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ABSTRACT
Relative to the sparse encoding, we show that deciding
whether a univariate polynomial has a p-adic rational root
can be done in NP for most inputs. We also prove a sharper
complexity upper bound of P for polynomials with suit-
ably generic p-adic Newton polygon. We thus improve the
best previous complexity upper bound of EXPTIME. We
also prove an unconditional complexity lower bound of NP-
hardness with respect to randomized reductions, for general
univariate polynomials. The best previous lower bound as-
sumed an unproved hypothesis on the distribution of primes
in arithmetic progression. We also discuss how our results
complement analogous results over the real numbers.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Number-theoretic
computations

Keywords
sparse, p-adic, feasibility, NP, arithmetic progression

1. INTRODUCTION
The fields R and Qp (the reals and the p-adic rationals)

bear more in common than just completeness with respect
to a metric: increasingly, complexity results for one field
have inspired and motivated analogous results in the other
(see, e.g., [Coh69, DvdD88] and the pair of works [Kho91]
and [Roj04]). We continue this theme by transposing re-
cent algorithmic results for sparse polynomials over the real
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numbers [BRS09] to the p-adic rationals, sharpening the
underlying complexity bounds along the way (see Theorem
1.5 below).

For any commutative ring R with multiplicative identity,
let FEASR — the R-feasibility problem (a.k.a. Hilbert’s
Tenth Problem over R [DLPvG00]) — denote the problem of
deciding whether an input F ∈ S

k,n∈N
(Z[x1, . . . , xn])k has

a root in Rn. (The underlying input size is clarified in
Definition 1.1 below.) Observe that FEASR, FEASQ, and
{FEASFq}q a prime power are central problems respectively in
algorithmic real algebraic geometry, algorithmic number the-
ory, and cryptography.

For any prime p and x∈Z, recall that the p-adic valua-
tion, ordpx, is the greatest k such that pk|x. We can extend
ordp(·) to Q by ordp

a
b

:= ordp(a) − ordp(b) for any a, b∈Z;

and we let |x|p := p−ordpx denote the p-adic norm. The
norm | · |p defines a natural metric satisfying the ultramet-
ric inequality and Qp is, tersely, the completion of Q with
respect to this metric. | · |p and ordp(·) extend naturally
to the field of p-adic complex numbers Cp, which is the
metric completion of the algebraic closure of Qp [Rob00, Ch. 3].

We will also need to recall the following containments of
complexity classes: P ⊆ ZPP ⊆ NP ⊆ · · · ⊆ EXPTIME,
and the fact that the properness of every inclusion above
(save P$EXPTIME) is a major open problem [Pap95].

1.1 The Ultrametric Side: Relevance and
Results

Algorithmic results over the p-adics are useful in many settings:
polynomial-time factoring algorithms over Q[x] [LLL82], com-
putational complexity [Roj02], studying prime ideals in num-
ber fields [Coh94, Ch. 4 & 6], elliptic curve cryptography
[Lau04], and the computation of zeta functions [CDV06].
Also, much work has gone into using p-adic methods to al-
gorithmically detect rational points on algebraic plane curves
via variations of the Hasse Principle1 (see, e.g., [C-T98,
Poo06]). However, our knowledge of the complexity of decid-
ing the existence of solutions for sparse polynomial equa-
tions over Qp is surprisingly coarse: good bounds for the
number of solutions over Qp in one variable weren’t even
known until the late 1990s [Len99b]. So we focus on precise
complexity bounds for polynomials in one variable.

1If f ∈ K[x1, . . . , xn] is any polynomial and ZK is its zero
set in Kn, then the Hasse Principle is the implication
[ZC smooth, ZR 6=∅, and ZQp 6=∅ for all primes p] =⇒ ZQ 6=∅.
The Hasse Principle is a theorem when ZC is a quadric
hypersurface or a curve of genus zero, but fails in subtle
ways already for curves of genus one (see, e.g., [Poo01a]).
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Definition 1.1. Let f(x) :=
Pm

i=1 cix
ai ∈ Z[x] satisfy

ci 6= 0 for all i, with the ai pair-wise distinct. We call
such an f a (univariate) mmm-nomial. Let us also define
size(f) :=

Pm
i=1 log2 [(2 + |ci|)(2 + |ai|)] and, for any F :=

(f1, . . . , fk) ∈ (Z[x])k, we define size(F ) :=
Pk

i=1 size(fi).
Finally, we let F1,m denote the subset of Z[x] consisting of
polynomials with exactly m monomial terms ⋄
The degree, deg f , of a polynomial f can sometimes be
exponential in size(f) for certain families of f , e.g.,

d ≥ 2
size(1+5x126+xd)

216 for all d ≥ 127. Note also that Z[x]
is the disjoint union

F

m≥0 F1,m.

Definition 1.2. Let FEASQprimes
denote the problem of

deciding, for an input polynomial system F
∈S

k,n∈N
(Z[x1, . . . , xn])k and an input prime p, whether F

has a root in Qn
p . Also let P⊂N denote the set of primes and,

when I is a family of such pairs (F, p), we let FEASQprimes
(I)

denote the restriction of FEASQprimes
to inputs in I. The

underlying input sizes for FEASQprimes
and FEASQprimes

(I) shall
then be sizep(F ) :=size(F ) + log p (cf. Definition 1.1). ⋄

To state our main results, we will also need a bit of arith-
metic tropicalia.

Definition 1.3. Given any polynomial f(x) :=
Pm

i=1 cix
ai

∈Z[x], we define its p-adic Newton polygon, Newtp(f),
to be the convex hull of2 the points {(ai, ordpci) | i∈{1, . . . , m}}.
Also, a face of a polygon P ⊂ R2 is called lower iff it has
an inner normal with positive last coordinate, and the lower
hull of P is simply the union of all its lower edges. Finally,
the polynomial given by summing the terms of f correspond-
ing to points of the form (ai, ordpci) in some fixed lower face
of Newtp(f) is called a (p-adic) lower polynomial. ⋄

Example 1.4. For the polynomial f(x) defined as
36−8868x+29305x2−35310x3 +18240x4−3646x5 +243x6,
the polygon Newt3(f) has
exactly 3 lower edges and can
easily be verified to resemble
the illustration to the right.
The polynomial f thus has
exactly 2 lower binomials, and
1 lower trinomial. ⋄

While there are now randomized algorithms for factoring
f ∈ Z[x] over Qp[x] with expected complexity polynomial
in sizep(f) + deg(f) [CG00], no such algorithms are known
to have complexity polynomial in sizep(f) alone. Our main
theorem below shows that the existence of such an algo-
rithm would imply a complexity collapse nearly as strong
as P = NP. Nevertheless, we obtain new sub-cases of
FEASQprimes

(Z[x] × P) lying in P.

Theorem 1.5.

1. FEASQprimes
(F1,m × P)∈P for m∈{0, 1, 2}.

2. For any (f, p)∈Z[x] × P such that f has no p-adic lower
m-nomials for m≥ 3, and p does not divide ai − aj for
any lower binomial with exponents {ai, aj}, we can decide
the existence of a root in Qp for f in time polynomial in
sizep(f).

3. There is a countable union of algebraic hypersurfaces
E $ Z[x] × P, with natural density 0, such that
FEASQprimes

((Z[x] × P) \ E) ∈ NP. Furthermore, we can
decide in P whether an f ∈F1,3 lies in E.

2i.e., smallest convex set containing...

4. If FEASQprimes
(Z[x] × P)∈ZPP then NP⊆ZPP.

5. If the Wagstaff Conjecture is true, then FEASQprimes
(Z[x] × P)∈P

=⇒ P=NP, i.e., we can strengthen Assertion (4) above.

Remark 1.6. The Wagstaff Conjecture, dating back to
1979 (see, e.g., [BS96, Conj. 8.5.10, pg. 224]), is the
assertion that the least prime congruent to k mod N is
O(ϕ(N) log2 N), where ϕ(N) is the number of integers in
{1, . . . , N} relatively prime to N . Such a bound is signifi-
cantly stronger than the known implications of the Gener-
alized Riemann Hypothesis (GRH). ⋄

While the real analogue of Assertion (1) is easy to prove,
FEASR(F1,3) ∈ P was proved only recently [BRS09, Thm.
1.3]. That FEASQp(F1,3)∈NP for any prime p is surprisingly
subtle to prove, having been accomplished by the authors
just as this paper went to press [AIRR10].

The intuition behind our algorithmic speed-ups
(Assertions (1)–(3)) is that any potential hardness is caused
by numerical ill-conditioning, quite similar to the sense long
known in numerical linear algebra. Indeed, the classical fact
that Newton iteration converges more quickly for a root ζ∈C
of f with f ′(ζ) having large norm (i.e., a well-conditioned
root) persists over Qp. This lies behind the hypotheses of
Assertions (2) and (3) (see also Theorem 1.11 below). Note
that the hypothesis of Assertion (2) is rather stringent: if
one fixes f ∈F1,m with m≥ 3 and varies p, then it is easily
checked that Newtp(f) is a line segment (so the hypothesis
fails) for all but finitely many p. On the other hand, the
hypothesis for Assertion (3) holds for a significantly large
fraction of inputs (see also Proposition 2.13 of Section 2.4).

Example 1.7. Let T denote the family of pairs (f, p) ∈
Z[x] × P with f(x) = a + bx11 + cx17 + x31 and let T ∗ :=
T \ E. Then there is a sparse 61 × 61 structured matrix
S (cf. Lemma 2.8 in Section 2.3 below) such that (f, p) ∈
T ∗ ⇐⇒ p 6 |detS. So by Theorem 1.5, FEASQprimes

(T ∗) ∈
NP, and Proposition 2.13 in Section 3 below tells us that for
large coefficients, T ∗ occupies almost all of T . In particular,
letting T (H) (resp. T ∗(H)) denote those pairs (f, p) in T
(resp. T ∗) with |a|, |b|, |c|, p≤H, we obtain

#T∗(H)
#T (H)

≥
“

1 − 244
2H+1

” “

1 − 1+61 log(4H) log H
H

”

.

In particular, one can check via Maple that
(−973 + 21x11 − 2x17 + x31, p)∈T ∗

for all but 352 primes p. ⋄
One subtlety behind Assertion (3) is that Qp is uncount-

able and thus, unlike FEASFp , FEASQp does not admit an
obvious succinct certificate. Indeed, the best previous com-
plexity bound relative to the sparse input size appears to
have been FEASQprimes

(Z[x] × P)∈EXPTIME [MW99].3 In

particular, FEASQprimes
(F1,4 ×P)

?∈NP and FEASR(F1,4)
?∈NP

are still open questions [BRS09, Sec. 1.2]. A real analogue
for Assertion (3) is also unknown at this time.

As for lower bounds, while it is not hard to show that
the full problem FEASQprimes

is NP-hard, the least n making
FEASQprimes

(Z[x1, . . . , xn]×P) NP-hard appears not to have
been known unconditionally. In particular, a weaker version
of Assertion (4) was found recently, but only under the truth
of an unproved hypothesis on the distribution of primes in
arithmetic progresion [Roj07a, Main Thm.]. Assertion (4)
thus also provides an interesting contrast to earlier work of

3An earlier result claiming FEASQprimes
(Z[x] × P) ∈ NP for

“most”inputs was announced without proof in [Roj07a, Main
Thm.] (see Proposition 1 there).
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H. W. Lenstra, Jr. [Len99a], who showed that one can actu-
ally find all low degree factors of a sparse polynomial (over
Q[x] as opposed to Qp[x]) in polynomial time. Real ana-
logues to Assertions (4) and (5) are unknown.

1.2 Primes in Random Arithmetic Progressions
and a Tropical Trick

The key to proving our lower bound results (Assertions
(4) and (5) of Theorem 1.5) is an efficient reduction from a
problem discovered to be NP-hard by David Alan Plaisted:
deciding whether a sparse univariate polynomial vanishes at
a complex Dth root of unity [Pla84]. Reducing from this
problem to its analogue over Qp is straightforward, provided
Q∗

p := Qp \ {0} contains a cyclic subgroup of order D where
D has sufficiently many distinct prime divisors. We thus
need to consider the factorization of p − 1, which in turn
leads us to primes congruent to 1 modulo certain integers.

While efficiently constructing random primes in arbitrary
arithmetic progressions remains a famous open problem, we
can now at least efficiently build random primes p such that
p is moderately sized but p− 1 has many prime factors. We
use the notation [j] :={1, . . . , j} for any j∈N.

Theorem 1.8. For any δ > 0, a failure probability
ε ∈ (0, 1/2), and n ∈ N, we can find — within

O
“

(n/ε)
3
2
+δ + (n log(n) + log(1/ε))7+δ

”

randomized bit

operations — a sequence P = (pi)
n
i=1 of consecutive primes

and a positive integer c such that p :=1 + c
Qn

i=1 pi satisfies
log p = O(n log(n) + log(1/ε)) and, with probability ≥1 − ε,
p is prime.

Theorem 1.8 and its proof are inspired in large part by an
algorithm of von zur Gathen, Karpinski, and
Shparlinski [vzGKS96, Algorithm following Fact 4.9].
(Theorem 4.10 of [vzGKS96] does not imply Theorem 1.8
above, nor vice-versa.) In particular, they use an intricate
random sampling technique to prove that the enumerative
analogue of FEASF prime

powers

(Z[x1, x2]× P) is #P-hard [vzGKS96,

Thm. 4.11].
Our harder upper bound results (Assertions (2) and (3)

of Theorem 1.5) will follow in large part from an arithmetic
analogue of a key idea from tropical geometry: toric defor-
mation. Toric deformation, roughly speaking, means clev-
erly embedding an algebraic set into a family of algebraic
sets 1 dimension higher, in order to invoke combinatorial
methods (see, e.g., [EKL06]). Here, this simply means that
we find ways to reduce problems involving general f ∈Z[x]
to similar problems involving binomials.

Lemma 1.9. (See, e.g., [Rob00, Ch. 6, sec. 1.6].) The
number of roots of f in Cp with valuation v, counting mul-
tiplicities, is exactly the horizontal length of the lower face
of Newtp(f) with inner normal (v, 1). ¥

Example 1.10. In Example 1.4 earlier, note that the 3
lower edges have respective horizontal lengths 2, 3, and 1,
and inner normals (1, 1), (0, 1), and (−5, 1). Lemma 1.9
then tells us that f has exactly 6 roots in C3: 2 with 3-adic
valuation 1, 3 with 3-adic valuation 0, and 1 with 3-adic
valuation −5. Indeed, one can check that the roots of f are
exactly 6, 1, and 1

243
, with respective multiplicities 2, 3, and 1. ⋄

Theorem 1.11 [AI10, Thm. 4.5] Suppose (f, p) ∈Z[x]×P,
(v, 1) is an inner normal to a lower edge E of Newtp(f), the
lower polynomial g corresponding to E is a binomial with
exponents {ai, aj}, and p does not divide ai − aj. Then the
number of roots ζ ∈ Qp of f with ordpζ = v is exactly the

number of roots of g in Qp. ¥

Our main results are proved in Section 3, after the devel-
opment of some additional theory below.

2. BACKGROUND
Our lower bounds will follow from a chain of reductions

involving some basic problems we will review momentarily.
We then show how to efficiently construct random primes p
such that p − 1 has many prime factors in Section 2.2, and
then conclude with some quantitative results on resultants
in Sections 2.3 and 2.4.

2.1 Roots of Unity and NP-Completeness
Recall that any Boolean expression of one of the following

forms:
(♦) yi∨yj∨yk, ¬yi∨yj∨yk, ¬yi∨¬yj∨yk, ¬yi∨¬yj∨¬yk,

with i, j, k∈ [3n],
is a 3CNFSAT clause. A satisfying assigment for an
arbitrary Boolean formula B(y1, . . . , yn) is an assigment of
values from {0, 1} to the variables y1, . . . , yn which makes
the equality B(y1, . . . , yn)=1 true. Let us now refine slightly
Plaisted’s elegant reduction from 3CNFSAT to feasibility
testing for univariate polynomial systems over the complex
numbers [Pla84, Sec. 3, pp. 127–129].

Definition 2.1. Letting P := (p1, . . . , pn) denote any
strictly increasing sequence of primes, let us inductively
define a semigroup homomorphism PP — the Plaisted
morphism with respect to P — from certain Boolean
expressions in the variables y1, . . . , yn to Z[x], as follows:4

(0) DP :=
Qn

i=1 pi, (1) PP (0) :=1, (2) PP (yi) :=xDP /pi − 1,

(3) PP (¬B) := (xDP − 1)/PP (B), for any Boolean
expression B for which PP (B) has already been defined,
(4) PP (B1 ∨ B2) := lcm(PP (B1),PP (B2)), for any Boolean
expressions B1 and B2 for which PP (B1) and PP (B2) have
already been defined. ⋄

Lemma 2.2. [Pla84, Sec. 3, pp. 127–129] Suppose P =
(pi)

n
k=1 is an increasing sequence of primes with log(pk) =

O(kγ) for some constant γ. Then, for all n ∈ N and any
clause C of the form (♦), we have size(PP (C)) polynomial in
nγ . In particular, PP can be evaluated at any such C in time
polynomial in n. Furthermore, if K is any field possessing
DP distinct DP

th roots of unity, then a 3CNFSAT instance
B(y) := C1(y)∧· · ·∧Ck(y) has a satisfying assignment iff the
univariate polynomial system FB := (PP (C1), . . . ,PP (Ck))
has a root ζ∈K satisfying ζDP − 1. ¥

Plaisted actually proved the special case K =C of the above
lemma, in slightly different language, in [Pla84]. However,
his proof extends verbatim to the more general family of
fields detailed above.

2.2 Randomization to Avoid Riemann
Hypotheses

The result below allows us to prove Theorem 1.8 and fur-
ther tailor Plaisted’s clever reduction to our purposes. We
let π(x) denote the number of primes ≤x, and let π(x; M, 1)
denote the number of primes ≤ x that are congruent to
1 mod M .

4Throughout this paper, for Boolean expressions, we will
always identify 0 with “False” and 1 with “True”.
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AGP Theorem. (very special case of [AGP94, Thm. 2.1,
pg. 712]) There exist x0 >0 and an ℓ∈N such that for each
x≥x0, there is a subset D(x)⊂N of finite cardinality ℓ with

the following property: If M ∈N satisfies M ≤x2/5 and a 6 |M
for all a∈D(x) then π(x; M, 1)≥ π(x)

2ϕ(M)
. ¥

For those familiar with [AGP94, Thm. 2.1, pg. 712], the
result above follows immediately upon specializing the
parameters there as follows:

(A, ε, δ, y, a)=(49/20, 1/2, 2/245, x, 1)
(see also [vzGKS96, Fact 4.9]).

The AGP Theorem enables us to construct random primes
from certain arithmetic progressions with high probability.
An additional ingredient that will prove useful is the famous
AKS algorithm for deterministic polynomial-time primal-
ity checking [AKS02]. Consider now the following algorithm.

Algorithm 2.3.
Input: A constant δ >0, a failure probability ε∈ (0, 1/2), a
positive integer n, and the constants x0 and ℓ from the AGP
Theorem.
Output: An increasing sequence P = (pj)

n
j=1 of primes,

and c ∈ N, such that p := 1 + c
Qn

i=1 pi satisfies log p =
O(n log(n)+log(1/ε)) and, with probability 1−ε, p is prime.
In particular, the output always gives a true declaration as
to the primality of p.

Description:
0. Let L :=⌈2/ε⌉ℓ and compute the first nL primes p1, . . .,

pnL in increasing order.
1. Define (but do not compute) Mj :=

Qjn
k=(j−1)n+1 pk for

any j ∈ N. Then compute ML, Mi for a uniformly

random i∈ [L], and x :=max
n

x0, 17, 1 + M
5/2
L

o

.

2. Compute K :=⌊(x − 1)/Mi⌋ and J :=⌈2 log(2/ε) log x⌉.
3. Pick uniformly random c∈ [K] until one either has p :=

1 + cMi prime, or one has J such numbers that are each
composite (using primality checks via the AKS algorithm
along the way).

4. If a prime p was found then output
“1 + c

Qin
j=(i−1)n+1 pj is a prime that works!”

and stop. Otherwise, stop and output
“I have failed to find a suitable prime. Please

forgive me.” ⋄

Remark 2.4. In our algorithm above, it suffices to find in-
teger approximations to the underlying logarithms and square-
roots. In particular, we restrict to algorithms that can com-
pute the log2 L most significant bits of logL, and the 1

2
log2 L

most significant bits of
√
L, using

O((logL)(log logL) log log logL)
bit operations. Arithmetic-Geometric Mean Iteration and
(suitably tailored) Newton Iteration are algorithms that re-
spectively satisfy our requirements (see, e.g., [Ber03] for a
detailed description). ⋄

Remark 2.5. An anonymous referee suggested that one
can employ a faster probabilistic primality test in Step 3 (e.g,
[Mor07]), reserving the AKS algorithm solely for so-called
pseudoprimes. This can likely reduce the complexity bound
from Theorem 1.8 slightly. ⋄
Proof of Theorem 1.8: It clearly suffices to prove that
Algorithm 2.3 is correct, has a success probability that is at
least 1 − ε, and works within

O
“

`

n
ε

´

3
2
+δ

+ (n log(n) + log(1/ε))7+δ
”

randomized bit operations, for any δ > 0. These assertions
are proved directly below. ¥

Proving Correctness and the Success Probability
Bound for Algorithm 2.3: First observe that M1, . . . , ML

are relatively prime. So at most ℓ of the Mi will be
divisible by elements of D(x). Note also that K ≥ 1 and
1 + cMi ≤ 1 + KMi ≤ 1 + ((x − 1)/Mi)Mi = x for all i∈ [L]
and c∈ [K].

Since x≥ x0 and x2/5 ≥ (x − 1)2/5 ≥
“

M
5/2
i

”2/5

= Mi for

all i∈ [L], the AGP Theorem implies that with probability
at least 1 − ε

2
(since i ∈ [⌈2/ε⌉ℓ] is uniformly random), the

arithmetic progression {1 + Mi, . . . , 1 + KMi} contains at

least π(x)
2ϕ(Mi)

≥ π(x)
2Mi

primes. In which case, the proportion of

numbers in {1+Mi, . . . , 1+KMi} that are prime is π(x)
2KMi

>
π(x)

2+2KMi
> x/ log x

2x
= 1

2 log x
, since π(x)>x/ log x for all x≥17

[BS96, Thm. 8.8.1, pg. 233]. So let us now assume that i is
fixed and Mi is not divisible by any element of D(x).

Recalling the inequality
`

1 − 1
t

´ct≤e−c (valid for all c≥0
and t≥1), we then see that the AGP Theorem implies that
the probability of not finding a prime of the form p=1+cMi

after picking J uniformly random c∈ [K] is bounded above

by
“

1 − 1
2 log x

”J

≤
“

1 − 1
2 log x

”2 log(2/ε) log x

≤e− log(2/ε) = ε
2
.

In summary, with probability ≥1− ε
2
− ε

2
=1−ε, Algorithm

2.3 picks an i with Mi not divisible by any element of D(x)
and a c such that p := 1 + cMi is prime. In particular, we
clearly have that

log p=O(log(1 + KMi))=O(n log(n) + log(1/ε)). ¥

(Complexity Analysis of Algorithm 2.3): Let L′ :=nL
and, for the remainder of our proof, let pi denote the ith

prime. Since L′≥6, we have that
pL′ ≤ L′(log(L′) + log log L′)

by [BS96, Thm. 8.8.4, pg. 233]. Recall that the primes in [L]
can be listed simply by deleting all multiples of 2 in [L], then
deleting all multiples of 3 in [L], and so on until one reaches

multiples of ⌊
√
L⌋. (This is the classic sieve of Eratosthenes.)

Recall also that one can multiply an integer in [µ] and an
integer [ν] within
O((log µ)(log log ν)(log log log ν) + (log ν)(log log µ) log log log µ)
bit operations (see, e.g., [BS96, Table 3.1, pg. 43]). So let us
define the function λ(a) := (log log a) log log log a.
Step 0: By our preceding observations, it is easily checked
that Step 0 takes O(L′3/2 log3 L′) bit operations.
Step 1: This step consists of n−1 multiplications of primes
with O(log L′) bits (resulting in ML, which has O(n log L′)
bits), multiplication of a small power of ML by a square root
of ML, division by an integer with O(n log L′) bits, a con-
stant number of additions of integers of comparable size, and
the generation of O(log L) random bits. Employing Remark
2.4 along the way, we thus arrive routinely at an estimate of

O
`

n2(log L′)λ(L′) + log(1/ε)λ(1/ε))
´

for the total number of bit operations needed for Step 1.
Step 2: Similar to our analysis of Step 1, we see that Step
2 has bit complexity

O((n log(L′) + log(1/ε))λ(n log L′)).
Step 3: This is our most costly step: Here, we require

O(log K)=O(n log(L′) + log(1/ε))
random bits and J = O(log x) = O(n log(L′) + log(1/ε))
primality tests on integers with

O(log(1 + cMi))=O(n log(L′) + log(1/ε))
bits. By an improved version of the AKS primality testing
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algorithm [AKS02, LP05] (which takes O(N6+δ) bit opera-
tions to test an N bit integer for primality), Step 3 can then
clearly be done within

O
`

(n log(L′) + log(1/ε))7+δ
´

bit operations, and the generation of O(n log(L′)+log(1/ε))
random bits.
Step 4: This step clearly takes time on the order of the
number of output bits, which is just O(n log(n) + log(1/ε))
as already observed earlier.

Conclusion: We thus see that Step 0 and Step 3 dominate
the complexity of our algorithm, and we are left with an
overall randomized complexity bound of

O
“

L′3/2 log3(L′) + (n log(L′) + log(1/ε))
7+δ

”

= O
“

`

n
ε

´3/2
log3(n/ε) + (n log(n) + log(1/ε))7+δ

”

= O
“

`

n
ε

´

3
2
+δ

+ (n log(n) + log(1/ε))7+δ
”

randomized bit operations. ¥

2.3 Transferring from Complex Numbers to
p-adics

The proposition below is a folkloric way to reduce systems
of univariate polynomial equations to a single polynomial
equation, and was already used by Plaisted at the beginning
of his proof of Theorem 5.1 in [Pla84].

Proposition 2.6. Given any f1, . . . , fk ∈Z[x] with maxi-
mum coefficient absolute value H, let d :=maxi deg fi and

f̃(x) := xd(f1(x)f1(1/x) + · · · + fk(x)fk(1/x)).
Then f1 = · · · =fk =0 has a root on the complex unit circle
iff f̃ has a root on the complex unit circle.
Proof: Trivial, upon observing that fi(x)fi(1/x)= |fi(x)|2
for all i∈ [k] and any x∈C with |x|=1. ¥

By introducing the classical univariate resultant we will
be able to derive the explicit quantitative bounds we need.

Definition 2.7. (See, e.g., [GKZ94, Ch. 12, Sec. 1, pp. 397–402].)

Suppose f(x) = a0 + · · · + adxd and g(x) = b0 + · · · + bd′xd′

are polynomials with indeterminate coefficients. We define
their Sylvester matrix to be the (d + d′)× (d + d′) matrix

S(d,d′)(f, g) :=

2

6

6

6

6

6

6

6

6

4

a0 · · · ad 0 · · · 0
. . .

. . .

0 · · · 0 a0 · · · ad

b0 · · · bd′ 0 · · · 0
. . .

. . .

0 · · · 0 b0 · · · bd′

3

7

7

7

7

7

7

7

7

5

9

>

=

>

;

d′ rows

9

>

=

>

;

d rows

and their Sylvester resultant to be R(d,d′)(f, g) :=detS(d,d′)(f, g). ⋄
Lemma 2.8. Following the notation of Definition 2.7,

assume f, g ∈ K[x] for some field K, and that ad and bd′

are not both 0. Then f = g = 0 has a root in the algebraic
closure of K iff R(d,d′)(f, g) = 0. More generally, we have

R(d,d′)(f, g)=ad′

d

Q

f(ζ)=0

g(ζ) where the product counts multi-

plicity. Finally, if we assume further that f and g have com-
plex coefficients of absolute value ≤H, and f (resp. g) has
exactly m (resp. m′) monomial terms, then |R(d,d′)(f, g)|≤
md′/2m′d/2Hd+d′

. ¥

The first 2 assertions are classical (see, e.g., [GKZ94, Ch. 12,
Sec. 1, pp. 397–402] and [RS02, pg. 9]). The last assertion
follows easily from Hadamard’s Inequality (see, e.g., [Mig82,
Thm. 1, pg. 259]).

A simple consequence of our last lemma is that vanishing
at a Dth root of unity is algebraically the same thing over C
or Qp, provided p lies in the right arithmetic progression.

Lemma 2.9. Suppose D∈N, f ∈Z[x], and p is any prime
congruent to 1 mod D. Then f vanishes at a complex Dth

root of unity ⇐⇒ f vanishes at a Dth root of unity in Qp.

Remark 2.10 Note that x2 + x + 1 vanishes at a 3rd root
of unity in C, but has no roots at all in F5 or Q5. So our
congruence assumption on p is necessary. ⋄
Proof of Lemma 2.9: First note that by our assumption
on p, Qp has D distinct Dth roots of unity: This follows
easily from Hensel’s Lemma (see, e.g., [Rob00, Pg. 48]) and
Fp having D distinct Dth roots of unity. Since Z →֒ Qp

and Qp contains all Dth roots of unity by construction, the
equivalence then follows directly from Lemma 2.8. ¥

2.4 Good Inputs and Bad Trinomials
Definition 2.11. For any field K, write any f ∈ K[x]

as f(x) =
Pm

i=1 cix
ai with 0 ≤ a1 < · · · < am. Letting A =

{a1, . . . , am}, and following the notation of Lemma 2.9, we
then define the AAA-discriminant of f , ∆A(f), to be

R(ām,ām−ā2)

“

f̄ , ∂f̄
∂x

.

xā2−1
”.

c
ām−ām−1
m ,

where āi := (ai − a1)/g for all i, f̄(x) :=
Pm

i=1 cix
āi , and

g :=gcd(a2 − a1, . . . , am − a1) (see also [GKZ94, Ch. 12, pp.
403–408]). Finally, if ci 6=0 for all i, then we call Supp(f) :=
{a1, . . . , am} the support of f . ⋄

Remark 2.12 Note that when A = {0, . . . , d} we have
∆A(f) =R(d,d−1)(f, f ′)/cd, i.e., for dense polynomials, the
A-discriminant agrees with the classical discriminant ⋄

Let us now clarify our statement about natural density 0
from Assertion (4) of Theorem 1.5: First, let (Z×(N∪{0}))∞
denote the set of all infinite sequences of pairs ((ci, ai))

∞
i=1

with ci = ai = 0 for i sufficiently large. Note then that
Z[x] admits a natural embedding into (Z × (N ∪ {0}))∞ by
considering coefficient-exponent pairs in order of increasing
exponents, e.g.,
a + bx99 + x2001 7→ ((a, 0), (b, 99), (1, 2001), (0, 0), (0, 0), . . .).
Then natural density for a set of pairs I ⊆Z[x] × P simply
means the corresponding natural density within
(Z × (N ∪ {0}))∞ × P. In particular, our claim of natural
density 0 can be made explicit as follows.

Proposition 2.13. For any subset A = {a1, . . . , am} ⊂
N ∪ {0} with 0 = a1 < · · · < am, let TA denote the family
of pairs (f, p)∈Z[x] × P with f(x) =

Pm
i=1 cix

ai and let T ∗
A

denote the subset of TA consisting of those pairs (f, p) with
p 6 |∆A(f). Also let TA(H) (resp. T ∗

A(H)) denote those pairs
(f, p) in TA (resp. T ∗

A) where |ci| ≤ H for all i ∈ [m] and
p ≤ H. Finally, let d := am/ gcd(a2, . . . , am). Then for all
H≥17 we have

#T∗
A

(H)

#TA(H)
≥

“

1 − (2d−1)m
2H+1

” “

1 − 1+(2d−1) log(mH) log H
H

”

.

Note that each T ∗
A(H) is the complement of a union of

hypersurfaces (one for each mod p reduction of ∆A(f)) in
a “brick” in Zm × P. We will see in the proof of Assertion
(3) of Theorem 1.5 that the exceptional set E is then merely
the complement of the union

S

A T ∗
A as A ranges over all

finite subsets of N∪{0}. Our proposition above is proved in
Section 3.2.

Before proving our main results, let us make some final
observations about the roots of trinomials.

Corollary 2.14. Suppose f(x)=c1+c2x
a2+c3x

a3 ∈F1,3,
A := {0, a2, a3}, 0 < a2 < a3, a3 ≥ 3, and gcd(a2, a3) = 1.
Then: (0) ∆A(f) = (a3−a2)

a3−a2aa2
2 ca3

2 −(−a3)
a3ca3−a2

1 ca2
3 .

(1) ∆A(f) 6= 0 ⇐⇒ f has no degenerate roots. In which
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case, we also have ∆A(f)=
(−1)a3c

a2−1

3

c
a2−1

1

Q

f(ζ)=0 f ′(ζ).

(2) Deciding whether f has a degenerate root in Cp can be
done in time polynomial in sizep(f).

Proof:
Assertion (0): [GKZ94, Prop. 1.8, pg. 274]. ¥

Assertion (1): The first assertion follows directly from
Definition 2.11 and the vanishing criterion for Res(a3,a3−a2)

from Lemma 2.8. To prove the second assertion, observe
that the product formula from Lemma 2.8 implies that

∆A(f) = ca3−a2
3

“

Q

f(ζ)=0
f ′(ζ)

ζa2−1

”.

ca3−a2
3

= (−1)a3

“

Q

f(ζ)=0 f ′(ζ)
”.

(c1/c3)
a2−1. ¥

Assertion (2): From Assertion (1) it suffices to detect the
vanishing of ∆A(f). However, while Assertion (0)
implies that one can evaluate ∆A(f) with a small number
of arithmetic operations, the bit-size of ∆A(f) can be quite
large. Nevertheless, we can decide within time polynomial
in size(f) whether these particular ∆A(f) vanish for integer
ci via gcd-free bases (see, e.g., [BRS09, Sec. 2.4]). ¥

We will also need a concept that is essentially the op-
posite of a degenerate root: Given any f ∈ Z[x], we call
a ζ0 ∈ Z/pℓZ an approximate root iff f(ζ0) = 0 mod
pℓ and ordpf ′(ζ0) < ℓ/2, i.e., ζ0 satisfies the hypotheses of
Hensel’s Lemma (see, e.g., [Rob00, Pg. 48]), and thus ζ0

can be lifted to a ppp-adic integral root ζ of f . The ter-
minology “approximate root” is meant to be reminiscent of
an Archimedean analogue guaranteeing that ζ0∈C converge
quadratically to a true (non-degenerate) complex root of f
(see, e.g., [Sma86]).

We call any Newtp(f) such that f has no lower m-nomials
with m≥3 generic. Finally, if p|(ai − aj) with {ai, aj} the
exponents of some lower binomial of f then we call Newtp(f)
ramified.

3. PROVING OUR MAIN RESULTS

3.1 The Proof of Theorem 1.5
Assertion (1) (FEASQprimes

(F1,m × P)∈PFEASQprimes
(F1,m × P)∈PFEASQprimes
(F1,m × P)∈P for m≤2m≤2m≤2):

First note that the case m ≤ 1 is trivial: such a univariate
m-nomial has no roots in Qp iff it is a nonzero constant. So
let us now assume m=2.

We can easily reduce to the special case f(x) := xd − α
with α ∈ Q∗, since we can divide any input by a suitable
monomial term, and arithmetic over Q is doable in polyno-
mial time. Clearly then, any p-adic root ζ of xd −α satisfies
dordpζ = ordpα. Since we can compute ordpα and reduc-
tions of integers mod d in polynomial-time [BS96, Ch. 5], we
can then assume that d|ordpα (for otherwise, f would have

no roots over Qp). Replacing f(x) by p−ordpαf(pordpα/dx),
we can assume further that ordpα = ordpζ = 0. In partic-
ular, if ordpα was initially a nonzero multiple of d, then
log α ≥ d log2 p. So size(f) ≥ d and our rescaling at worst
doubles size(f).

Letting k := ordpd, note that f ′(x) = dxd−1 and thus
ordpf ′(ζ)=ordp(d)+(d−1)ordpζ =k. So by Hensel’s Lemma
it suffices to decide whether the mod pℓ reduction of f has
a root in (Z/pℓZ)∗, for ℓ = 1 + 2k. Note in particular that
size(pℓ)=O(log(p)ordpd)=O(log(p) log(d)/ log p)=O(log d)
which is linear in our notion of input size. Since the equation
xd = α can be solved in any cyclic group via a fast expo-
nentiation, we can then clearly decide whether xd − α has
a root in (Z/pℓZ)∗ within P, provided pℓ 6∈ {8, 16, 32, . . .}.

This is because of the classical structure theorem for the
multiplicative group of Z/pℓZ (see, e.g., [BS96, Thm. 5.7.2
& Thm. 5.6.2, pg. 109]).

To dispose of the remaining cases pℓ∈{8, 16, 32, . . .}, first
recall that the multiplicative group of Z/2ℓ is exactly

n

±1,±5,±52,±53, . . . ,±52ℓ−2−1 mod 2ℓ
o

(see, e.g., [BS96, Thm. 5.7.2 & Thm. 5.6.2, pg. 109]). So
we can replace d by its reduction mod 2ℓ−2, since every el-
ement of (Z/2ℓZ)∗ has order dividing 2ℓ−2, and this reduc-
tion can certainly be computed in polynomial-time. Let us
then write d = 2hd′ where 2 6 |d′ and h ∈ {0, . . . , ℓ − 3}, and
compute d′′ := 1/d′ mod 2ℓ−2. Clearly then, xd − α has a

root in (Z/2ℓZ)∗ iff x2h − α′ has a root in (Z/2ℓZ)∗, where

α′ := αd′′

(since exponentiation by any odd power is an au-
tomorphism of (Z/2ℓZ)∗). Note also that α′, d′, and d′′ can
be computed in polynomial time via recursive squaring and
standard modular arithmetic, and h≤ log2 d.

Since x2h − α′ always has a root in (Z/2ℓZ)∗ when h=0,
we can then restrict our root search to the cyclic subgroup
n

1, 52, 54, 56, . . . , 52ℓ−2−2
o

when h ≥ 1 and α′ is a square

(since there can be no roots when h ≥ 1 and α′ is not a

square). Furthermore, we see that x2h − α′ can have no
roots in (Z/2ℓZ)∗ if ord2α

′ is odd. So, by rescaling x, we
can assume further that ord2α

′ =0, and thus that α′ is odd.
Now an odd α′ is a square in (Z/2ℓZ)∗ iff α′≡1 mod 8 [BS96,
Ex. 38, pg. 192], and this can clearly be checked in P. So
we can at last decide the existence of a root in Q2 for xd −α
in P: Simply use fast exponentiation to solve the equation

x2h

= α′ over the cyclic subgroup
n

1, 52, 54, 56, . . . , 52ℓ−2−2
o

of (Z/2ℓZ)∗ [BS96, Thm. 5.7.2 & Thm. 5.6.2, pg. 109]. ¥

Assertion (2) (FEASQprimes
(Z[x] × P)∈PFEASQprimes
(Z[x] × P)∈PFEASQprimes
(Z[x] × P)∈P for generic, un-

ramified Newtp(f)Newtp(f)Newtp(f)):
Assertion (2) follows directly from Theorem 1.11, since we
can apply the m = 2 case of Assertion (1) to the result-
ing lower binomials. In particular, note that the number of
lower binomials of f is no more than the number of mono-
mial terms of f , which is in turn bounded above by size(f),
so the complexity is indeed P. ¥

Assertion (3) (FEASQprimes
(Z[x] × P)∈NPFEASQprimes
(Z[x] × P)∈NPFEASQprimes
(Z[x] × P)∈NP usually):

Let us first observe that it suffices to prove that, for most
inputs, we can detect roots in Zp in NP. This is because
x ∈ Qp \ Zp ⇐⇒ 1

x
∈ pZp, so letting f∗(x) := xdeg ff(1/x)

denote the reciprocal polynomial of f , the set of p-adic
rational roots of f is simply the union of the p-adic integer
roots of f and the reciprocals of the p-adic integer roots of
f∗. We may also assume that f is not divisible by x.

Note also that we can find the p-parts of the ci in polynomial-
time via gcd-free bases [BRS09, Sec. 2.4] and thus compute
Newtp(f) in time polynomial in sizep(f) (via standard con-
vex hull algorithms, e.g., [Ede87]). Since ordpci ≤ logp ci ≤
size(ci), note also that that every root ζ ∈ Cp of f satisfies
|ordpζ|≤2 maxi size(ci)≤2size(f)<2sizep(f).

Since ordp(Zp) = N ∪ {0}, we can clearly assume that
Newtp(f) has an edge with non-positive integral slope, for
otherwise f would have no roots in Zp. Letting g(x) :=
f ′(x)/xa1−1, and ζ∈Zp be any p-adic integer root of f , note
then that
(⋆) ordpf ′(ζ)=(a1 − 1)ordp(ζ) + ordpg(ζ).
Note also that ∆A(f) = Resam,am−a1(f, g) so if p 6 |∆A(f)
then f and g have no common roots in the algebraic clo-
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sure of Fp, by Lemma 2.8. In particular, p 6 |∆A(f) =⇒
g(ζ) 6≡ 0 mod p; and thus p 6 |∆A(f, g) =⇒ ordpf ′(ζ) =
(a1 − 1)ordp(ζ). Furthermore, by the convexity of the lower

hull of Newtp(f), it is clear that ordp(ζ) ≤ ordpc0−ordpci

ai

where (ai, ordpci) is the rightmost vertex of the lower edge
of Newtp(f) with least (non-positive and integral) slope.

Clearly then, ordp(ζ) ≤ 2 maxi logp |ci|

a1
. So p 6 |∆A(f) =⇒

ordpf ′(ζ)≤2size(f), thanks to (⋆).
Our fraction of inputs admitting a succinct certificate will

then correspond precisely to those (f, p) such that p6 |∆A(f).
In particular, let us define E to be the union of all pairs
(f, p) such that p|∆A(f), as A ranges over all finite subsets
of N ∪ {0}. It is then easily checked that E is a countable
union of hypersurfaces.

Now fix ℓ=4size(f)+1. Clearly then, by Hensel’s Lemma,
for any (f, p) ∈ (Z[x] × P) \ E , f has a root ζ ∈ Zp ⇐⇒ f
has a root ζ0 ∈ Z/pℓZ. Since log(pℓ) = O(size(f) log p) =
O

`

sizep(f)2
´

, and since arithmetic in Z/pℓZ can be done

in time polynomial in log(pℓ) [BS96, Ch. 5], we have thus
at last found our desired certificate: an approximate root
ζ0∈(Z/pℓZ)∗ of f with ℓ=4size(f) + 1. ¥

Assertion (4) (FEASQprimes
(Z[x] × P)FEASQprimes
(Z[x] × P)FEASQprimes
(Z[x] × P) is NP-hard

under ZPP-reductions):
We will prove a (ZPP) randomized polynomial-time
reduction from 3CNFSAT to FEASQprimes

(Z[x]×P), making use

of the intermediate input families {(Z[x])k | k∈N} × P and
Z[x] × {xD − 1 | D∈N} × P along the way.

Toward this end, suppose B(y) := C1(y) ∧ · · · ∧ Ck(y) is
any 3CNFSAT instance. The polynomial system (PP (C1), . . . ,
PP (Ck)), for P the first n primes (employing Lemma 2.2),
then clearly yields FEASC({(Z[x])k | k∈N})∈P =⇒ P=NP.
Composing this reduction with Proposition 2.6, we then
immediately obtain FEASC(Z[x] × {xD − 1 | D∈N})∈P =⇒
P=NP.

We now need only find a means of transferring from C
to Qp. This we do by preceding our reductions above by a
judicious (possibly new) choice of P : by applying Theorem
1.8 with ε=1/3 (cf. Lemma 2.9) we immediately obtain the
implication FEASQprimes

((Z[x] × {xD − 1 | D ∈ N}) × P) ∈
ZPP =⇒ NP⊆ZPP.

To conclude, observe that any root (x, y)∈Q2
p \ {(0, 0)} of

the quadratic form x2 − py2 must satisfy 2ordpx
=1 + 2ordpy (an impossibility). So the only p-adic rational
root of x2 − py2 is (0, 0) and we easily obtain a polynomial-
time reduction from FEASQprimes

((Z[x]×{xD−1 | D∈N})×P)
to FEASQprimes

(Z[x] × P): simply map any instance

(f(x), xD − 1, p) of the former problem to
(f(x)2 − (xD − 1)2p, p). So we are done. ¥

Assertion (5) (FEASQprimes
(Z[x] × P)FEASQprimes
(Z[x] × P)FEASQprimes
(Z[x] × P) is NP-hard,

assuming Wagstaff’s Conjecture):
If we also have the truth of the Wagstaff Conjecture then we
simply repeat our last proof, replacing our AGP Theorem-
based algorithm with a simple brute-force search. More pre-
cisely, letting D := 2 · 3 · · · pn, we simply test the integers
1 + kD for primality, starting with k = 1 until one finds a
prime. If Wagstaff’s Conjecture is true then we need not

proceed any farther than k = O
“

ϕ(D)
D

log2 D
”

. (Note that

1 ≤ ϕ(D)
D

< D for all D ≥ 2.) Using the AKS algorithm,
this brute-force search clearly has (deterministic) complexity
polynomial in log D which in turn is polynomial in n. ¥

3.2 The Proof of Proposition 2.13
By the Schwartz-Zippel Lemma [Sch80], ∆A(f) vanishes

for at most (2d − 1)m(2H + 1)m−1 selections of coefficients
from {−H, . . . , H}. In other words, ∆A(f)=0 for a fraction

of at most (2d−1)m
2H+1

of the pairs (f, p)∈TA(H).

Clearly, a pair (f, p) ∈ TA(H) for which p 6 |∆A(f) must
satisfy ∆A(f) 6=0. We have just shown that the fraction of

TA(H) satisfying the last condition is at least 1 − (2d−1)m
2H+1

.
Once we show that, amongst these pairs, at least

1 − 1+(2d−1) log(mH)
H/ log H

of them actually satisfy p 6 |∆A(f), then we will be done.
To prove the last lower bound, note that ∆A(f) has degree

at most 2d − 1 in the coefficients of f by Lemma 2.8. Also,
for any fixed f ∈TA(H), ∆A(f) is an integer as well, and is
thus divisible by no more than 1+(2d−1) log(mH)) primes
if ∆A(f) 6=0. (This follows from Lemma 2.8 again, and the
elementary fact that an integer N has no more than 1+log N
distinct prime factors.) Recalling that π(x)>x/ log x for all
x≥17 [BS96, Thm. 8.8.1, pg. 233], we thus obtain that the
fraction of primes ≤H dividing a nonzero ∆A(f) is bounded

above by 1+(2d−1) log(mH)
H/ log H

. ¥
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