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Fewnomial Theory [Kho91] has established bounds on the number of connected components
(a.k.a. pieces) of a broad class of real analytic sets as a function of a particular kind of input
complexity, e.g., the number of distinct exponent vectors among a generating set for the underlying
ideal. Here, we pursue the algorithmic side: We show how to efficiently compute the exact isotopy
type of certain (possibly singular) real zero sets, instead of just estimating their number of pieces.
While we focus on the circuit case, our results form the foundation for an approach to the general
case that we will pursue later.

Assume f ∈R
[
x±1
1 , . . . , x±1

n

]
can be written in the form f(x)=

n+k∑
i=1

cix
ai where ai=(a1,i, . . . , an,i)

⊤

((·)⊤ denoting transpose), the notation xai =x
ai,1
1 · · · x

ai,n
n is understood, and the (n + 1)× (n + k)

matrix Â :=

[
1 · · · 1
a1 · · · an

]
has rank n + 1. (So k ≥ 1 is forced.) We call such an f an honestly

n-variate (n+ k)-nomial (over R), and we call Supp(f) :={a1, . . . , an+k} the support of f .
Writing Z+(f) for the zero set of f in the positive orthant Rn

+, it has been known at least since

the 1990s that the maximal number of pieces for Z+(f) is 2O(n2) — independent of the degree of
f — provided k ≤ n and Z+(f) is smooth (see, e.g., [Kho91, Sec. 3.14, Cor. 5]). After various
improvements and extensions, a tight upper bound of 2 was proved for the special case k = 2
[BRS09, Bih11]. Tight upper bounds still remain unknown even for k = 3≤ n and n= 2≤ k − 2.
Theorem 1.2 below completes the case k = 2 by giving an efficient algorithm that completely
determines the underlying isotopy type, in addition to counting the exact number of pieces.

Fewnomial Theory has always considered more than just algebraic sets. For example, assume
g(y) :=

∑n+k

i=1 cie
ai·y where ai∈R

n, y :=(y1, . . . , yn), ai · y denotes the standard dot product, and (as

before) the matrix Â has rank n+1. We then call such a g an honestly n-variate exponential (n+k)-
sum (over R), and call {a1, . . . , an+k} the spectrum of g and each ai a frequency. Writing ZR(g) for
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the real zero set of g, it is clear that ZR(g) and Z+(f) are homeomorphic (and even isotopic) when
the spectrum of g lies in Z

n. More to the point, the two upper bounds on the number of pieces of
Z+(f) stated in the preceding paragraph also apply to ZR(g).

We will use g to state our topological results and f (restricted to integer coefficients) to state
our algorithmic results. Let us now recall the notions of isotopy and diffeotopy.

Definition 1.1 Given any two subsets X, Y ⊆R
n, an isotopy from X to Y (ambient in R

n) is a
continuous map I : [0, 1]×R

n −→ R
n satisfying (1) I(t, ·) is a homeomorphism for all t∈ [0, 1], (2)

I(0, x)=x for all x∈R
n, and (3) I(1, X)=Y . Similarly, a (C∞-) diffeotopy (ambient in R

n) is the
corresponding notion where homeomorphism is replaced by (C∞-) diffeomorphism. ⋄

Our algorithmic results will be stated relative to the classical Turing model. In what follows, Sℓ

denotes the unit ℓ-sphere in R
ℓ+1 (so S0={−1, 1}) and, for 1≤ℓ≤m, we set

Cm,ℓ :=ZR(x
2
1 + · · ·+ x2

ℓ − x2
ℓ+1 − · · · − x2

m)⊂R
m.

Note that Cm,m is a point (the origin, O, in R
m) and, for all m≥2, Cm,ℓ is a singular hypersurface.

Theorem 1.2 Suppose g is an honestly n-variate exponential (n+k)-sum over R, f is an honestly
n-variate (n+ k)-nomial with Supp(f)⊂ [−d, d]n, and all the coefficients of f lie in {±1, . . . ,±H}.
Then:

1. If k = 1 then ZR(g) is either empty or ambiently diffeotopic in R
n to R

n−1 × {1}, with the
latter occuring if and only if the coefficients of g are not all of the same sign.

2. If k=2 then ZR(g) is isotopic to one of the following types of set:
(a) the empty set
(b) Sℓ × R

n−ℓ−1 for some ℓ∈{0, . . . , n− 1}
(c) Cm,ℓ × R

n−m for some m∈{0, . . . , n} and ℓ∈{⌈m/2⌉ , . . . ,m}.

3. If k = 2 then, in time (log(dH))O(n), we can find ε0, . . . , εn ∈ {−1, 0, 1} such that
q(x) :=ε0 + ε1x

2
1 + · · ·+ εnx

2
n has ZR(q) ambiently isotopic in R

n to Z+(f).

4. Fix any ε>0. If there is an algorithm that can decide for all n∈N and k≤nε whether Z+(f)
is non-empty, using a number bit operations polynomial in n+ log(dH), then P=NP.

While Assertions (1) and (4) were known earlier (see, e.g., [BRS09]), Assertions (2) and (3) are
new. In particular, the best previous deterministic complexity bound in the setting of Assertion (3)
appears to be nO(n log3 n)dO(n log2 n) arithmetic operations [BR14].

The spectra we have focussed on so far have a particular combinatorial structure:

Definition 1.3 We say that {a1, . . . , at}⊂R
n, with cardinality t≥3, is a non-degenerate circuit if and

only if {a1, . . . , at} is affinely dependendent but every proper subset is affinely independent. Finally, we
call {a1, . . . , at} a degenerate circuit if and only if {a1, . . . , at} has a proper subset B, and an
index j, such that {a1, . . . , at} \ {aj} is affinely independent and B is a non-degenerate circuit. ⋄

For instance, both and are circuits, but is a degenerate circuit. For any degenerate
circuit A, the subset B named above is always unique.

When the spectrum of g is a fixed circuit and the signs of the coefficients are fixed, but the norms
of the coefficients are allowed to vary, the number of possible isotopy types for ZR(g) is actually
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very small: No more than 3. (See Corollary 1.4 below). A simple example is given by the family of
positive zero sets {Z+(1 + x3 + y2 − cxy) | c> 0}: The resulting isotopy types are empty, a point,
and an oval, according as c is less than, equal to, or greater than 6

21/331/2
=2.749459...

The total number of possible isotopy types, over all circuit spectra in R
n and real coefficients,

is a bit larger: Quadratic in n.

Corollary 1.4 Following the notation of Theorem 1.2, fix n. Then the number of possible isotopy
types for Z+(g) is:

1. exactly 2, when k=1 (and both the coefficients and spectrum of g are allowed to vary).

2. at most 3, when k=2 and the spectrum of g and the signs of the coefficients are fixed, but the
norms of the coefficients of g are allowed to vary.

3. exactly 1
4
n2 + n + εn, where εn is 7

4
or 3, according as n≥ 1 is odd or even, when k=2 and

both the spectrum and coefficients of g are allowed to vary.

In particular, Z+(g) has at most 2 pieces, and has just 1 piece if there is a compact piece.

Our results yield the first upper bounds polynomial in n for the number of possible isotopy types
of positive zero sets of honestly n-variate (n+2)-nomials. (Which isotopy types can actually occur
depends on the oriented matroid structure of the spectrum.) More general results on homotopy
types (e.g., [GVZ04, BV07]) only yield upper bounds exponential in n in our setting. We also note
that, in the setting of Theorem 1.2, the number of distinct isotopy types remains the same if one
restricts to spectra in Z

n.
When the spectrum of g is fixed and the coefficients of g vary, the isotopy type of ZR(g) depends

on a generalization [BRS09] of the A-discriminant [GKZ94] to real exponents.

Definition 1.5 Given any non-degenerate circuit A ={a1, . . . , an+2}⊂R
n of cardinality n+ 2, let

b= (b1, . . . , bn+2)
⊤ be any generator for the right nullspace of Â. We then call b a circuit relation

for A and define the generalized circuit discriminant to be

ΞA(c1, . . . , cn+2) :=
n+2∏

i=1

(
εci
bi

)bi

− 1,

provided sign(b1c1)= · · · =sign(bn+2cn+2)∈{±1}. ⋄

Note that by adding 1 and taking logs, it is clear that deciding the sign of ΞA is equivalent to
deciding the sign of a linear combination of logarithms.

Determining isotopy types of positive zero sets of sparse polynomials was considered in a
piecewise-linear (a.k.a. tropical) way starting with work of Viro in the 1980s [Vir84]. However,
one difficulty with this approach is that combinatorics alone can not determine a unique piecewise
linear hypersurface isotopic to Z+(f). This is where the sign of the discriminant enters and, in
particular, the efficient approximation of linear forms in logarithms. Baker’s Theorem [Bak77] gives
explicit bounds on how well we need to approximate the underlying logarithms to decide sign and,
through our techniques, his bound is just good enough to yield our new complexity bounds.

Another difficulty with approaching isotopy type by purely tropical means is that such a de-
scription becomes unwieldy in higher dimensions, and omits the singular case. This is where Morse
Theory enters: In the setting of real exponential sums g with spectrum a circuit, we show how
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to efficiently find a quadratic polynomial whose real zero set is isotopic to ZR(g) via a reasonable
linear algebra calculation, after the underlying discriminant sign is computed.

So the key ingredients in the proof of our main results are Baker’s Theorem, Morse Theory,
and a recent metric estimate for tropical varieties from [EPR21]. The latter estimate enables us
to extend Morse Theory (for compact manifolds) to our setting where we deal with non-compact
stratified manifolds, and do so more succinctly than applying stratified Morse Theory.
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des Recherches, Universitd́e Savoie, France, 2011. Downloadable from
http://www.lama.univ-savoie.fr/ bihan/MyPapers/HDRfinal.pdf

[BRS09] Frederic Bihan, J. Maurice Rojas, and Casey E. Stella, “Faster real feasibility via circuit
discriminants,” proceedings of ISSAC 2009 (July 28-31, Seoul, Korea), pp. 39–46, ACM Press,
2009.

[EPR21] Alperen Ergür, Grigoris Paouris, and J. Maurice Rojas, “Tropical Varieties for Exponential
Sums,” Mathematische Annalen (2020) 377:863-882.

[GVZ04] Andrei Gabrielov, Nikolai N. Vorobjov; and Thierry Zell, “Betti Numbers of Semialgebraic
and Sub-Pfaffian Sets,” J. London Math. Soc. 69 (2004), pp. 27–43.

[GKZ94] Israel Moseyevitch Gel’fand, Misha M. Kapranov, and Andrei V. Zelevinsky, Discrimi-
nants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.
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