 otherwise. Hence the resultfollows from Theorem 3.7 applied to E = Vl. �We conclude this section with a similar result for theset SV of \good" matrices de�ned in Theorem 2.1. Asin Theorem 3.9 we prefer to work with real rather thancomplex coe�cients, so we deal with RV = SV \Rn2instead of SV proper.

Theorem 3.10 Let V � Cn be a variety of dimensiond � 1: �h(RV ) � 1� 2n2=h.Proof. By Theorem 2.1 it is enough to show that�h(R0V ) � 2n2=h, where R0V is the set of real ma-trices such that PV : detA = 0. This set has measure 0since PV 6�0. Moreover, R0V is included in the union ofthe zero sets of two multilinear polynomials. The �rstsuch polynomial is detA, and the second one is ob-tained by separating real and imaginary parts in (2).Thus it remains to show that �h(Z(P )) � n2=h forthe zero set of any nonzero multilinear polynomialP 2 R[X1; : : : ; Xn2 ]. This follows directly from Theo-rem 3.7 since �(Z(P )) � 1. �Remark 3.11 Theorem 3.7 is a generalization ofSchwarz's bound for testing polynomial identities [23].He gave the same bound for the special case E = Z(P )where P is nonzero polynomial of degree d, with �(E)replaced by its worst case upper bound d. Instead ofTheorem 3.7, one could use his bound together withan \e�cient" quanti�er elimination result in the proofof Theorem 3.9 (this would presumably give worse re-sults). Schwarz's bound could also be applied moredirectly in Theorem 3.10 (yielding also a slightly worseresult).4 Randomized ReductionIt is sometimes claimed in the literature thatgeneric linear transformations do not preserve sparse-ness. Indeed, after the change of variables x = A�1y,a monomial of the form xa11 � � �xann in (1) will be re-placed by a sum of na1+���+an � nD monomial in they variables. However, as pointed out in section 1.2,we can (and will) assume that D = 2. Therefore wecan compute a system of equations for AV in poly-nomial time (a more practical solution to that prob-lem is presented in section 4.2). If A turns out to benon-invertible the algorithm halts and rejects V (it isdeemed to be of dimension< d). In practice one wouldcontinue drawing random matrices until an invertiblematrix is found.The precision that should be used for the randomelements can be estimated by Theorems 3.9 and 3.10.Assume �rst that V has dimension at least d. Thealgorithm can fail to accept V only if:1. A is not in RV , or2. A is in RV but the random point x 2 [h]d is notin �d(AV ).5



By Theorem 3.10 the probability of 1. is at most2n2=h. Therefore we need to use only logh = 4 +2 logn bits for the entries of A to make this probabil-ity smaller than, say, 1/8.If A is in RV then by de�nition �d(AV ) is dense inC d . Hence by Theorem 3.9 the probability of 2. is atmost 6d:42n�2d=h. Therefore it su�ces to uselogh = 4 + log 3d+ 2(2n� 2d) (4)bits for the components of x to make this probabilitysmaller than 1/8.These bounds also apply when V has dimensionless than d. For any invertible matrix A, AV also hasdimension less than d therefore �d(AV ) is not dense inC d . Hence by Theorem 3.9 the probability of pickinga point x 2 �d(AV ) is also bounded by 6d:42n�2d=h.4.1 Conditional ResultThis reduction works for systems with arbitrarycomplex coe�cients. For systems with integer coef-�cients, it follows from the result HN 2 AM [16] thatDIM 2 AM as well.Theorem 4.1 Under the Generalized Riemann Hy-pothesis, DIM 2 AM.There are three stages of randomization in the cor-responding AM algorithm: the two stages describedabove (choice of a random matrix and of a randompoint) plus the randomization stage of the AM algo-rithm for HN [16]. These random stages are followedby the nondeterministic stage of that algorithm.Note that this AM algorithm for DIM has two-sidederror: it could fail to accept a positive instance due thechoice of a bad matrix or a bad point; and it could failto reject a negative instance due to the choice of abad point (there are no bad matrices for negative in-stances) or due to a bad random choice in the AMalgorithm for HN. In contrast, that algorithm hasone-sided error: positive instances of HN (satis�ablesystems) are always correctly classi�ed. One can ar-gue that this di�erence between HN and DIM is onlysuper�cial since an AM algorithmwith two-sided errorcan always be converted into an AM algorithm withone-sided error ([25], Theorem 2). In fact, we will seein Theorem 5.8 of section 5 that there is a determin-istic reduction of DIM to HN. This gives directly anAM algorithm with one-sided error for DIM.4.2 Lazy Linear TransformationsUp to now we have used the assumption D � 2 topreserve sparseness under the linear transformation

V 7! AV . There is another simple solution to thatproblem. Instead of performing this linear transfor-mation explicitly we just pretend to perform it. Thatis, we consider the variety V̂ � C 2n de�ned by thesystem � fi(x) = 0; i = 1; : : : ; sy = Ax: (5)It is clear that �d(AV ) = �̂d(V̂ ) where �̂d : C 2n !C d denotes projection on the variables y1; : : : ; yd.Therefore in order to �nd out whether a given point(y1; : : : ; yd) is in �d(AV ) we can substitute its compo-nents in (5) and check whether the resulting system(2n equations in 2n � d variables) is satis�able. Infact, the last n�d equations can be dropped from thissystem since they are automatically satis�ed (from therelation y = Ax) if a solution exists for the x variables.This yields a system of s + d equations in x1; : : : ; xn.This \lazy" solution seems to be quite practicalsince no additional variable is introduced, and thesparsity of the system is preserved (we just add d linearequations). Note that this method can be interpretedas follows: a variety has dimension at least d if it has anonempty intersection with a generic a�ne subspaceof dimension n � d. A similar idea is used in [8]: avariety has dimension at most d if it has a �nite in-tersection with a generic a�ne subspace of dimensionn� d.4.3 Space ComplexityWithout GRH we only know that HN 2 PSPACE.Since the reduction described above can be imple-mented in polynomial space we can still conclude thatDIM 2 PSPACE. In fact there is no need for a lin-ear transformation in a PSPACE algorithm: we canuse directly the characterization of dimension givenat the beginning of section 2. That is, we enumer-ate the �nd� sets of d indices. This requires only O(n)space. For each such set we check whether �I(V ) isdense in C d . To do this we enumerate the hd pointsof [h]d and check whether a majority of them is in�I(V ). By (4) this second enumeration procedure re-quires O(dn) space. This yields the following result.Theorem 4.2 DIM 2 PSPACE.The above algorithm is quite simple but by no meansoptimal. The best bounds are polynomial in n butonly polylogarithmic in the other parameters (thoseare bounds on the work space only; the input spaceis not counted). Here we are polynomial in n (this isarguably the most important parameter) but cannotbe polylogarithmic in the other parameters with the6



present technique. For instance, just copying a coe�-cient of the input system requires space L, and this isde�nitely not (logL)O(1)! The solution to this prob-lem is by now well known: �rst one must design ane�cient parallel algorithm, and then convert it intoa space-e�cient algorithm using the equivalence be-tween parallel time and sequential space discovered byBorodin [5]. This strategy could be carried out withour present algorithm. We will not go into the detailssince they can be found in many recent papers, for in-stance [19]. That paper gives a O(n4 log2(LsD)) spacebound for both HN and DIM (and also for NoetherNormalization).For DIMC, Theorem 4.2 would translate into apolynomial depth bound for uniform arithmetic cir-cuits. In terms of sequential complexity, our enumer-ation procedure implies a uniform bound of roughlysO(1)DO(n2) for DIMC (a similar bound holds for DIM,but bit size must be taken into account). We willsee in section 5 that this bound can be reduced tosO(1)DO(n).5 NPC -CompletenessWe already know that DIMC is NPC-hard. To proveNPC-completeness, we need to exhibit a deterministicreduction to HNC. It will be based on the randomizedreduction of section 4 (as implemented in section 4.2).The main tool is a \derandomization" result of in-dependent interest. First we need to introduce a no-tation: given a formula F (u) where u 2 C k , 9�uF (u)means that the set of u's such that F (u) holds con-tains an open set (or equivalently contains an opendense set). It is known (and not di�cult to prove)that this new quanti�er can be eliminated. Thereforesets de�ned by �rst-order formulas in this extendedlanguage are ordinary quasi-algebraic sets. As ordi-nary quanti�ers, 9� is commutative, i.e.,9�u9�v F (u; v) � 9�v9�u F (u; v) � 9�(u; v) F (u; v):One could also de�ne a 8� quanti�er as:8�u F (u) � :9�u :F (u)but this would be redundant since this double negationis equivalent to 9�u F (u). (Note however that over thereals, one can similarly de�ne two distinct quanti�ers9� and 8�.)Another important remark is that if (and only if)9�u F (u) holds, F (u) holds for any u 2 C k of tran-scendence degree k over the parameters of F .

Theorem 5.1 Let F (u; v) be a �rst-order formulawhere u 2 C p and v 2 C k . The set W (F ) of sequences(v1; : : : ; v2p+1) 2 C k(2p+1) satisfying:8u [9�vF (u; v), jfi; F (u; vi)gj � p+ 1] (6)is dense in C k(2p+1) .This means that to decide whether F (u; v) holds for\most" v's, one just has to check whether it holds fora majority of v1; : : : ; v2p+1. Moreover, the same 2p+1test points can be used for any choice of u and \most"tuples of 2p+ 1 points are good for that purpose.The proof given below relies on transcendence de-gree arguments, and was suggested by Bruno Poizat(personal communication). In model theory thereis abstract version of arguments of this kind, seee.g. [22] (a sequence of algebraically independent com-plex numbers is an example of an \indiscernible" se-quence). It is also possible to use the dimension ofde�nable sets. These two proofs are essentially equiv-alent, but the �rst one is much more concise.Proof of Theorem 5.1. Let K be the �eld extension ofQ generated by the parameters of F . We will showthat if the components of w 2 C k(2p+1) are alge-braically independent over K, then w 2 W (F ) (thiswill prove the theorem since C has in�nite transcen-dence degree). Let w = (v1; : : : ; v2p+1) be such a se-quence, and �x any u 2 C p .Assume for instance that 9�vF (u; v) holds: we needto show that jfi; F (u; vi)gj � p + 1. Let K 0 bethe �eld extension of K generated by the componentsof u. As pointed out before Theorem 5.1, F (u; vi)holds if the components of vi are algebraically inde-pendent over K0. Hence we just have to show thatthere are at least p + 1 such vi's. Let K00 be the�eld extension of K 0 generated by the components ofw: tr.degK0K 00 � k(2p + 1) � p since tr.degKK00 =tr.degK0K00 + tr.degKK0 (this is e.g. the corollary ofTheorem 4 in section V.14.3 of [6]), tr.degKK0 � pand tr.degKK00 � k(2p + 1) by de�nition of w. LetB be a transcendence base of K 00 over K made up ofcomponents ofw. B has at least k(2p+1)�p elements,and can therefore omit some components of at mostp vi's. The other p + 1 vi's have all their componentsin B, and are therefore algebraically independent overK0 as needed.If 9�vF (u; v) does not hold then 9�v:F (u; v) holdsand applying the argument above to :F shows thatjfi; :F (u; vi)gj � p+ 1. �The example F (u; v) � [(v�u1)(v�u2) : : : (v�up)6=0]shows that 2p + 1 cannot be replaced by 2p in this7



theorem. However, for certain formulas one can getaway with fewer test points in the following sense.Theorem 5.2 Let F (u; v) be a �rst-order formulasuch that for any u 2 C p , if 9�vF (u; v) does not holdthen F (u; v) does not hold for any v 2 C k . The setG0(F ) of sequences (v1; : : : ; vp+1) 2 C k(p+1) satisfying:8u [9�vF (u; v), jfi; F (u; vi)gj � 1] (7)is dense in C k(p+1) .Proof. Let K be as in the proof of Theorem 5.1. Weclaim that if the components of w 2 C k(p+1) are al-gebraically independent over K, then w 2 G0(F ). In-deed, one can show as in Theorem 5.1 that for sucha w and any u 2 C k , there must exist at least one viwith components that are algebraically independentover K(u1; : : : ; uk). Then 9�vF (u; v) implies F (u; vi).Conversely, if F (u; vi) holds for some i then by thehypothesis on F , 9�vF (u; v) must hold as well. �The hypothesis in this theorem is satis�ed in partic-ular by formulas of the form F (u; v) � [P (u; v) 6= 0],where P is a polynomial. Such formulas have beenconsidered in the study of \correct test sequences" [13]and in the Witness Theorem [2]. The same exampleshows that the p + 1 bound cannot be improved ingeneral (there is a similar remark in [13]).We will see in Theorem 5.6 that it is possible toconstruct explicitly a sequence in W (F ). Before that,we show thatW (F ) contains a sequence of points with\small" integer coordinates. The proof relies only ona connected component argument. First, note thatW (F ) is an equivalence class of the equivalence rela-tion � on C k(2p+1) de�ned by: v � w i�8u 2 C p [jfi; F (u; vi)gj � p+ 1,jfi; F (u;wi)gj � p+ 1]: (8)Theorem 5.3 Let F (u; v) be a quanti�er-free for-mula involving s polynomials of degree at most D(with u 2 C p and v 2 C k). There exists a se-quence in W (F ) with integer coordinates bounded byk(2p+ 1)(2sD + 1)(4sD + 1)2p+2(8sD + 1)2p+1.Proof. Since W (F ) is dense in C k(2p+1) (by The-orem 5.1), R(F ) = W (F ) \ Rk(2p+1) is dense inRk(2p+1). As in the proof of Theorem 3.9, we need anupper bound on �(R(F )). Fix a sequence w 2 R(F ).Then v 2 Rk(2p+1) is in R(F ) if it satis�es the follow-ing formula of the �rst-order theory of the reals:8u 2 R2p [jfi; F̂ (u; vi)gj � p+ 1 ,jfi; F̂ (u;wi)gj � p + 1]:

Formula F̂ is obtained from F by separating real andimaginary parts; it involves at most 2s atomic predi-cates of degree at most D.We want to bound B0(R(F ) \ �), where � is anaxis-parallel line. Let R0(F ) be the complement ofR(F ) in Rk(2p+1): B0(R(F )\�) � 1+B0(R0(F )\�).R0(F ) \ � is the projection of a semi-algebraic setE � R2p+k(2p+1) de�ned by:[jfi; F̂ (u; vi)gj � p+ 1,jfi; F̂ (u;wi)gj � p+ 1] (9)where all the components vij of the vi's except one (de-pending on the direction of �) are constant. Since pro-jections do not increase B0, B0(R0(F ) \�) � B0(E).Moreover, B0(E) = B0(E0) where E0 � R2p+1; a for-mula de�ning E0 can be obtained from (9) by replac-ing the constant vij's by their values. Hence B0(E0) �(2sD+1)(4sD+1)2p+2(8sD+1)2p+1 by Corollary 3.5,and this is also an upper bound on �(R(F )). It fol-lows from Theorem 3.7 that �h(R(F )) > 0 if h >k(2p + 1)�(R(F )). This implies the existence of apoint in R(F ) with integer coordinates bounded byk(2p+ 1)�(R(F )). �Lemma 5.4 Let H(w) be a quanti�er-free �rst-orderformula where w 2 Cn . Assume that the polynomialsin H are of degree at most D, with integer coe�cientsbounded by M in absolute value. Let (�1; : : : ; �n)be any sequence of integers satisfying �1 � M + 1and �j � 1 + M (D + 1)j�1�Dj�1 for j � 2. ThenH(�1; : : : ; �n) holds if and only if 9�wH(w) holds.Proof. We only need to prove the \if" part since theconverse will follow ifH is replaced by :H. Let us thusassume that 9�wH(w) holds. The subset of Cn de�nedby H is a �nite union of basic quasi-algebraic sets(obtained by putting H in disjunctive normal form),and one of them must be dense. Such a set S is ofthe form P1(w) 6= 0; : : : ; Pm(w) 6= 0 where the Pi'sare non-zero polynomials of degree at most D, withinteger coe�cients bounded by M in absolute value.Then the � de�ned in the statement of the theoremsatis�es Pi(�) 6= 0 for any i = 1; : : : ;m (this is nothard to prove, see e.g. [15]). This implies � 2 S,hence H(�) holds. �Note that the sequence in this lemma can be con-structed in O(log logM + n logD) arithmetic opera-tions (starting from the integer 1).Lemma 5.5 Let F (u; v) be a quanti�er-free formulawhere u 2 C p and v 2 C k , with integer coe�cientsof bit size at most L. Let � be its total degree. One8



can construct in logL+(kp log�)O(1) arithmetic oper-ations a sequence (v1; : : : ; v2p+1) 2W (F ) with integercoordinates. Moreover, this sequence depends only onL, k, p and �.Proof. W (F ) is de�ned by (8), where w is any �xedpoint in W (F ). The total number of variables inthis formula is p + k(2p + 1), its total degree is up-per bounded by 2(2p+ 1)�, and it has a single blockof quanti�ers. In order to have a good bound on thesize of its coe�cients, let us use the point w 2 W (F )given by Theorem 5.3. The result then follows fromLemma5.4, after eliminatingquanti�ers in (8) by The-orem 1.2. �A generalization to quanti�ed formulas follows easily.Theorem 5.6 Let F (u; v) be a prenex formula withr blocks of quanti�ers, and integer coe�cients of bitsize at most L. Let � be its total degree, and m thetotal number of variables (thus if u 2 C p and v 2 C k ,there are m�p�k quanti�ed variables). One can con-struct in logL+(m log�)O(r) arithmetic operations asequence (v1; : : : ; v2p+1) 2 W (F ) with integer coordi-nates. Moreover, this sequence depends only on L, m,r and �.Proof. Eliminate quanti�ers in F with Theorem 1.2and then apply Lemma 5.5. �Theorem 5.7 DIMC is NPC-complete.Proof. Let us start for instance from the algorithmof section 4.2: a variety V has dimension at least dif its intersection with a generic a�ne subspace H ofdimension n�d is nonempty. We want to derandomizeit using Theorem 5.6. For this we consider a formulaF (u; v) where u 2 C p stands for the coe�cients of (1)and v stands for the coe�cients of the d equationsde�ning H. The formula is satis�ed if H \ V 6= ;. ByTheorem 5.6 we can construct deterministically 2p+1a�ne subspaces H1; : : : ;H2p+1 such that dim V � di� a majority of the Hi's have a nonempty intersectionwith V . Therefore a polynomial-size certi�cate thatdim V � d consists of a list of p+1 indices i1; : : : ; ip+1and points x1; : : : ; xp+1 2 Cn such that xj 2 V \Hijfor j = 1; : : : ; p+ 1. �It seems that this NP-completeness proof can beadapted to the real case. The derandomization ar-gument fails in positive characteristic, but it shouldbe possible to obtain a completeness result for non-uniform reductions (see [15] for similar results).

HNC can be solved in sequential time sO(1)DO(n)by a uniform algorithm2 in the sense of [3]. The proofof Theorem 5.7 implies the same bound for DIMC (justsolve the 2p+1 systems independently and take a ma-jority vote). Of course, if we are willing to use a ran-domized algorithm this bound follows from section 4.For systems with integer coe�cients, the reductionto HN can also be performed in polynomial time in thestandard (Turing machine) model of computation.Theorem 5.8 DIM is polynomial-time many-one re-ducible to HN.Proof. In this case we have to construct only a singlea�ne subspace H (apply Theorem 5.6 with p = 0).The coe�cients of the equations de�ning H cannotbe computed explicitly since they have exponentialbinary length. However they can be represented byintroducing new variables, in the spirit of section 1.2.�Conversely, we have seen in the proof of Proposi-tion 1.1 that HN is reducible to DIM. These two prob-lems are therefore polynomially equivalent. The sameremark applies to HNC and DIMC.AcknowledgementsThanks are due to Christian Michaux for discussionson the representation of algebraic equations, and to BrunoPoizat for his proof of Theorem 5.1.References[1] R. Benedetti and J.-J. Risler. Real algebraic and semi-algebraic sets. Hermann, Paris, 1990.[2] L. Blum, F. Cucker, M. Shub, and S. Smale. Algebraicsettings for the problem \P6=NP?". In J. Renegar,M. Shub, and S. Smale, editors, The Mathematics ofNumerical Analysis, volume 32 of Lectures in AppliedMathematics, pages 125{144. American MathematicalSociety, 1996.[3] L. Blum, M. Shub, and S. Smale. On a theory ofcomputation and complexity over the real numbers:NP-completeness, recursive functions and universalmachines. Bulletin of the American Mathematical So-ciety, 21(1):1{46, July 1989.2I have not been able to �nd an appropriate reference inthe litterature. As mentioned in the introduction, Chistov'salgorithm is not algebraic. There are randomized algebraic al-gorithms for HNC [17] and DIMC [12]. It should be possible toderandomize these algorithms using Theorem 5.6.9
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