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Abstract. We present a deterministic 2O(t)q
t−2

t−1
+o(1)

algorithm to decide whether a univariate
polynomial f , with t monomial terms and degree <q, has a root in the finite field Fq . Our method is
the first with complexity sub-linear in q when t is fixed. We also prove a structural property for the
nonzero roots in Fq of any t-nomial: The nonzero roots always admit a partition into no more than

2(q − 1)
t−2

t−1 cosets, each associated with one of two subgroups S1 ⊆ S2 of F∗
q . This can be thought

of as a finite field analogue of Descartes’ Rule. A corollary of our results is the first deterministic
sub-linear algorithm for detecting common degree one factors of k-tuples of t-nomials in Fq [x] when
k and t are fixed.

When t is not fixed we show that, for p prime, detecting roots in Fp for f is NP-hard with
respect to BPP-reductions. Finally, we prove that if the complexity of root detection is sub-linear
(in a refined sense), relative to the straight-line program encoding, then NEXP�P/poly.
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1. Introduction. The solvability of univariate sparse polynomials is a funda-
mental problem in computer algebra, and an important precursor to deep questions
in polynomial system solving and circuit complexity. Cucker, Koiran, and Smale [18]
found a polynomial-time algorithm to find all integer roots of a univariate polyno-
mial f in Z[x] with exactly t terms, i.e., a univariate t-nomial. Shortly afterward,
H. W. Lenstra, Jr. [39] gave a polynomial-time algorithm to compute all factors of
fixed degree over an algebraic extension of Q of fixed degree (and thereby all rational
roots). Independently, Kaltofen and Koiran [31] and Avendano, Krick, and Sombra
[3] extended this to finding bounded-degree factors of sparse polynomials in Q[x, y] in
polynomial-time. Unlike the famous LLL factoring algorithm [38], the complexity of
the algorithms from [18, 39, 31, 3] was relative to the sparse encoding (cf. Definition
2.1 of Section 2 below) and thus polynomial in t+log deg f and the coefficient heights.

Changing the ground field dramatically changes the complexity. For instance,
while polynomial-time algorithms are now known for detecting real roots for trinomials
in Z[x] [44, 9], no polynomial-time algorithm is known for tetranomials [5] (counting
bit operations). Also, detecting p-adic rational roots for trinomials in Z[x] was only
recently shown to lie in NP (for any fixed prime p), as was NP-hardness with respect
to ZPP-reductions for t-nomials when neither t nor p are fixed [2, Thm. 1.4 & Cor. 1.5].

Here, we focus on the complexity of detecting solutions of univariate t-nomials
over finite fields.
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1.1. Main Results and Related Work. While deciding the existence of a dth

root of an element of the q-element field Fq is doable in time polynomial in log(d)+log q
(see, e.g., [4, Thms. 5.6.2 & 5.7.2, pg. 109]), detecting roots for a trinomial equation
c1 + c2x

a2 + c3x
a3 =0 with q − 1>a3>a2>0 within time sub-linear in q is already a

mystery. Around 2003, Erich Kaltofen and David A. Cox independently asked if there
exists an algorithm for this problem, with complexity polynomial in log q [30, 17]. We
make progress on a natural extension of this question. In what follows, we use |S| for
the cardinality of a set S.

Theorem 1.1. Given any univariate t-nomial

f(x) := c1 + c2x
a2 + c3x

a3 + · · ·+ ctx
at ∈ Fq[x]

with degree < q − 1, we can decide, within 2O(t)q
t−2

t−1
+o(1) deterministic bit opera-

tions, whether f has a root in Fq. Moreover, letting δ := gcd(q − 1, a2, . . . , at) and

η :=
(

q−1
δ

)

t−2

t−1 , the entire set of nonzero roots of f in Fq is a union of at most
2η cosets, each associated to one of two subgroups S1 ⊆ S2 of F∗

q , where |S1| = δ,

|S2|≥δ
t−2

t−1 (q − 1)
1

t−1 , and |S2| can be determined in time 2O(t)(log q)O(1).

We prove Theorem 1.1 in Section 3.1. The degree assumption is natural since xq=x in
Fq[x]. Note also that deciding whether an f as above has a root in Fq via brute-force
search takes q1+o(1) bit operations, assuming t is fixed. If we pick a2, . . . , at uniformly
randomly in {−M, . . . ,M} then, asM−→∞, the probability that gcd(a2, · · · , at) = 1
approaches 1/ζ(t− 1) (see, e.g., [16]). The latter quantity increases from 6

π2 ≈0.6079
to 1 as t goes from 3 to ∞. Our theorem thus implies that, with “high” probability
over the inputs, the nonzero roots of a sparse polynomial over a finite field can be
divided into two components: One component consisting of no more than qc (for
some c < 1) isolated roots, and the other component consisting of qc cosets of a
(potentially large) subgroup of F∗

q . Put another way, if the number of nonzero roots

of a univariate t-nomial in F∗
q is larger than 2(q − 1)

t−2

t−1 , then the roots must exhibit
a strong multiplicative structure.

The classic Descartes’ Rule [47] implies that the number of distinct real roots of
a real univariate t-nomial is at most 2t− 1, regardless of the degree. At first glance,
one would think that the polynomial xq−1 − 1 ∈ Fq[x] immediately renders a finite
field analogue impossible. On the other hand, note that the nonzero roots of any
binomial form a coset of a subgroup of F∗

q . Our first main result indicates that, over
a finite field, the number of cosets needed to cover the set of nonzero roots of a sparse
polynomial f is much smaller than the degree of f . We thus obtain a finite field
analogue of Descartes’ Rule. We consider the new idea of counting by cosets as one of
the main contributions of this paper. More to the point, Theorem 1.1 provides new
structural and algorithmic information, complementing an earlier finite field analogue
of Descartes’ Rule [11, Lemma 7]. Theorem 1.1 can also be thought of as a refined,
positive characteristic analogue of results of Tao and Meshulam [48, 40] bounding the
number of complex roots of unity at which a sparse polynomial can vanish (a.k.a.
uncertainty inequalities over finite groups).

Remark 1.2. There is recent evidence that our upper bounds are not far from
optimality, for a large family of fields: For any prime p and q=pk with k a multiple
of t, there are univariate t-nomials in Fq[x] with 1+ q1/t+ · · ·+ q(t−2)/t nonzero roots
in Fq (and δ=1) [14]. In particular, this implies that the total number of cosets from
our first main theorem can be as large as 1+ q1/t + · · ·+ q(t−2)/t when δ=1. See also
[36] for the optimal upper bound of

√
q roots when (δ, q, t)=(1, pk, 3) with p≥3 and k
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even; and [35] for more recent refined upper bounds for arbitrary (δ, q, t). The nature
of optimal upper bounds for trinomials over prime fields appears to be more subtle:
The existence of a constant γ > 0, an increasing sequence of primes (pi)i∈N, and a
sequence of trinomials (fi)i∈N, with each fi∈Fpi

[x] having δ=1 and at least γ log pi
roots in Fpi

for all i∈N, is unknown [14, 36]. ⋄

Since detecting roots over Fq is the same as detecting linear factors of polynomials
in Fq[x], it is natural to ask about the complexity of factoring sparse polynomials
over Fq[x]. The asymptotically fastest randomized algorithm for factoring arbitrary
f ∈Fq[x] of degree d uses O(d1.5+d1+o(1) log q) bit operations [34], but no complexity
bound polynomial in t + log(d) + log q is known. (See [7, 12, 25, 32, 49] for some
important milestones, and [24, 30, 22] for an extensive survey on factoring.) However,
to detect roots in Fq, we don’t need the full power of factoring: We need only decide
whether gcd(xq−x, f(x)) has positive degree. Indeed, a consequence of our first main
result is a speed-up for a variant of the latter decision problem.

Corollary 1.3. Given any univariate t-nomials f1, . . . , fk ∈ Fq[x], we can
decide if f1, . . . , fk have a degree one factor in Fq[x] in common via a deterministic

algorithm with complexity 2O(kt−k)q
kt−k−1

kt−k +o(1).

Corollary 1.3 (proved in Section 3.2) appears to give the first sub-linear algorithm for
detecting roots of k-tuples of univariate t-nomials for k and t fixed.

Remark 1.4. It is important to note that the k = 2 case is not the same as
deciding whether the gcd of two general polynomials has positive degree: The latter
problem is the same as detecting common factors of arbitrary degree, or degree one
factors over an extension field. Finding an algorithm for the latter problem with
complexity sub-linear in q is already an open problem for k = 2 and t≥ 3: See [20],
and Theorem 1.6 and Remark 1.8 below. ⋄

One reason why it is challenging to attain complexity sub-linear in q is that
detecting roots in Fq for t-nomials is NP-hard when t is not fixed, even restricting to
one variable and prime q.

Theorem 1.5. Suppose that, for any input (f, p) with p a prime and f ∈ Fp[x]
a t-nomial of degree < p, one could decide whether f has a root in Fp within BPP,
using t+ log p as the underlying input size. Then NP⊆BPP.

We prove Theorem 1.5 in Section 4.1. The least (fixed) n making root detection in Fn
p

be NP-hard for polynomials in
⋃

p prime

Fp[x1, . . . , xn] (relative to the sparse encoding)

appears to have been unknown. Theorem 1.5 thus settles this problem, provided we
allow (BPP-) randomized reductions. Theorem 1.5 also complements an earlier result
of Kipnis and Shamir proving NP-hardness for detecting roots of univariate sparse
polynomials over fields of the form F2ℓ [37]. Furthermore, Theorem 1.5 improves
another recent NP-hardness result where the underlying input size was instead the
(smaller) straight-line program complexity [15].

Let Fq denote the algebraic closure of Fq. A consequence of our last complexity
lower bound is the hardness of detecting degenerate roots over Fp and Fp:

Theorem 1.6. Consider the following two problems, each with input (f, p) where
p is a prime and f ∈Fp[x] is a t-nomial of degree < p.

1. Decide whether f is divisible by the square of a degree one polynomial in Fp[x].
2. Decide whether f is divisible by the square of a degree one polynomial in Fp[x].

Then, using t+ log p as the underlying input size, each of these problems is NP-hard
with respect to BPP-reductions.
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We prove Theorem 1.6 in Section 4.2. The NP-hardness of both problems had been
previously unknown. Theorem 1.6 thus improves [33, Cor. 2] where NP-hardness
(with respect to BPP-reductions) was proved for the harder variant of Problem (2)
where one allows f in the larger ring Fp[x].

Remark 1.7. Note that detecting a degenerate root for f is the same as detecting
a common degree one factor of f and ∂f

∂x , at least when deg f is less than the char-
acteristic of the field. So an immediate consequence of Theorem 1.6 is that detecting
common degree one factors in Fp[x] (resp. Fp[x]) for pairs of polynomials in Fp[x]
is NP-hard with respect to BPP-reductions. We thus also strengthen earlier work
proving similar complexity lower bounds for detecting common degree one factors in
Fq[x] (resp. Fq[x]) [23, Thm. 4.11]. ⋄

Remark 1.8. It should be noted that Problem (2) in Theorem 1.6 is equivalent
to deciding the vanishing of univariate A-discriminants (see [26, Ch. 12, pp. 403–408]
and Definitions 2.6 and 2.8 of Section 2.2 below). While the trinomial case of Problem
(2) can be done in P (see [2, Lemma 5.3]), we are unaware of any other speed-ups
for fixed t. In particular, it follows immediately from Theorem 1.6 that deciding the
vanishing of univariate resultants (see, e.g., [26, Ch. 12, Sec. 1, pp. 397–402] and
Definition 2.6 of Section 2.2 below), of polynomials in Fp[x], is also NP-hard with
respect to BPP-reductions. ⋄

Our final main result is a complexity separation depending on a weak tractabil-
ity assumption for detecting roots of univariate polynomials given as straight-line
programs (SLPs).

Definition 1.9. A straight-line program for a polynomial f(x1, . . . , xd) over a
field F is a sequence of assignments. The i-th assignment is

vi ← vm ◦ vn, or vi ← ci, or vi ← xk

where m < i, n < i, ◦ ∈ {+,−,×}, and ci is any constant in F . If we run the
program, the last assignment outputs f . The length of the program is the number of
assignments.

Theorem 1.10. Suppose that, given any straight-line program of size L repre-
senting a polynomial f ∈ F2ℓ [x], we could decide if f has a root in F2ℓ within time
LO(1)2ℓ−ω(log ℓ). Then NEXP�P/poly.

We prove Theorem 1.10 in Section 4.3. One should recall that NEXP⊆P/poly⇐⇒
NEXP=MA [28]. So the conditional assertion of our last theorem indeed implies
a new separation of complexity classes. It may actually be the case that there is no
algorithm for detecting roots in F2ℓ better than brute-force search. Such a result would
be in line with the Exponential Time Hypothesis [29] and the widely-held belief in
the cryptographic community that the only way to break a well-designed block cipher
is by exhaustive search.

1.2. Highlights of Main Techniques. Let e be a positive integer such that
gcd(e, q − 1) = 1. If we replace x by xe in

f(x) = c1 + c2x
a2 + c3x

a3 + · · ·+ ctx
at ∈ Fq[x],

then we obtain
f(xe) = c1 + c2x

ea2 + c3x
ea3 + · · ·+ ctx

eat .
These two polynomials have the same number of roots in Fq since the map from Fq

to Fq given by x 7→ xe is one-to-one. Now suppose that (m2,m3, · · · ,mt) ∈ Zt−1

satisfies m2≡ea2, . . . ,mt≡eat mod q− 1. Then f has a root in Fq iff the polynomial
c1 + c2x

m2 + c3x
m3 + · · ·+ ctx

mt
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has a root in Fq. The key new advance needed to attain our speed-ups is a method
employing recent fast algorithms for the Shortest Vector Problem (SVP) in ℓ∞ (see
[19]). In particular, our method finds a suitable e that lowers the degree of any sparse
polynomial in Fq[x] to a value sub-linear in q while still preserving solvability over Fq.

Lemma 1.11. Given integers a1, · · · , at, N satisfying 0 < a1 < · · · < at < N
and gcd(N, a1, · · · , at) = 1, one can find, within 2O(t)(t logN)O(1) bit operations, an
integer e with the following property for all i∈{1, . . . , t}: If mi∈{−⌊N/2⌋, . . . , ⌈N/2⌉}
is the unique integer congruent to eai mod N then |mi|≤N1−t−1

.

We prove this lemma in Section 2.1. The lemma can be applied to the exponents of a
general sparse polynomial to yield Theorem 1.1 in Section 3.1, after overcoming two
potential difficulties: One can sometimes have gcd(q − 1, a1, · · · , at)>1 or gcd(e, q − 1)>1.

Recall that any logical disjunction of one of the following forms:

(♦) yi ∨ yj ∨ yk, ¬yi ∨ yj ∨ yk, ¬yi ∨ ¬yj ∨ yk, ¬yi ∨ ¬yj ∨ ¬yk,

with i, j, k∈{1, . . . , n} not necessarily distinct, is a (3-SAT) clause. In particular, at
the possible expense of additional variables, any logical formula from propositional
calculus is equivalent to a conjunction of 3-SAT clauses. A formula that is a conjunction
of disjunctions of (possibly negated) variables is said to be in conjunctive normal form,
and a satisfying assigment for a logical formula B(y1, . . . , yn) is an assigment of values
from {0, 1} to the variables y1, . . . , yn which makes the equality B(y1, . . . , yn) = 1
true.1 3CNFSAT is the well-known NP-complete problem of deciding the existence of
a satisfying assignment, for formulas in conjunctive normal form, where all clauses
are in the form (♦) [21, 1].

A key construction behind the proofs of Theorems 1.5 and 1.6 in Section 4 is
a randomized reduction from 3CNFSAT to detecting roots of univariate polynomial
systems over finite fields. In particular, the finite fields arising in this reduction have
cardinality coming from a very particular family of prime numbers. (See Definition
2.1 from Section 2 for our definition of input size.)

Theorem 1.12. [2, Secs. 6.2–6.3]2 There is a (Las Vegas) randomized polynomial-
time algorithm that, given any 3CNFSAT instance B(y1, . . . , yn) in n ≥ 4 variables
with k clauses, produces positive integers c, p1, . . . , pn and polynomials f1, . . . , fk ∈
(

Z/
(

1 +
∏n

j=1 pj

)

Z
)

[x] with the following properties:

1. c≥11 and log
(

c
∏n

j=1 pj

)

=nO(1).

2. p1, . . . , pn is an increasing sequence of primes and p :=1+c
∏n

j=1 pj is prime.

3. For each i, fi is monic, fi(0) 6=0, deg fi<
∏n

j=1 pj, and size(fi)=nO(1).
4. For each i, fi has exactly deg fi distinct roots in Fp.
5. B has a satisfying assignment if and only if the system f1(x)= · · · =fk(x)=0

has a solution in Fp. �

Theorem 1.12 is based on an earlier reduction of Plaisted involving complex roots of
unity [42, Sec. 3, pp. 127–129].

We now review some additional background necessary for our proofs.

2. Background. Our main notion of input size essentially reduces to how long
it takes to write down monomial term expansions, a.k.a. the sparse encoding.

1We respectively identify 0 and 1 with “False” and “True”.
2[2] in fact contains a version of Theorem 1.12 with c≥2, but c≥11 can be attained by a trivial

modification of the proof there.
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Definition 2.1. For any polynomial f ∈ Z[x1, . . . , xn] expressed in the form
f(x)=

∑t
i=1 cix

a1,i

1 · · ·xan,i
n , with aj,i>0 for all j, i, we define

size(f) :=
∑t

i=1 log2 [(2 + |ci|)(2 + a1,i) · · · (2 + an,i)].

Also, when F :=(f1, . . . , fk), we define size(F ) :=
∑k

i=1 size(fi). ⋄
The definition above is also sometimes referred to as the sparse size of a polynomial
system. Note that size(c)=O(log |c|) for any integer c.

A fact we’ll need is that systems of univariate polynomial equations can, at the
expense of some randomization, be reduced to pairs of univariate equations. (See [27]
for a multivariate version.)

Lemma 2.2. Given any prime power q and polynomials f1, . . . , fk ∈Fq[x] \ {0},
let Z(f1, . . . , fk) denote the set of solutions of f1 = · · · = fk = 0 in Fq. Also let
d1 := deg f1. Then at least a fraction of 1 − d1

q of the (u2, . . . , uk) ∈ Fk−1
q satisfy

Z(f1, . . . , fk)=Z(f1, u2f2 + · · ·+ ukfk).

Proof: Let {ζ1, . . . , ζr} :=Z(f1) \ Z(f2, . . . , fk), with the ζi pair-wise distinct. Note
that r ≤ d1. If r = 0 then we obtain Z(f1)⊆ Z(f2, . . . , fk) and thus Z(f1, . . . , fk) =
Z(f1, u2f2 + · · ·+ ukfk)=Z(f1) for any choice of ui in Fq. So we may assume r≥1.

We then observe that, by definition, for any i∈{1, . . . , r}, we must have fji(ζi) 6=0
for some ji∈{2, . . . , k}. In particular, the polynomial

L(u) :=
∏r

i=1(u2f2(ζi) + · · ·+ ukfk(ζi)) ∈ Fq[u2, . . . , uk]
has degree r, and is thus not identically 0. Note also that the statement of the lemma
is vacuous when d1 ≥ q, so we may assume d1 < q. By the classical Schwartz-Zippel
Lemma [45, 51], we then obtain that L vanishes at no more than rqk−2 choices of
u ∈ Fk−1

q . Since Z(f2, . . . , fk) ⊆ Z(u2f2 + · · · + ukfk) for any choice of u, we thus
obtain L(u) 6=0 =⇒ Z(f1, . . . , fk)=Z(f1, u2f2 + · · ·+ ukfk), and we are done. �

Let us now observe the following complexity bound for root detection for (not
necessarily sparse) polynomials over finite fields.

Proposition 2.3. Given any polynomial f ∈ Fq[x] of degree d and N |(q − 1),
we can decide within d1+o(1)(log q)2+o(1) deterministic bit operations whether f has a
root in the order N subgroup of F∗

q .

Proof: Since detecting roots for f as above is the same as deciding whether
gcd(xN − 1, f(x)) has positive degree, the complexity bound above can be attained
as follows: Compute r(x) := xN mod f(x) via repeated squaring [4, Thm. 5.4.1,
pg. 103], and then compute gcd(r(x) − 1, f(x)) in time d1+o(1)(log q)1+o(1) via the
Knuth-Schönhage algorithm [10, Ch. 3]. �

2.1. Geometry of Numbers for Speed-Ups. For any linearly independent

vectors b1, . . . ,bd ∈ Rm, we call the set L(b1, . . . ,bd) =

{

d
∑

i=1

xibi

∣

∣

∣

∣

xi ∈ Z
}

a

lattice in Rm. The integers d and m are respectively called the rank and dimension
of the lattice. Any lattice can be conveniently represented by a d × m matrix B

with rows b1, . . . ,bd. The determinant det(L) of the lattice L is the volume of the
d-dimensional parallelepiped spanned by the origin and the vectors of any Z-basis for
L. If an explicit basis of L is known, the determinant of the lattice L can then be
computed as det(L) = det(L(B))=

√

det(BB⊤).

For any vector u=(u1, . . . , um)∈Rm we let ‖u‖p := p
√

|u1|p + · · ·+ |um|p denote
its ℓp norm. (We also set ‖u‖∞ :=maxi |ui|.) Perhaps the most famous computational
problem on lattices is the (exact) Shortest Vector Problem (SVP): Given a basis of
a lattice L, find a non-zero vector u ∈ L, such that ‖v‖p ≥ ‖u‖p for any vector
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v ∈ L \ 0. To obtain an upper bound on the ℓp norm of a shortest vector in a lattice
L, one usually use Minkowski’s Convex Body Theorem (see, e.g., [13]):

Minkowski’s Convex Body Theorem. Let L be a full-rank lattice in Rn. Let
C be a measurable subset of Rn with C convex, centrally symmetric, and of volume
strictly greater than 2n det(L). Then C contains at least one point in L \ {O}. �

As a corollary of the Convex Body Theorem we can get an upper bound on the ℓ∞
norm of a shortest vector in L \ {O}.

Theorem 2.4. Any lattice L of rank d contains a vector v with
0<‖v‖∞≤det(L)1/d.
Proof: Let Sc be the hypercube [−c, c]d and assume c>det(L)1/d. Note that S is a
measurable subset of Rd that is convex and symmetric with respect to 0. The volume
of Sc is clearly strictly greater than 2d det(L). So by the Convex Body Theorem,
C ∩ L \ {O} is non-empty and, by construction, every point of C ∩ L has ℓ∞ norm
at most c. Since L is a closed set, and c > det(L)1/d is arbitrary, this means that
Sdet(L)1/d ∩ L \ {O} must be non-empty as well. So we are done. �

Given a lattice with rank d, most lattice reduction algorithms, such as the cele-
brated LLL algorithm [38], define shortest lattice vectors in terms of the ℓ2 norm. (See
[41] for a survey of other SVP algorithms.) An algorithm with arithmetic complexity
dO(1)2O(d), proposed in [19] by Dadush et. al., is currently the fastest deterministic
algorithm for solving SVP relative to the ℓ∞ norm.

Let us now prepare for our degree-lowering tricks. First, we construct the lattice
L spanned by the rows of matrix B, where

(⋆⋆) B =















a1 a2 · · · at
N 0 · · · 0
0 N · · · 0
...

...
. . . 0

0 0 · · · N















Letting v := (m1, . . . ,mt) be the shortest vector of the lattice L, there then clearly
exists an integer e such that ea1 ≡m1, . . . , eat ≡ mt mod N . (In fact, e is merely
the coefficient of (a1, . . . , at) in the underlying linear combination defining v.) Most
importantly, the factorization of det(L) is highly constrained when the ai are relatively
prime.

Lemma 2.5. If gcd(N, a1, . . . , at)=1 then det(L) = N t−1.
Since no explicit basis of L is known, we will calculate the determinant by duality:

The dual of a lattice L in Rn, denoted L∗, is the lattice given by the set of all vectors
y ∈ Rn with inner product 〈x,y〉 ∈ Z for all vectors x ∈ L. We have det(L∗) =
1/det(L). In addition, if L1 and L2 are two lattices in Rm with the same dimension
and L1 ⊆ L2, then L2/L1 is a finite group of order denoted by [L2 : L1] which satisfies
det(L1) = det(L2)[L2 : L1].
Proof of Lemma 2.5: Define the lattice

L⊥ =
{

x=(x1, . . . , xt)∈Zt
∣

∣

∣

∑t
i=1 xiai = 0 mod N

}

.

It is easily checked that L⊥=NL∗. Note that L⊥ and L are dual to each other, up
to normalization. Hence det(L)× det(L⊥) = N t.

We will now prove det(L⊥)=N . Since L⊥ contains all the vectors of the canonical
basis of Zt multiplied by N, the dimension of L⊥ is t. It is easily checked that L⊥

is a subgroup of Zt. It then follows that detL⊥ = [Zt : L⊥]. Furthermore, the
definition of L⊥ clearly implies that [Zt : L⊥] = N/ gcd(N, a1, a2, · · · , at). Hence
det(L⊥)=N/ gcd(N, a1, a2, · · · , at)=N and we are done. �
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We are now ready to prove Lemma 1.11.

Proof of Lemma 1.11: From Lemma 2.5 and Theorem 2.4, there exists a shortest
vector v of L satisfying ‖v‖∞ ≤ N1−t−1

. By invoking the exact SVP algorithm
from [19] we can then find the shortest vector v in time 2O(t)(t logN)O(1). Let v :=
(m1, . . . ,mt). Clearly, by shortness, we may assume |mi|≤N/2 for all i∈{1, . . . , t}.
(Otherwise, we would be able to reduce mi in absolute value by subtracting a suitable
row of the matrix B from v.) Also, by construction, there is an e such that eai ≡ mi

mod N for all i∈{1, . . . , t}. �
2.2. Resultants, A-discriminants, and Square-Freeness. Let us first recall

the classical univariate resultant.
Definition 2.6. (See, e.g., [26, Ch. 12, Sec. 1, pp. 397–402].) Suppose f(x)=

a0 + · · ·+ adx
d and g(x)=b0 + · · ·+ bd′xd′

are polynomials with indeterminate coeffi-
cients. We define their Sylvester matrix to be the (d+ d′)× (d+ d′) matrix

S(d,d′)(f, g) :=

































a0 a1 · · · ad−1 ad 0 · · · 0

a0
. . . ad−2 ad−1 ad

. . . 0
. . .

. . .
. . .

. . .
. . .

a0 a1 · · · ad−1 ad
b0 b1 · · · bd′−1 bd′ 0 · · · 0

b0
. . . bd′−2 bd′−1 bd′

. . . 0
. . .

. . .
. . .

. . .
. . .

b0 b1 · · · bd′−1 bd′























































d′ rows























d rows

and their Sylvester resultant to be
Res(d,d′)(f, g) :=detS(d,d′)(f, g). ⋄

Lemma 2.7. Following the notation of Definition 2.6, assume f, g ∈ K[x] for
some field K, and that ad and bd′ are not both 0. Then f = g = 0 has a root in
the algebraic closure of K if and only if Res(d,d′)(f, g) = 0. More precisely, we have

Res(d,d′)(f, g)=ad
′

d

∏

f(ζ)=0

g(ζ), where the product counts multiplicity. �

The lemma is classical: See, e.g., [26, Ch. 12, Sec. 1, pp. 397–402], [43, pg. 9], and [6,
Thm. 4.16, pg. 107] for a more modern treatment.

We may now define a refinement of the classical discriminant.
Definition 2.8. (See also [26, Ch. 12, pp. 403–408].) Let A := {a1, . . . , at} ⊂

N∪{0} and f(x) :=
∑t

i=1 cix
ai , where 0≤a1< · · · <at and the ci are indeterminates.

We then define the A-discriminant of f , ∆A(f), to be

Res(āt,āt−ā2)

(

f̄ , ∂f̄
∂x

/

xā2−1
)/

c
āt−āt−1

t ,

where āi :=(ai − a1)/g for all i, f̄(x) :=
∑t

i=1 cix
āi , and g :=gcd(a2 − a1, . . . , at − a1). ⋄

Remark 2.9. Note that when A={0, . . . , d} we have ∆A(f)=Res(d,d−1)(f, f
′)/cd,

i.e., for dense polynomials, the A-discriminant agrees with the classical discriminant. ⋄
Lemma 2.10. Suppose p is any prime and f, g∈Fp[x] are relatively prime poly-

nomials satisfying f(0)g(0) 6= 0, d := deg g ≥ deg f , and p > d. Then the polynomial
f + ag is square-free for at least a fraction of 1− 2d−1

p of the a∈Fp.
Proof: For 2d−1≥p the lemma is vacuous, so let us assume 2d−1<p. Note also that
the polynomial f +ag is irreducible in Fp[x, a], since f and g have no common factors

in Fp[x]. The splitting field L$Fp(a) of f(x) + ag(x) must have degree [L : Fp(a)]
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dividing (deg f)!. Since deg f ≤ d < p, p can not divide [L : Fp(a)] and thus L is a

separable extension of Fp(a), i.e., f + ag has no degenerate roots in Fp(a). So the
classical discriminant of f + ag (where the coefficients are considered as polynomials
in a) is a polynomial in a that is not identically zero. Furthermore, from Definition
2.6, Res(d,d−1)(f + ag, f ′ + ag′)∈Fp[a] has degree at most d + d − 1=2d − 1. So by

Lemma 2.2, the classical discriminant of f +ag is non-zero for at least 1− 2d−1
p of the

a∈Fp. Thanks to Lemma 2.7, we thus obtain that f + ag is square-free for at least a
fraction of 1− 2d−1

p of the a∈Fp. �

A stronger assertion, satisfied on a much smaller set of a, was observed earlier
in the proof of Theorem 1 of [33]. For our purposes, easily finding an a with f + ag
square-free will be crucial.

3. Faster Root Detection: Proving Theorem 1.1 and Corollary 1.3 .

3.1. Proving Theorem 1.1. Before proving Theorem 1.1, let us first prove a
result that will in fact enable sub-linear root detection in arbitrary subgroups of F∗

q .
Lemma 3.1. Given a finite field Fq and the polynomials

(⋆ ⋆ ⋆) xN − 1 and c1 + c2x
a2 + · · ·+ ctx

at ,
in Fq[x] with 0 < a2 < · · · < at < N , gcd(N, a2, · · · , at) = 1, ci 6= 0 for all i, and
N |(q − 1), there exists a deterministic algorithm with complexity

q1/4(log q)O(1) + 2O(t)(t logN)O(1) +N
t−2

t−1
+o(1)(log q)2+o(1)

to decide whether these two polynomials share a root in Fq. Furthermore, for some

δ′|N with δ′≤N
t−2

t−1 and γ∈{1, . . . , δ′}, the set of roots of (⋆ ⋆ ⋆) is equal to the union

of a set of cardinality at most 2γN
t−2

t−1 /δ′ and the union of δ′− γ cosets of a subgroup
of F∗

q of order N/δ′.
Proof: By Lemma 1.11 we can find an integer e such that, if m2, . . . ,mt are the
unique integers in the range [−⌊N/2⌋, ⌈N/2⌉] respectively congruent to ea2, . . . , eat,

then |mi| < N
t−2

t−1 for each i∈ {2, . . . , t}. This takes 2O(t)(t logN)O(1) deterministic
bit operations. By [46], we can then find a generator σ of F∗

q within q1/4(log q)O(1) bit
operations. For any τ ∈F∗

q , let 〈τ〉 denote the multiplicative subgroup of F∗
q generated

by τ .

Now, xN − 1 vanishing is the same as x∈〈σ q−1

N 〉 since N |(q − 1). Let ζN :=σ
q−1

N

and define δ′ :=gcd(e,N). If δ′ = 1 then the map from 〈ζN 〉 to 〈ζN 〉 given by x 7→ xe

is one-to-one. So finding a solution for (⋆ ⋆ ⋆) is equivalent to finding x∈ 〈ζN 〉 such
that c1 + c2x

ea2 + · · · + ctx
eat = 0. Thanks to Lemma 1.11, the last equation can

be rewritten as the lower degree equation c1 + c2x
m2 + · · · + ctx

mt =0, and we may
conclude our proof by applying Proposition 2.3.

However, we may have δ′>1. In which case, the map from 〈ζN 〉 to 〈ζN 〉 given by
x 7→ xe is no longer one-to-one. Instead, it sends 〈ζN 〉 to a smaller subgroup 〈ζδ′N 〉 of
order N/δ′. We first bound δ′: re-ordering monomials if necessary, we may assume
that m2 6=0. We then obtain

δ′=gcd(e,N)≤gcd(ea2, N)=gcd(m2, N)≤|m2| ≤ N
t−2

t−1 .

Any element x∈〈ζN 〉 can be written as ζiNz for some i∈{0, . . . , δ′−1} and z∈〈ζδ′N 〉. It
is then clear that xN−1=c1+c2x

a2+· · ·+ctx
at =0 has a root in F∗

q if and only if there

is an i∈{0, . . . , δ′− 1} and a z∈〈ζδ′N 〉 with c1+ c2(ζ
i
Nz)a2 + · · ·+ ct(ζ

i
Nz)at = 0. Now,

gcd(e/δ′, N/δ′)=1. So the map from 〈ζδ′N 〉 to 〈ζδ
′

N 〉 given by x 7→ xe/δ′ is one-to-one.
By the definition of the mi, (⋆ ⋆ ⋆) having a solution is thus equivalent to there being
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an i∈{0, . . . , δ′− 1} and a z∈〈ζδ′N 〉 with c1 + c2ζ
a2i
N zmt/δ

′

+ · · ·+ ctζ
ati
N zmt/δ

′

= 0. So
define the Laurent polynomial

fi(z) :=c1 + c2(ζ
i
N )a2zm2/δ

′

+ · · ·+ ct(ζ
i
N )atzmt/δ

′

If fi is identically zero then we have found a whole set of solutions for (⋆⋆⋆): the coset
ζiN 〈ζδ

′

N 〉. If fi is not identically zero then let ℓ :=mini min{mi/δ
′, 0}. The polynomial

z−ℓfi(z) then has degree bounded from above by 2N
t−2

t−1 /δ′. Deciding whether the
pair of equations zN/δ′ − 1=z−ℓfi(z)=0 has a solution for some i takes deterministic

time δ′
(

N
t−2

t−1 /δ′
)1+o(1)

(log q)2+o(1), applying Proposition 2.3 δ′ times.

The final statement characterizing the set of solutions to (⋆ ⋆ ⋆) then follows
immediately upon defining γ to be the number of i ∈ {0, . . . , δ′ − 1} such that fi is
not identically zero. In particular, γ≥1 since deg f <N and thus f is not identically
zero on the order N subgroup of F∗

q . �

Example 3.2. Consider any polynomial of the form
f(x)=c1 + c2x+ c3x

2200+26 + c4x
2200+27∈Fq[x]

where q := 6(2200 + 26) + 1 (which is a 61-digit prime) and c1c4 6= 0. Considering
the lattice generated by the vectors (1, 2200 + 26, 2200 + 27), (q − 1, 0, 0), (0, q − 1, 0),
(0, 0, q−1), it is not hard to see that (6, 0, 6) is a minimal length vector in this lattice.
Moreover, 6 · 1 ≡ 6, 6(2200 + 26) ≡ 0, 6(2200 + 27) ≡ 6 mod q − 1. Letting σ be
any generator of F∗

q it is clear that any x ∈ F∗
q can be written as x = σiz for some

i∈{0, . . . , 5} and z ∈F∗
q satisfying z

q−1

6 =1. So then, we see that solving f(x)=0 is
equivalent to finding an i∈{0, . . . , 5} and a z∈F∗

q with
(

c1 + c3σ
(2200+26)i

)

+
(

c2σ
i + c4σ

(2200+27)i
)

z6 = z
q−1

6 − 1 = 0. ⋄
Remark 3.3. Via fast randomized factoring, we can also pick out a representative

from each coset of roots within essentially the same time bound. Note also that it is
possible for some of the Laurent polynomials fi to vanish identically: The polynomial
1 + x − x2 − x3 and the prime q = 13, obtained by mimicking Example 3.2, provide
one such example (with δ′=6 and γ=1). ⋄

We are now ready to prove our first main theorem.
Proof of Theorem 1.1: Let δ :=gcd(q−1, a2, . . . , at) and y=xδ. Then the solvability
of f is equivalent to the solvability of the following system of equations:

c1 + c2y
a2/δ + · · ·+ cty

at/δ = 0

y
q−1

δ = 1

Since gcd
(

a1

δ , . . . , at

δ ,
q−1
δ

)

=1, we can solve this problem via Lemma 3.1 (with N =
q−1
δ ), within the stated time bound. (Note that q1/4 ≤ q

t−2

t−1 for all t≥ 3. Also, the
computation of gcd(q−1, a2, . . . , at) is dominated by the other steps of the algorithm

underlying Lemma 3.1.) Also, since y
q−1

δ =1, each solution y of the preceding 2 × 1
system induces exactly δ roots of f in Fq. So we can indeed efficiently detect roots
of f , and the second assertion of Lemma 3.1 gives us the stated characterization of
the roots of f . In particular, S1 is the unique order δ subgroup of F∗

q , and S2 is the

unique order q−1
δ′ subgroup of F∗

q (following the notation of the proof of Lemma 3.1).
�

3.2. The Proof of Corollary 1.3. Deciding whether 0 is a root of all the fi
is trivial, so let us divide all the fi by a suitable power of x so that all the fi have
a nonzero constant term. Next, concatenate all the nonzero exponents of the fi into
a single vector of length T ≤ k(t − 1). Applying Lemma 1.11, and repeating our
power substitution trick from our proof of Theorem 1.1, we can then reduce to the
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case where each fi has degree at most 2q1−T−1

, at the expense of 2O(T )(T log q)O(1)

deterministic bit operations.

At this stage, we then simply compute

g(x) :=((· · · (gcd(gcd(f1, f2), f3), . . .), fk)

via k − 1 applications of the Knuth-Schönhage algorithm [10, Ch. 3]. This takes

(k − 1)
(

2q1−T−1

)1+o(1)

(log q)1+o(1)

deterministic bit operations. We then conclude via Proposition 2.3, at a cost of
(

2q1−T−1

)1+o(1)

(log q)2+o(1) bit operations.

Summing the complexities of our steps, we arrive at our stated complexity bound. �

4. Hardness in One Variable: Proving Theorems 1.5, 1.6, and 1.10.

4.1. The Proof of Theorem 1.5. Thanks to Theorem 1.12 we obtain an im-
mediate ZPP-reduction from 3CNFSAT to the detection of roots in Fp for systems of
univariate polynomials in Fp[x]. By Lemma 2.2 we then obtain a BPP-reduction to
2 × 1 systems. Let us now describe a ZPP-reduction from 2 × 1 systems to 1 × 1
systems.

Suppose χ ∈ Fq is a quadratic non-residue. Clearly, the only root in F2
q of the

quadratic form x2−χy2 is (0, 0). So we can decide the solvability of f1(x)=f2(x)=0
over Fq by deciding the solvability of f2

1 − χf2
2 over Fq. Finding a usable χ is easily

done in ZPP via random-sampling and polynomial-time Jacobi symbol calculation
(see, e.g., [4, Cor. 5.7.5 & Thm. 5.9.3, pg. 110 & 113]).

So there is indeed a BPP-reduction from 3CNFSAT to our main problem, and we
are done. �

4.2. The Proof of Theorem 1.6. First note that the hardness of detecting
common degree one factors in Fp[x] (or Fp[x]) for pairs of polynomials in Fp[x] follows
immediately from Theorem 1.12 and Lemma 2.2: The proof of Theorem 1.5 above
already tells us that there is a BPP-reduction from 3CNFSAT to detecting common
roots in Fp of pairs of polynomials in Fp[x]. Thanks to Assertion (4) of Theorem 1.12,
we also obtain a BPP-reduction to detecting common roots, in Fp instead, for pairs
of polynomials in Fp[x].

So why does this imply hardness for deciding divisibility by the square of a degree
one polynomial in Fp[x] (or Fp[x])? Assume temporarily that Problem (2) is doable
in BPP. Consider then, for any f, g ∈ Fp[x], the polynomial H := (f + ag)(f + bg)
where {a, b}⊂Fp is a uniformly random subset of cardinality 2. Note that should f
and g have a common factor in Fp[x], then H has a repeated factor in Fp[x].

On the other hand, if f and g have no common factor, then f + ag and f + bg
clearly have no common factors. Moreover, thanks to Lemma 2.10, the probability
that f +ag and f + bg are both square-free — and thus H is square-free — is at least
(

1− 2d−1
q

)(

1− 2d−2
q

)

.

In other words, to test f and g for common factors, it’s enough to check square-
freeness of H for random (a, b).

To conclude, thanks to Theorem 1.12, the pairs of polynomials arising from our
BPP-reduction from 3CNFSAT satisfy the hypothesis of Lemma 2.10. Furthermore,

thanks to Assertion (1) of Theorem 1.12, our success probability is at least
(

1− 2
11

)2≥
2
3 , so we are done. �
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4.3. Proving Theorem 1.10. We will need the following proposition, due to
Ryan Williams.

Proposition 4.1. [50] Assume, for any Boolean circuit with n inputs and
size polynomial in n, that the Circuit Satisfiability Problem can be solved in time
2n−ω(logn). Then NEXP�P/poly. �

We will also need the following lemma, which is implicit in [37]. For completeness,
we supply a proof below.

Lemma 4.2. Given a Boolean circuit with d inputs and L gates, we can find in
polynomial time a straight-line program of size LO(1) for a polynomial f ∈F2d [x] such
that the circuit is satisfiable if and only if f has a root in F2d .
Proof: A Boolean circuit can be viewed as a straight-line program using Boolean
variables and Boolean operations. One can replace Boolean operations by polynomi-
als over F2 as follows: y1 ∧ y2 7→ y1y2, y1 ∨ y2 7→ y1 + y2 + y1y2, and ¬y1 7→ 1 + y1
Hence a straight-line program for a Boolean function of size L with d inputs can
be converted into a straight-line program for a polynomial g(y0, y1, · · · , yd−1) ∈
F2[y0, y1, · · · , yd−1] of size O(L), such that the circuit is satisfiable if and only the
equation g = 1 has a root in Fd

2.
Let b(x) be an irreducible polynomial of degree d over F2. Let α be one root of

b(x). Then {1, α, α2, . . . , αd−1} is a basis for F2d over F2. Then any element x∈F2d

can be written uniquely as x=x0 + x1α+ · · ·+ xd−1α
d−1, where xi ∈ F2 for all i. So

we obtain the system of linear equations














1 α · · · αd−1

1 α2 · · · α2(d−1)

1 α4 · · · α4(d−1)

...
...

1 α2d−1 · · · α2d−1(d−1)





























x0

x1

x2

...
xd−1















=















x
x2

x4

...

x2d−1















.

The underlying matrix is Vandermonde and thus non-singular. So we can represent

each xi as a linear combination of x, x21 , x22 , . . . , x2d−1

over F2d . Note that x2i has
a straight-line program of length i + 2. Replacing each xi by the appropriate linear
combination of high powers of x, in the SLP for g, we obtain a SLP for a univariate
polynomial h in x, such that g = 1 has a root in Fd

2 if and only if h − 1 has a root
in F2d . Moreover, the straight-line program needs only one constant α that can be
constructed in polynomial time. Our lemma follows by setting f := h− 1. �

Proof of Theorem 1.10: From Lemma 4.2, an algorithm as hypothesized in The-
orem 1.10 would imply a 2ℓ−ω(log ℓ) algorithm for any instance of the Circuit Satisfi-
ability Problem of ℓ inputs and size polynomial in ℓ. By Proposition 4.1, we would
then obtain NEXP�P/poly. �
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