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1. Introduction

The beauty and utility of randomness is more than matched by its
mysteries. How can we tell if a putative source of randomness (such as
the frequency of the emission of electrons from a decaying radioactive
material) is truly random? Indeed, how does one define randomness?
Starting from the 17th century work of Pascal and Fermat, and

spurred on by the 20th century axiomatic approaches of S. N. Bern-
stein, A. N. Kolmogorov, and R. E. von Mises,1 we have been applying
randomness with steadily increasing power and precision. More re-
cently, Theoretical Computer Science has helped bring the meaning
of randomness to a sharper focus. But whether randomness is truly
necessary in the solution of certain fundamental problems remains un-
known.
József Beck’s Inevitable Randomness in Discrete Mathematics gives

a novel point of view on these questions. To better understand the
theoretical and conceptual advances Beck puts forth, let us first briefly
review how we profit from randomness in certain settings adjacent to
those considered in his book. In what follows, we will sometimes refer
to basic notions from algorithmic complexity. Some of the best sources
for further background on complexity are [Sip92, Pap95, AB09, For09,
Lip09].

2. Do we need randomness?

How quickly can we determine whether a given integer N is prime?
The advent of public key cryptography in the latter half of the 20th
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century generated a serious need for algorithms with complexity poly-
nomial in logN .
To check the primality of N one can of course use trial division

by primes up to
⌊√

N
⌋

, but this naive method is doomed to time

exponential in logN . Fortunately, through some clever tricks involving
square roots mod N [SS77], Solovay and Strassen found a randomized
algorithm with complexity cubic in logN .
More precisely, recall that for any integer a and prime p, the Legendre

symbol
(

a
p

)

is 0, 1, or −1, according as p divides a, a is a nonzero square

mod p, or a is not a square mod p. The Jacobi symbol
(

a
N

)

is then

defined to be
(

a
p1

)e1
· · ·

(

a
pk

)ek
, assuming N = pe11 · · · pekk for distinct

primes p1, . . . , pk and positive integers e1, . . . , ek.
If N is prime then it is easy to show from Fermat’s Little Theorem

that
(

a
N

)

= a(N−1)/2 mod N for all a. The following classic result,
discovered independently by D. H. Lehmer around 1975, provides a
partial converse strong enough to enable a primality test.

Theorem 2.1. [SS77] If N is odd and composite then at least half the
integers a in {1, . . . , N} satisfy

(

a
N

)

6=a(N−1)/2 mod N . �

Gauss’s famous Law of Quadratic Reciprocity, along with some addi-
tional basic properties of the Jacobi symbol, and the ancient trick of

recursive squaring, implies that the equality
(

a
N

) ?
=a(N−1)/2 mod N can

be checked efficiently. (In particular, one never uses the factorization of
N to compute

(

a
N

)

in practice.) The Solovay-Strassen Primality Test,
for an odd input N , then proceeds as follows: pick a uniformly random
a∈ {1, . . . , N}. Declare N to be composite if

(

a
N

)

6= a(N−1)/2 mod N ,
or declare N to be probably prime otherwise. It is then easily checked
that a declaration of compositeness is always correct, and a composite
N will be declared composite with probability 1

2
. One can of course

run the test k times to reduce the error probability to 1
2k
.

The preceding test gives one-sided error: a declaration of compos-
iteness is always correct, but probable primality need not mean actual
primality. Based on an ingenious use of elliptic curves over finite fields,
Adleman and Huang [AH92] later gave a randomized polynomial-time
primality detection algorithm with one-sided error in the opposite di-
rection: the algorithm either correctly declares primality (with prob-
ability at least 1

2
), or declares “possibly composite”. Combining the

Solovay-Strassen and Adleman-Huang primality tests, we thus obtain
an efficient method to decide the primality of N : in time polynomial
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in logN , we either get a correct answer (with probability at least 1
2
),

or a declaration of doubt (with probability at most 1
2
).

From a theoretical point of view, assuming we are satisfied with the
underlying source of randomness and we are willing to live with a small
error probability, efficient primality detection was thus settled in the
1990s. At that time, derandomizing efficient primality testing still ap-
peared as distant as efficient integer factorization (which still remains
an open problem in early 2013). Agrawal, Kayal, and Saxena’s early
21st century discovery of a deterministic algorithm for primality detec-
tion, with complexity (logN)7.5+o(1), was then a spectacular advance
[AKS02].
So we now know that randomness is not necessary for polynomial-

time primality detection. However, in practice, refinements of the sem-
inal methods of Solovay, Strassen, Adleman, Huang, and others (still
using randomness) remain the method of choice for checking primality
of large integers.
Discerning whether randomness helps in other decision problems has

led to deep results in complexity theory, e.g., the connections between
polynomial identity testing and lower bounds for circuit complexity
(see, e.g., [IW97, IK04, Koi11]). In our next setting, we will see how
polynomial-time complexity is almost impossible without randomiza-
tion, in certain enumerative problems.

3. Can randomness provably help us?

For the computation of volumes of high-dimensional polytopes, it
appears that theoretical tractability hinges on the use of randomness:
under certain well-known hypotheses from complexity theory, we can
actually prove that randomness is needed.
More precisely, given a point set {a1, . . . , an}⊂Z

d, with cardinality n,
convex hull2 P , and n≥d, how quickly can one compute the standard
Euclidean d-volume Vold(P )? Before answering this question, let us
recall some basic facts about polytopes.
First, recall that the convex hull Q of d + 1 points in R

N with
Vold(Q) > 0 is a d-simplex. Note also that by checking the rank of
the matrix M whose columns are a2 − a1, . . . , an − a1 (e.g., via a rou-
tine application of Hermite factorization [Sto00]) we can decide the

inequality Vold(P )
?
> 0 in time polynomial in n + σ, where σ is the

maximum bit-size of any coordinate of any ai. Finally, let us recall
the standard computational geometry fact that computing a simplicial

2i.e., smallest convex set containing a1, . . . , an
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subdivision3 {∆i}i of P takes Θ
(

n⌊ d+1

2 ⌋ + n log n
)

arithmetic opera-

tions in the worst case [Ede87]. In summary, this means that, when
P ⊂R

d, we can compute Vold(P ) in time exponential in d by subdivid-
ing P and adding the volumes of the cells of the subdivision. Since the
cells are simplices by construction, the volume is then simply a sum of
d× d determinants (of matrices with columns of the form ai − aj).
Computing Vold(P ) in time polynomial in n + σ then turns out to

be extremely difficult, if not impossible.

Theorem 3.1. [DF88] If we define the bit-size of a point-set {a1, . . . , an}
⊂Z

d with convex hull P to be the sum of the bit-sizes of the coordinates
of the ai, then computing Vold(P ) is #P-complete. �

#P is the enumerative analogue of the complexity class NP. An al-
gorithm for Vold(P ) with complexity polynomial in n + σ would thus
imply P=NP — a widely doubted, but still unknown equality of com-
plexity classes. Note that the bit-size of {a1, . . . , an} is bounded from
above by dnσ. Polynomiality in n+σ is thus equivalent to polynomial-
ity in the bit-size of {a1, . . . , an} since we’ve assumed n≥d. Note also
that the bit-size of the integer d!Vold(P ) is O(dσ + n log n) since P is
certainly contained in the cube [−2σ, 2σ]d.
The discovery that randomization gives a way to circumvent the

preceding complexity barrier was then another beautiful surprise from
the 1990s.

Theorem 3.2. [DFK91] There is a randomized algorithm that, given
any δ, ε>0, computes an approximation V of Vold(P ) satisfying

(1− ε)Vold(P )≤V ≤(1 + ε)Vold(P )
with probability at least 1− δ, using a number of bit operations polyno-
mial in n+ σ + 1

ε
+ log 1

δ
. �

The main result of [DFK91] is actually an efficient randomized algo-
rithm for approximating the volume of any convex body given by a
certain kind of membership oracle, i.e., a separate algorithm to decide
whether an input point x is contained in P . Since membership in a
convex hull can be decided in polynomial-time via modern Linear Pro-
gramming, the statement above thus follows via standard lattice geo-
metric rounding arguments. Theorem 3.2 (since improved by Lovász,
Montenegro, Simonovitz, Sinclair, Vempala and others [Sim03]) was

3i.e., a subdivision of P into a finite union of d-simplices
⋃

i ∆i such that the
vertices of any ∆i lie in {a1, . . . , an} and ∆i ∩∆j is always a face of both ∆i and
∆j
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first proved by starting with a clever reduction to another fundamen-
tal problem: efficiently simulating the uniform distribution on high-
dimensional convex bodies. The key technical advance from [DFK91]
was thus a subtle study of the convergence of a particular kind of ran-
dom walk to the uniform distribution.
If one assumes P 6= NP then Theorem 3.2 tells us that random-

ness is indeed our only hope of computing polytope volumes in time
polynomial in the dimension.

4. Beck’s Book

One can easily find many other examples (e.g., from Algebraic Ge-
ometry, Combinatorial Optimization, Cryptography, and Physics) of
the algorithmic benefits of randomness. However, a deeper question
is how randomness can help us understand or revisit non-algorithmic
parts of mathematics as well. Beck goes in this direction, starting with
a remarkably lucid discussion around a diverse set of examples. His
ultimate goal is to support, formulate, and prove (in certain cases) a
structural dichotomy for discrete systems. Briefly:

Discrete systems are either simple or they exhibit
advanced pseudorandomness.

Beck calls this dichotomy the Solid Liquid Gas (SLG) Conjecture.
The distribution of the lower integer parts ⌊nx⌋∞n=1 mod 1, for x

either a rational number or a quadratic irrational, gives a concrete ex-
ample of this dichotomy: for rational x we have periodicity, but (as
detailed in Chapter 5) a quadratic irrational x results in a distribution
obeying a kind of Central Limit Theorem. Clarifying the SLG Con-
jecture, and applying it to Combinatorial Game Theory, takes up the
entire book, consisting of three parts.
Part A, spread across 5 chapters, shows how certain mathematical

results can be reproduced, or how certain conjectures can be suggested,
through simple probabilistic heuristics.
For example (see Chapter 3), if one imagines the Legendre symbols

(

a
p

)

for a∈{1, . . . , p−1} to be independent and identically distributed

uniform random variables taking values in {±1}, one may infer (via

the Central Limit Theorem) that
x
∑

a=1

(

a
p

)

= O(
√
x) (for x ≤ p) with

high probability. Considering that we can in fact prove (thanks to

work of Polyá and Vinogradov around 1920) that
x
∑

a=1

(

a
p

)

≤√
p log p,

it is tempting to believe that our preceding heuristic has somehow
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been vindicated. However, proving
x
∑

a=1

(

a
p

)

=x
1

2
+o(1) remains an open

problem, even for x>pε and any ε>0.
As another example (see Chapter 1), we can recall Cramer’s famous

heuristic for studying the primes: build a random set S of integers by
tossing a biased coin for each integer n (starting from n=3 and then
proceeding in increasing order) and including n in S if one gets Heads.
The coin one tosses for the integer n shows Heads with probability 1

log n

and Tails with probability 1 − 1
logn

. Curiously, the expectation of the

cardinality #{n ≤ x | n ∈ S} is within O(1) of the classical function
Li(x) :=

∫ x

2
dt

log t
, the latter being a well-known analytic approximation

to the prime counting function π(x). Furthermore, the fluctuation of

#{n ≤ x | n ∈ S} about Li(x) is O
(

x
1

2
+o(1)

)

, which is in harmony

with the fluctuation of π(x) about Li(x) predicted by the Riemann
Hypothesis. (The inequality |π(x)− Li(x)| = O(

√
x log x) is in fact

equivalent to the Riemann Hypothesis, which remains unproved as of
early 2013.)
Beck’s other examples from Part A include the randomness of the

base b digits of almost all real numbers (a classic 1909 theorem of
Borel), the connections between continued fractions and ergodicity, the
fluctuation of the average value of #{(x, y)∈Z

2 | x2 + y2 = n} about
π, Erdös and Kac’s 1939 Central Limit Theorem for the integer divisor
function, and the assumption of randomness in the derivation of Boltz-
mann’s Energy Law from Statistical Mechanics. All of Beck’s examples
are intriguing and quite clearly laid out.
In his discussion of Boltzmann’s Energy Law, Beck uses a classical

quandary to motivate a particular aspect of his main conjecture: the
role of a priori probabilities. In particular, since completely calculating
the state of, say, 1025 particles in a gas is infeasible, at such scales one
makes an assumption that the states in an isolated system in equilib-
rium occur with equal probability. In other words, one assumes that
the true physical behavior is consistent with assigning a priori proba-
bilities in a judicious manner. (Just making sense of this assumption
was a major impetus in the development of Ergodic Theory.) Unlike
the assumption of equal probabilities in, say, the occurence of facets in
the rolls of a (fair) 6-sided die, the assignment of a priori probabilities
in a setting without symmetry is a subtle matter. Moreover, due to the
large dimension of the state space, we see that it almost impossible to
say anything useful in Statistical Mechanics without some application
of randomness.
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Games of complete information with no chance moves (dubbed Real
Game Theory in Beck’s book) then form a completely disparate setting
to our preceding discussion. Nevertheless, motivated by the SLG Con-
jecture, Beck proves in various cases that winning strategies exhibit
behavior analogous to energy calculations in Statistical Physics. As
laid out in Parts B and C, although Real Game Theory is ultimately a
finite setting, amenable to brute-force search, randomness can give us
deep insights into deriving winning strategies for deterministic (non-
random) games.
Part B, consisting of 8 chapters, deals with games on graphs and hy-

pergraphs, and higher-dimensional variants of Tic-Tac-Toe, from the
point of view of the SLG Conjecture. For instance, consider two play-
ers, named Red and Blue, who take turns (starting with Red) coloring
the edges of the complete graph KN on N vertices. (Red (resp. Blue)
colors edges red (resp. blue).) Red wants to create a complete subgraph
Kq with all edges red, with q as large as possible, while Blue simply
wants to stop Red from doing so. The largest q that Red can always
attain turns out to be

2 log2

(

e2

8
· N
log2 N

)

+ o(1).

— quite close to the expected size of the largest clique in a random
graph on N vertices. This remarkable formula (along with a cor-
responding strategy that actually attains such a red Kq for Red) is
clarified in Chapter 10. But more importantly, this result shows how
randomness helps in a setting where one would expect brute-force to
be the only way to find a solution. Indeed, a good portion of Part B ex-
plains how “random play” can be turned into a deterministic strategy.
Beck’s discussion of Tic-Tac-Toe-like games actually quotes difficult
theorems proved in full in his earlier book [Bec08], which is triple the
length of the book under review. So one of the key insights of Part B
is a reinterpretation of [Bec08] in terms of the SLG Conjecture.
Part C narrows focus further by analyzing the Degree Game on

Graphs: put roughly this is another game where (on a general graph)
two players color edges as before, but now the goal is for Red to force
some vertex to have as many red edges as possible. An invariant called
surplus measures how much Red can gain over the obvious lower bound
attainable via the Pigeon-hole Principle. The first main theorem of
Part C gives upper and lower bounds on the surplus in terms of a
quantity called the core density of the underlying graph. The core den-
sity turns out to be within a factor of 2 of several other important graph
quantities: the arboricity, the greedy coloring number, the degeneracy,
and the core-degree (see Chapter 14). The final main result of Part



8 J. MAURICE ROJAS

C refines these surplus bounds for the special case of d-regular graphs
with d≥200: when the number of vertices is less than

22
2
.
.
.
2
d

,
(where the number of 2s is log d) the lower and upper bounds can be

tightened to around
√
d, modulo an O(log2 d) factor. Part C, while

self-contained, is the most technically involved part of the book.

5. Final Comments

Beck states around Chapter 9 that his book does not touch upon the
complexity-theoretic aspects of randomness. This betrays considerable
modesty on the author’s part: Beck’s treatment of games is a tour de
force of discrete mathematics that, while not mentioning P, BPP, or
NP explicitly, makes a serious conceptual advance in the algorithmic
theory of games.
One should also be aware that there is another combinatorial set-

ting where a deep structure versus randomness dichotomy has been
rigourously proved: Szemeredi’s Theorem [Sze75]. This celebrated re-
sult states that for any k ∈ N and positive real number δ ≤ 1, there
is an integer S(k, δ) ≥ 1 such that for every N ≥ S(k, δ), every set
A⊆ {1, . . . , N} of cardinality at least δN contains at least one arith-
metic progression of length k. Tao observes in [Tao06, Pg. 3] that all
known proofs of Szemeredi’s Theorem essentially split A into a struc-
tured portion and a random portion. (The definitions of structured and
random can be made precise, relative to which proof is being used.) The
metaphor of structure versus randomness thus clarifies the underpin-
nings of another important part of combinatorics.
As Beck innovatively demonstrates, using randomness to create de-

terministic strategies for games without random moves is an art. Beck’s
book also clearly reveals the SLG Conjecture to be a powerful concep-
tual tool worthy of broad attention.
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